首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G Berton  M Cassatella  G Cabrini    F Rossi 《Immunology》1985,54(2):371-379
Mouse peritoneal macrophages activated in vivo by the injection of Corynebacterium parvum release larger amounts of superoxide anion (O2-) than macrophages from control mice when stimulated with phorbol myristate acetate (PMA). The biochemical bases for this enhanced response of activated macrophages have been investigated by studying the expression and function of receptors for the stimulant, and the activity of the enzyme NADPH oxidase which is responsible for the production of O2- in leucocytes. Studies of binding of phorbol dibutyrate, an agent closely related to PMA, showed that the affinity constants (Kds) and the number of binding sites were the same in resident and activated peritoneal macrophages. The activity of the NADPH oxidase was, however, different in the two macrophage populations which differ in their capacity to release O2-. NADPH oxidase activity was studied in macrophage monolayers after lysis with deoxycholate. The main features of this activity were as follows: stimulation of macrophages with PMA or zymosan caused an increase in NADPH-dependent O2- production; NADPH oxidase activity in the lysates followed the same dose-response curve for different concentrations of PMA as O2- release by intact macrophages; O2- release by intact macrophages could be fully accounted for by NADPH-dependent O2- production by macrophage lysates; activity was strictly substrate-specific, in that NADH could not substitute for NADPH; after stimulation with PMA or zymosan, NADPH oxidase activity was higher in lysates of C. parvum-activated macrophages than in lysates of resident macrophages; NADPH oxidase activities of activated and resident macrophages differed markedly in their kinetic parameters. The NADPH oxidase of macrophages activated by C. parvum or trehalose dimycolate of mycobacterial origin displayed a five to seven times lower Km compared to the enzyme in resident macrophages.  相似文献   

2.
Habitual aerobic exercise is associated with enhanced endothelium-dependent dilatation (EDD) in older humans, possibly by increasing nitric oxide bioavailability and reducing oxidative stress. However, the mechanisms involved are incompletely understood. EDD was measured in young (6–8 months) and old (29–32 months) cage control and voluntary wheel running (VR) B6D2F1 mice. Age-related reductions in maximal carotid artery EDD to acetylcholine (74 vs. 96%, P < 0.01) and the nitric oxide (NO) component of EDD (maximum dilatation with ACh and l -NAME minus that with ACh alone was −28% vs. −55%, P < 0.01) were restored in old VR (EDD: 96%, NO: −46%). Nitrotyrosine, a marker of oxidative stress, was increased in aorta with age, but was markedly lower in old VR ( P < 0.05). Aortic superoxide dismutase (SOD) activity was greater ( P < 0.01), whereas NADPH oxidase protein expression ( P < 0.01) and activity ( P = 0.05) were lower in old VR vs. old cage control. Increasing SOD (with 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl) and inhibition of NADPH oxidase (with apocynin) improved EDD and its NO component in old cage control, but not old VR mice. VR increased endothelial NO synthase (eNOS) protein expression ( P < 0.05) and activation (Ser1177 phosphorylation) ( P < 0.05) in old mice. VR did not affect EDD in young mice. Our results show that voluntary aerobic exercise restores the age-associated loss of EDD by suppression of oxidative stress via stimulation of SOD antioxidant activity and inhibition of NADPH oxidase superoxide production. Increased eNOS protein and activation also may contribute to exercise-mediated preservation of NO bioavailability and EDD with ageing.  相似文献   

3.
目的:脑组织在缺血再灌注的早期,超氧阴离子的大量生成加重了脑组织损伤,本实验研究阿托伐他汀对缺血再灌注脑组织保护作用的可能机制。方法:成年雄性Sprague-Dawley大鼠经线栓法阻断大脑中动脉建立脑缺血再灌注模型,再灌注前经腹腔给予阿托伐他汀(立普妥)治疗。脑梗死灶体积用四唑氮蓝染色后测量;NADPH氧化酶酶活性和超氧阴离子水平使用光泽精增强化学发光法定量测定;NADPH氧化酶膜亚基gp91phox、膜易位亚基p47phox和小GTP酶Rac-1蛋白的表达用蛋白质印迹分析。结果:缺血半暗区的NADPH氧化酶活性和超氧阴离子水平增高,于再灌注2 h达到高峰,但缺血中心区的NADPH氧化酶活性和超氧阴离子水平无明显增高。阿托伐他汀预治疗能抑制再灌注2 h后缺血半暗区的NADPH氧化酶活性和超氧阴离子增高,减少膜亚基gp91phox蛋白的表达和预防细胞质亚基p47phox蛋白易位至细胞膜。结论:阿托伐他汀对缺血再灌注脑组织NADPH氧化酶源性超氧阴离子的抑制作用,是其脑保护作用机制之一。  相似文献   

