首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
IntroductionThe differentiation of dental pulp cells (DPCs) plays an important role in the repair of dental pulp injury. Bone morphogenetic protein 9 (BMP9) is one of the most effective BMPs to induce the differentiation of stem cells. However, the role of BMP9 in promoting the odontogenic differentiation of DPCs and dentinogenesis is worth knowing.MethodsFluorescence in situ hybridization and immunohistochemistry staining were performed to detect the BMP9 expression in human dental pulp. BMP9 was overexpressed in human DPCs (hDPCs), and the mineralization of hDPCs was tested by alkaline phosphatase staining and alizarin red staining. The expression of odontogenic differentiation-related genes was examined by quantitative real-time polymerase chain reaction and western blotting. The subcutaneous transplantation experiment was performed to test the odonto-induction ability of BMP9 in vivo. The rat direct pulp-capping experiment was performed to test the function of BMP9 in promoting dentin formation.ResultsBMP9 showed an increased expression in odontoblast layer at both the mRNA and protein levels. BMP9 enhanced the mineralization and induced the expression of odontogenic differentiation-related genes in hDPCs. More mineralized nodules, and increased expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP1) were detected in the beta-tricalcium phosphate scaffold/cells composites of BMP9 group compared with the control group. Meanwhile, there was thicker reparative dentin formation in the BMP9 group in the rat pulp exposure experiment.ConclusionsBMP9 participates in the process of DPC differentiation and promotes DPC mineralization and dentinogenesis. BMP9 might be a potential therapeutic target in the repair of dental pulp injury.  相似文献   

3.
体外培养的牙髓细胞在形态上同一般成纤维细胞相似,但在生物学特性上却表现出较高的分化能力。近年来的研究表明,牙髓细胞中存在未分化的间充质干细胞,属于成体干细胞,在不同的诱导条件下表现出多向分化能力。本文就牙髓细胞分化过程中的相关标记物如碱性磷酸酶活性、矿化结节以及牙本质涎磷蛋白(DSPP)等研究进展作一综述。  相似文献   

4.
5.
6.
目的研究组蛋白去甲基化酶Jmjd3对牙髓干细胞(dental pulp stem cells,DPSCs)成牙本质向分化的影响。方法原代分离培养DPSCs,用流式细胞术和茜素红染色鉴定DPSCs。体外诱导DPSCs成牙本质向分化不同时间(0、3、5、7、14 d),qRT-PCR检测Jmjd3及成牙本质细胞标志物牙本质涎磷蛋白(dentin sialophosphoprotein,DSPP)、牙本质基质蛋白1(dentin matrix protein1,DMP1)的表达情况。用不同浓度(0、1、10μmol/L)的Jmjd3抑制剂GSK-J4处理DPSCs 14 d,q RT-PCR检测DSPP、DMP1的表达情况。结果原代培养的DPSCs表达间充质干细胞表面标记物CD44、CD29、CD146,体外诱导培养具有成骨分化潜能。DPSCs成牙本质向分化过程中,Jmjd3、DSPP、DMP1表达水平均上调(P<0.05),且可能具有时间依赖性。10μmol/L GSK-J4处理DPSCs可明显抑制DSPP、DMP1的表达(P<0.05)。结论Jmjd3在DPSCs成牙本质向分化过程中发挥正调节作用,且与其去甲基化酶活性相关。  相似文献   

7.
《Journal of endodontics》2021,47(9):1409-1416
IntroductionTransient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are thermosensitive channels that play an important role in thermal sensation or tooth pain by regulating intracellular Ca2+ concentration that is essential for pulp tissue repair. The aim of this study was to evaluate the role of TRPA1 and TRPV1 channels in the odontogenic differentiation of human dental pulp cells (HDPCs).MethodsHDPCs were isolated from healthy human intact third molars and cultured in odontogenic differentiation medium. Gene and protein expression levels of TRPA1 and TRPV1 channels during the odontogenic differentiation of HDPCs were evaluated by real-time quantitative polymerase chain reaction and Western blot analysis. HDPCs were then treated with channel agonists or antagonists, and the expression levels of odontogenic markers dentin sialophosphoprotein (DSPP) and osteopontin (OPN) were examined. Alkaline phosphatase activity and alizarin red staining were also conducted to detect mineralization levels.ResultsConsistent with the mineralization degree and DSPP and OPN expression, messenger RNA and protein expression of TRPA1 and TRPV1 channels was up-regulated during the odontogenic differentiation of HDPCs. The application of TRPA1 or TRPV1 agonists increased the mineralized nodules of alizarin red staining and alkaline phosphatase activity and up-regulated the messenger RNA and protein expression of DSPP and OPN, respectively, with the highest values reached on the seventh day (P < .05). On the contrary, the mineralization level and DSPP and OPN expression could be suppressed by using the antagonists of these 2 channels.ConclusionsTRPA1 and TRPV1 channels not only showed up-regulated expression along with the odontogenic differentiation of HDPCs but also could affect the odontogenic differentiation by regulating intracellular Ca2+ concentration.  相似文献   