4.
5.
Endothelial dysfunction in the setting of cardiovascular risk factors such as hypercholesterolemia, diabetes mellitus, chronic smoking, as well hypertension, is, at least in part, dependent of the production of reactive oxygen species (ROS) and the subsequent decrease in vascular bioavailability of nitric oxide (NO). ROS-producing enzymes involved in increased oxidative stress within vascular tissue include NADPH oxidase, xanthine oxidase, and mitochondrial superoxide producing enzymes. Superoxide produced by the NADPH oxidase may react with NO, thereby stimulating the production of the NO/superoxide reaction product peroxynitrite. Peroxynitrite in turn has been shown to uncouple eNOS, therefore switching an antiatherosclerotic NO producing enzyme to an enzyme that may accelerate the atherosclerotic process by producing superoxide. Increased oxidative stress in the vasculature, however, is not restricted to the endothelium and also occurs within the smooth muscle cell layer. Increased superoxide production has important consequences with respect to signaling by the soluble guanylate cyclase and the cGMP-dependent kinase I, which activity and expression is regulated in a redox-sensitive fashion. The present review will summarize current concepts concerning eNOS uncoupling, with special focus on the role of tetrahydrobiopterin in mediating eNOS uncoupling.  相似文献   

6.
Phenylketonuria (PKU) is an inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase, which metabolizes phenylalanine (phe) to tyrosine. A low-phe diet plus amino acid (AA) formula is necessary to prevent cognitive impairment; glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to the AA formula. Our objective was to assess neurotransmitter concentrations in the brain and the behavioral phenotype of PKU mice (Pahenu2 on the C57Bl/6 background) and how this is affected by low-phe protein sources. Wild type (WT) and PKU mice, both male and female, were fed high-phe casein, low-phe AA, or low-phe GMP diets between 3 and 18 weeks of age. Behavioral phenotype was assessed using the open field and marble burying tests, and brain neurotransmitter concentrations were measured using HPLC with electrochemical detection system. Data were analyzed by 3-way ANOVA with genotype, sex, and diet as the main treatment effects. Brain mass and the concentrations of catecholamines and serotonin were reduced in PKU mice compared to WT mice; the low-phe AA and GMP diets improved these parameters in PKU mice. Relative brain mass was increased in female PKU mice fed the GMP diet compared to the AA diet. PKU mice exhibited hyperactivity and impaired vertical exploration compared to their WT littermates during the open field test. Regardless of genotype or diet, female mice demonstrated increased vertical activity time and increased total ambulatory and horizontal activity counts compared with male mice. PKU mice fed the high-phe casein diet buried significantly fewer marbles than WT control mice fed casein; this was normalized in PKU mice fed the low-phe AA and GMP diets. In summary, C57Bl/6-Pahenu2 mice showed an impaired behavioral phenotype and reduced brain neurotransmitter concentrations that were improved by the low-phe AA or GMP diets. These data support lifelong adherence to a low-phe diet for PKU.  相似文献   

7.
Few studies have looked at optimal or acceptable serum phenylalanine levels in later life in patients with phenylketonuria (PKU). This study examined the oxidative stress status of adolescents and adults with PKU. Forty PKU patients aged over fifteen years were enrolled, and were compared with thirty age-matched controls. Oxidative stress markers, anti-oxidant enzyme activities in erythrocytes, and blood anti-oxidant levels were examined. Nitric oxide (NO) production was also examined as a measure of oxidative stress. Plasma thiobarbituric acid reactive species and serum malondialdehyde-modified LDL levels were significantly higher in PKU patients than control subjects, and correlated significantly with serum phenylalanine level (P<0.01). Plasma total anti-oxidant reactivity levels were significantly lower in the patient group, and correlated negatively with phenylalanine level (P<0.001). Erythrocyte superoxide dismutase and catalase activities were higher and correlated significantly with phenylalanine level (P<0.01). Glutathione peroxidase activity was lower and correlated negatively with phenylalanine level (P<0.001). The oxidative stress score calculated from these six parameters was significantly higher in patients with serum phenylalanine of 700-800 μmol/l. Plasma anti-oxidant substances, beta-carotene, and coenzyme Q(10) were also lower (P<0.001), although the decreases did not correlate significantly with the phenylalanine level. Serum nitrite/nitrate levels, as stable NO products, were higher together with low serum asymmetric dimethylarginine, as an endogenous NO inhibitor. Oxidative stress status is closely linked with serum phenylalanine levels. Phenylalanine level in should be maintained PKU below 700-800 μmol/l even in adult patients.  相似文献   

8.
The Brucella abortus virB locus is required for establishing chronic infection in the mouse. Using in vitro and in vivo models, we investigated whether virB is involved in evasion of the bactericidal activity of NADPH oxidase and the inducible nitric oxide synthase (iNOS) in macrophages. Elimination of NADPH oxidase or iNOS activity in macrophages in vitro increased recovery of wild-type B. abortus but not recovery of a virB mutant. In mice lacking either NADPH oxidase or iNOS, however, B. abortus infected and persisted to the same extent as it did in congenic C57BL/6 mice up until 60 days postinfection, suggesting that these host defense mechanisms are not critical for limiting bacterial growth in the mouse. A virB mutant did not exhibit increased survival in either of the knockout mouse strains, indicating that this locus does not contribute to evasion of nitrosative or oxidative killing mechanisms in vivo.  相似文献   

9.
An important source of reactive oxygen species (ROS) production is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which on activation induces superoxide production via oxidation in the mitochondria, inflammation and stress; such ROS are implicated in the pathogenesis of diabetic complications, including neuropathy. Hyperbaric oxygen (HBO) treatments are applied various diseases including diabetic patients with unhealing foot ulcers, however, and also increases the formation of ROS. In a previous study, we showed that a clinically recommended HBO treatment significantly enhanced oxidative stress of pancreatic tissue in the diabetic rats. However, no study has been undertaken with regard to the effects of HBO on the activity and gene expression of the NADPH oxidase complex and on apoptosis in the pancreas of diabetic animals. The purpose of this study was to investigate the effect of HBO exposure on gene expression of the NADPH complex, and pancreatic expression of genes related to apoptosis via the mitochondria, using the NADPH oxidase inhibitor apocynin. The mRNA expression of genes related to NADPH oxidase complex and apoptosis increased significantly (P < 0.05) in the pancreas of diabetic rats under HBO exposure. Similarly, activities of NADPH oxidase and caspase-3 changed in parallel with mRNA levels. These results suggest that oxidative stress caused by HBO exposure in diabetic animals induces further ROS production and apoptosis, potentially through the up-regulation of NADPH oxidase complex. Thus, this study can contribute to development of a better understanding of the molecular mechanisms of apoptosis via the mitochondria in diabetes, under HBO exposure.  相似文献   

10.
An assay to measure NADPH oxidase activity in detergent lysates of macrophage monolayers is described. The addition of a reaction mixture containing appropriate concentrations of disrupting detergents, NADPH as oxidase substrate and cytochrome c as electron acceptor, to macrophages monolayers permits the reliable detection of a superoxide dismutase-sensitive NADPH-dependent cytochrome c reductive activity. This activity is strictly substrate dependent and NADH could not substitute for NADPH. The NADPH-dependent superoxide anion-forming activity (NADPH oxidase) was investigated in different populations of human and mouse macrophages. NADPH oxidase was activated by stimulation of macrophages with phorbol-myristate acetate and activity levels correlated with ability of intact cells to produce superoxide anion. The optimal conditions for assay of NADPH oxidase were investigated and the assay was used to measure the kinetic properties of the NADPH oxidase. The assay permits investigations of the enzymatic basis of oxidative metabolism in macrophages cultivated as adherent cells without any requirements for recovery of the cells in suspension and subcellular fractionation.  相似文献   