8.
9.
10.
MEPE is downregulated as dental pulp stem cells differentiate   总被引:3,自引:0,他引:3  
Previous studies on dental pulp cell culture have described heterogenous mixtures of cells that differentiate into odontoblasts and form mineralized dentin. OBJECTIVE: The aim of this study was to characterize the matrix extracellular phosphoglycoprotein (MEPE) expression by dental pulp stem cells (DPSC), related to cell differentiation. DESIGN: DPSC differentiation to form mineralized nodules was characterized by Alizarin red staining and micro-Raman spectroscopy. Osteogenesis SuperArray analysis was used to broadly screen for osteogenesis-related genes altered by DPSC differentiation. Relative levels of expression of MEPE and DSP were determined by semiquantitative RT-PCR and Western blot. RESULTS: Mineral analysis showed that as DPSC differentiated, they formed a carbonated hydroxyapatite mineral. Differentiation was initially marked by upregulation by Runx2, TGFbeta-related genes, EGFR and genes involved in collagen metabolism. ALP activity first increased, as DPSCs reached confluence but later decreased when cells further differentiated three weeks after confluence. MEPE was the only marker that was downregulated as DPSCs differentiated. CONCLUSION: DPSC differentiation can be characterized by downregulation of MEPE as other markers of DPSC differentiation, such as DSP, are upregulated. Expression of MEPE related to DSP and can be used to monitor DPSC as they are used for studies of odontoblast differentiation, tissue engineering or vital pulp therapy. The downregulation of MEPE as DPSC differentiate, suggests that MEPE is an inhibitor of mineralization.  相似文献   

11.
目的:研究重组人结缔组织生长因子(recombinant connective tissue growth factor, rCTGF)对牙髓细胞(human dental pulp cells,hDPCs)增殖及分化的影响。方法:利用不同浓度(0、1、10、100 ng/mL)rCTGF分别处理牙髓细胞,CCK8法检测牙髓细胞增殖情况;茜素红染色和半定量试验检测细胞矿化结节的形成变化,qRT-PCR测定成牙本质分化相关基因DMP-1、DSPP和OC的表达情况,Western 免疫印迹法测定rCTGF刺激牙髓细胞后,ERK1/2信号通路的磷酸化水平。采用SAS 9.3软件包对数据进行统计学分析。结果:高浓度的rCTGF(100 ng/mL)可以促进牙髓细胞增殖;经矿化诱导后,10 ng/mL rCTGF促进牙髓细胞矿化结节形成的效果最好,钙盐沉积量最明显(P<0.05),成牙本质分化相关基因DMP-1、DSPP的表达显著上调(P<0.05)。Western 免疫印迹结果显示,10 ng/mL rCTGF刺激牙髓细胞后,p-ERK1/2蛋白的表达升高。结论:rCTGF可能通过激活ERK1/2信号通路,促进牙髓细胞的增殖与分化。  相似文献   

12.

Introduction

Dental pulp can be exposed to hypoxic conditions in case of trauma or inflammation. Dental pulp cells (DPCs) have mineralization potential, which plays a key role in pulp repair and reparative dentinogenesis process. Little information is available about DPC mineralization in hypoxic condition. The purpose of this study was to assess the influence of hypoxia on DPC mineralization to pave the way for a better understanding of dental pulp regeneration and reparative dentin formation.

Methods

Human DPCs were obtained by using tissue explant technique in vitro and cultured in normoxia (20% O2) or hypoxia (5% O2). Cell viability was investigated by methyl-thiazol-tetrazolium assay. Cell mineralization was assessed by von Kossa staining and alizarin red S staining. Important mineral genes such as osteocalcin (OCN), dentin matrix acidic phosphoprotein-1 (DMP-1), bone sialoprotein (BSP), and dentin sialophosphoprotein (DSPP) were determined by real-time polymerase chain reaction.