11.
Considerable evidence points to important roles for inflammation in Alzheimer's disease (AD) pathophysiology. Epidemiological studies have suggested that long-term nonsteroidal anti-inflammatory drug (NSAID) therapy reduces the risk for Alzheimer's disease; however, the mechanism remains unknown. We report that a 9-month treatment of aged R1.40 mice resulted in 90% decrease in plaque burden and a similar reduction in microglial activation. Ibuprofen treatment reduced levels of lipid peroxidation, tyrosine nitration, and protein oxidation, demonstrating a dramatic effect on oxidative damage in vivo. Fibrillar β-amyloid (Aβ) stimulation has previously been demonstrated to induce the assembly and activation of the microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase leading to superoxide production through a tyrosine kinase-based signaling cascade. Ibuprofen treatment of microglia or monocytes with racemic or S-ibuprofen inhibited Aβ-stimulated Vav tyrosine phosphorylation, NADPH oxidase assembly, and superoxide production. Interestingly, Aβ-stimulated Vav phosphorylation was not inhibited by COX inhibitors. These findings suggest that ibuprofen acts independently of cyclooxygenase COX inhibition to disrupt signaling cascades leading to microglial NADPH oxidase (NOX2) activation, preventing oxidative damage and enhancing plaque clearance in the brain.  相似文献   

12.
Because oxidative stress has been strongly implicated in up-regulation of vascular endothelial growth factor (VEGF) expression in ischemic retinopathy, we evaluated the role of NAD(P)H oxidase in causing VEGF overexpression and retinal neovascularization. Dihydroethidium imaging analyses showed increased superoxide formation in areas of retinal neovascularization associated with relative retinal hypoxia in a mouse model for oxygen-induced retinopathy. The effect of hypoxia in stimulating superoxide formation in retinal vascular endothelial cells was confirmed by in vitro chemiluminescence assays. The superoxide formation was blocked by specific inhibitors of NAD(P)H oxidase activity (apocynin, gp91ds-tat) indicating that NAD(P)H oxidase is a major source of superoxide formation. Western blot and immunolocalization analyses showed that retinal ischemia increased expression of the NAD(P)H oxidase catalytic subunit gp91phox, which localized primarily within vascular endothelial cells. Treatment of mice with apocynin blocked ischemia-induced increases in oxidative stress, normalized VEGF expression, and prevented retinal neovascularization. Apocynin and gp91ds-tat also blocked the action of hypoxia in causing increased VEGF expression in vitro, confirming the specific role of NAD(P)H oxidase in hypoxia-induced increases in VEGF expression. In conclusion, NAD(P)H oxidase activity is required for hypoxia-stimulated increases in VEGF expression and retinal neovascularization. Inhibition of NAD(P)H oxidase offers a new therapeutic target for the treatment of retinopathy.  相似文献   

13.
BackgroundThere is growing recognition that oxidative stress plays a role in the pathogeneses of myocardial repair/remodeling following myocardial infarction (MI). Nicotinamide adenine denucleotide phosphate (NADPH) oxidase is a major source for cardiac reactive oxygen species production. Herein, we studied the importance of NADPH oxidase in development of cardiac oxidative stress and its induced molecular and cellular changes related to myocardial repair/remodeling.MethodsMI was created by coronary artery ligation in C57/BL (wild type) and NADPH oxidase (gp91phox) knockout mice. Cardiac oxidative stress, inflammatory/fibrogenic responses, apoptosis, and hypertrophy were detected by in situ hybridization, immunohistochemistry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL), picrosirius red staining, and image analysis, respectively, at different stages post MI.ResultsIn wild-type mice with MI, and compared to sham-operated animals, we observed significantly increased gp91phox and 3-nitrotyrosine, a marker of oxidative stress, in the infarcted myocardium; accumulated macrophages and myofibroblasts at the infarct site; abundant apoptotic myocytes primarily at border zones on Day 3; and numerous apoptotic inflammatory/myofibroblasts in the later stages. In addition, we detected significantly increased transforming growth factor β1, tissue inhibitor of metalloprotease 2, and type 1 collagen gene expression; continuously increasing collagen volume in the infarcted myocardium; and hypertrophy in noninfarcted myocardium. Compared to wild-type mice with MI, we did not observe significant difference in infarct size/thickness, cardiac hypertrophy, myocyte apoptosis, inflammatory/fibrogenic responses, as well as cardiac oxidative stress in gp91phox knockout mice.ConclusionOur findings indicate that during NADPH oxidase deficiency, superoxide production can be compensated by other sources, which leads to cardiac oxidative stress and its related molecular/cellular events in the infarcted heart.  相似文献   

14.

Background

Chronic granulomatous disease (CGD) is an immune deficiency syndrome caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the enzyme that generates reactive oxygen species (ROS) in phagocytizing leukocytes. This study evaluates the NADPH oxidase capacity in two X-linked CGD patients with mutations in gp91phox that alter the regions in this membrane-bound NADPH oxidase component involved in docking of the cytosolic component p47phox.

Materials and Methods

Hydrogen peroxide and superoxide generation, bactericidal activity, and NADPH oxidase protein expression by the patients?? neutrophils were measured, and genetic analysis was performed.

Results

We report two patients, each with a novel missense mutation in CYBB, the gene that encodes gp91phox. Surprisingly, neutrophils from these patients showed total absence of superoxide production, although they retained 13?C30% of the hydrogen peroxide production capability. We speculate that this is due to direct electron transfer from flavin adenine dinucleotide (FAD) in gp91phox to oxygen, leading to inefficient hydrogen peroxide formation instead of efficient superoxide production.

Conclusions

X-linked CGD patients with mutations that alter the gp91phox protein in regions involved in docking of the cytosolic NADPH oxidase component p47phox may have higher than expected hydrogen peroxide generation capability.  相似文献   

15.
Hyperhomocysteinemia (hHcys) enhances ceramide production, leading to the activation of NADPH oxidase and consequent glomerular oxidative stress and sclerosis. The present study was performed to determine whether acid sphingomyelinase (Asm), a ceramide-producing enzyme, is implicated in the development of hHcys-induced glomerular oxidative stress and injury. Uninephrectomized Asm-knockout (Asm(-/-)) and wild-type (Asm(+/+)) mice, with or without Asm short hairpin RNA (shRNA) transfection, were fed a folate-free (FF) diet for 8 weeks, which significantly elevated the plasma Hcys level compared with mice fed normal chow. By using in vivo molecular imaging, we found that transfected shRNAs were expressed in the renal cortex starting on day 3 and continued for 24 days. The FF diet significantly increased renal ceramide production, Asm mRNA and activity, urinary total protein and albumin excretion, glomerular damage index, and NADPH-dependent superoxide production in the renal cortex from Asm(+/+) mice compared with that from Asm(-/-) or Asm shRNA-transfected wild-type mice. Immunofluorescence analysis showed that the FF diet decreased the expression of podocin but increased desmin and ceramide levels in glomeruli from Asm(+/+) mice but not in those from Asm(-/-) and Asm shRNA-transfected wild-type mice. In conclusion, our observations reveal that Asm plays a pivotal role in mediating podocyte injury and glomerular sclerosis associated with NADPH oxidase-associated local oxidative stress during hHcys.  相似文献   

16.
Objectives to evaluate the rheumatoid synovial cell capacity to produce superoxide anion in response to interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α), and to study the NADPH oxidase involvement in this production. Material and Methods Synovial cells obtained from 7 rheumatoid arthritis (RA), 5 osteoarthritic (OA) patients, and dermal fibroblasts, were stimulated (i) with IL-1β and TNF-α, or (ii) with specific oxidase activators and inhibitors, before studying superoxide production; we also studied NADPH oxidase mRNAs and protein expression, and p47-phox phosphorylation. Results Constitutive superoxide production by RA cells was increased in comparison to OA cells and dermal fibroblasts, and was stimulated by PMA and ionomycin. This production was increased after cytokine treatment of RA synovial cells. Cytokine-induced superoxide production by RA cells was inhibited by iodonium diphenyl or apocynin, suggesting the involvement of NADPH oxidase. RT-PCR and western blot analysis revealed the presence of p47-phox, gp91-phox and Nox4 in RA and OA cells, and in dermal fibroblasts. P47-phox phosphorylation was enhanced after cytokine-treatment in RA and OA cells, suggesting a PKC-mediated up-regulation of NADPH oxidase. Conclusions NADPH oxidase is involved in the superoxide release by RA synovial cells, constitutively and after cytokine up-regulation. These cells express two different homologues (gp91-phox and Nox4). Received 2 August 2005; returned for revision 12 January 2006; returned for final revision 22 May 2006; accepted by J. Di Battista 9 June 2006  相似文献   