Results

Cell viability of DPCs increased more in hypoxia than in normoxia from day 3 to day 5. Von Kossa staining and alizarin red S staining showed DPCs in hypoxia had higher mineralization activity than in normoxia. Expression of mRNAs for OCN, DMP-1, BSP, and DSPP was greater in hypoxia than in normoxia.

Conclusions

These results imply that hypoxia promotes DPC mineralization.  相似文献   

13.
ObjectivesInsulin-like growth factor 1 (IGF-1) is a broad-spectrum growth-promoting factor that plays a key role in natural tooth development. Human dental pulp stem cells (hDPSCs) are multipotent and can influence the reparative regeneration of dental pulp and dentin. This study was designed to evaluate the effects of IGF-1 on the proliferation and differentiation of human dental pulp stem cells.MethodsHDPSCs were isolated and purified from human dental pulps. The proliferation and osteo/odontogenic differentiation of hDPSCs treated with 100 ng/ml exogenous IGF-1 were subsequently investigated.ResultsMTT assays revealed that IGF-1 enhanced the proliferation of hDPSCs. ALP activity in IGF-1-treated group was obviously enhanced compared to the control group from days 3 to 9. Alizarin red staining revealed that the IGF-1-treated cells contained a greater number of mineralization nodules and had higher calcium concentrations. Moreover, western blot and qRT-PCR analyses demonstrated that the expression levels of several osteogenic genes (e.g., RUNX2, OSX, and OCN) and an odontoblast-specific marker (DSPP) were significantly up-regulated in IGF-1-treated hDPSCs as compared with untreated cells (P < 0.01). Interestingly, the expression of phospho-ERK and phospho-p38 were also up-regulated, indicating that the MAPK signaling pathway is activated during the differentiation of hDPSCs.ConclusionsIGF-1 can promote the proliferation and osteo/odontogenic differentiation of hDPSCs by activating MAPK pathways.  相似文献   

14.

Introduction

The major challenge in dental pulp engineering is to make a successful combination of stem cells and biomaterials with the aim of providing the differentiation of stem cells into odontogenic cell types. Among biomaterials, some types of pluronics have been reported to increase bone formation of stem cells. The effect of these pluronics on odontogenic differentiation has not been addressed yet. This study aimed to examine the effect of pluronics F68, F127, and P85 on odontogenic differentiation of stem cells derived from third molar tooth germs of young adults.

Methods

Human tooth germ stem cells (hTGSCs) were induced to differentiate into odontogenic cells in the presence of different concentrations of pluronics. Differentiation efficiency was assessed by quantitative real-time polymerase chain reaction for determining expression messenger RNA levels and by immunocytostaining for determining the protein expression of odontogenic markers (ie, dentin sialoprotein, dentin matrix protein 1, bone morphogenic protein 2, bone morphogenic protein 7) by measuring alkaline phosphatase enzyme activity and lastly by von Kossa staining for determining mineralization.

Results

The results revealed for the first time that F68 has a great potential to boost odontogenic differentiation of hTGSCs. P85 was found to reduce cell viability during differentiation. F127 was nontoxic to hTGSCs but did not have any effect on differentiation.

Conclusions

The positive effect of F68 on odontogenic differentiation might enable more efficient pulp regeneration. Yet, the exact mechanism of how F68 alters the differentiation pattern of hTGSCs remains to be investigated in the future studies.  相似文献   

15.
16.
体外诱导牙髓干细胞向成牙本质细胞分化并观察其过程,是目前研究牙髓干细胞分化机制和寻找其分化标志的主要方法。在成牙本质细胞分化和矿化过程中,小分子整联蛋白结合配体N-糖蛋白(SBLING)家族成员发挥着重要作用。下面就SBLING家族成员牙本质涎磷蛋白、牙本质基质蛋白-1和细胞外基质磷酸糖蛋白在牙髓干细胞分化过程中的作用作一综述。  相似文献   

17.
18.
IntroductionDuring development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes.MethodsIn this study, we investigated the differential expression of 84 stem cell–related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation.ResultsOur results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor β (TGF-β)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration.ConclusionsThis study has generated an overview of stem cell–related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-β/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.  相似文献   

19.
20.
Wei X  Wu L  Ling J  Liu L  Liu S  Liu W  Li M  Xiao Y 《Journal of endodontics》2008,34(9):1077-1084
Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 23 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time real-time polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast-like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号