17.
Patients with chronic granulomatous disease (CGD) suffer from recurrent, life‐threatening bacterial and fungal infections of the skin, the airways, the lymph nodes, liver, brain and bones. Frequently found pathogens are Staphylococcus aureus, Aspergillus species, Klebsiella species, Burkholderia cepacia and Salmonella species. CGD is a rare (~1:250 000 births) disease caused by mutations in any one of the five components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in phagocytes. This enzyme generates superoxide and is essential for intracellular killing of pathogens by phagocytes. Molecular diagnosis of CGD involves measuring NADPH oxidase activity in phagocytes, measuring protein expression of NADPH oxidase components and mutation analysis of genes encoding these components. Residual oxidase activity is important to know for estimation of the clinical course and the chance of survival of the patient. Mutation analysis is mandatory for genetic counselling and prenatal diagnosis. This review summarizes the different assays available for the diagnosis of CGD, the precautions to be taken for correct measurements, the flow diagram to be followed, the assays for confirmation of the diagnosis and the determinations for carrier detection and prenatal diagnosis.  相似文献   

18.
Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.  相似文献   

19.
The Rho GTPase Rac1 is a multifunctional protein involved in distinct pathways ranging from development to pathology. The aim of the present study was to unravel the contribution of neuronal Rac1 in regulating the response to brain injury induced by permanent focal cerebral ischemia (pMCAO). Our results show that pMCAO significantly increased total Rac1 levels in wild type mice, mainly through rising nuclear Rac1, while a reduction in Rac1 activation was observed. Such changes preceded cell death induced by excitotoxic stress. Pharmacological inhibition of Rac1 in primary neuronal cortical cells prevented the increase in oxidative stress induced after overactivation of glutamate receptors. However, this was not sufficient to prevent the associated neuronal cell death. In contrast, RNAi‐mediated knock down of Rac1 in primary cortical neurons prevented cell death elicited by glutamate excitotoxicity and decreased the activity of NADPH oxidase. To test whether in vivo down regulation of neuronal Rac1 was neuroprotective after pMCAO, we used tamoxifen‐inducible neuron‐specific conditional Rac1‐knockout mice. We observed a significant 50% decrease in brain infarct volume of knockout mice and a concomitant increase in HIF‐1α expression compared to littermate control mice, demonstrating that ablation of Rac1 in neurons is neuroprotective. Transmission electron microscopy performed in the ischemic brain showed that lysosomes in the infarct of Rac1‐ knockout mice were preserved at similar levels to those of non‐infarcted tissue, while littermate mice displayed a decrease in the number of lysosomes, further corroborating the notion that Rac1 ablation in neurons is neuroprotective. Our results demonstrate that Rac1 plays important roles in the ischemic pathological cascade and that modulation of its levels is of therapeutic interest.  相似文献   

20.
Mutations in the human phenylalanine hydroxylase gene (PAH) altering the expressed cDNA nucleotide sequence (GenBank U49897) can impair activity of the corresponding enzyme product (hepatic phenylalanine hydroxylase, PAH) and cause hyperphenylalaninemia (HPA), a metabolic phenotype for which the major disease form is phenylketonuria (PKU; OMIM 261600). In vitro expression analysis of inherited human mutations in eukaryotic, prokaryotic, and cell-free systems is informative about the mechanisms of mutation effects on enzymatic activity and their predicted effect on the metabolic phenotype. Corresponding analysis of site-directed mutations in rat Pah cDNA has assigned critical functional roles to individual amino acid residues within the best understood species of phenylalanine hydroxylase. Data on in vitro expression of 35 inherited human mutations and 22 created rat mutations are reviewed here. The core data are accessible at the PAH Mutation Analysis Consortium Web site ( http://www.mcgill.ca/pahdb ). Hum Mutat 11:4–17, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号