首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Hemolytic-uremic syndrome (HUS) is defined as the triad of anemia, thrombocytopenia, and acute kidney injury. Enterohemorrhagic Shiga toxin (Stx)-producing Escherichia coli (EHEC), which causes a prodromal hemorrhagic enteritis, remains the most common etiology of the typical or epidemic form of HUS. Because no licensed vaccine or effective therapy is presently available for human use, we recently developed a novel immunogen based on the B subunit of Shiga toxin 2 (Stx2B) and the enzyme lumazine synthase from Brucella spp. (BLS) (BLS-Stx2B). The aim of this study was to analyze maternal immunization with BLS-Stx2B as a possible approach for transferring anti-Stx2 protection to the offspring. BALB/c female mice were immunized with BLS-Stx2B before mating. Both dams and pups presented comparable titers of anti-Stx2B antibodies in sera and fecal extracts. Moreover, pups were totally protected against a lethal dose of systemic Stx2 injection up to 2 to 3 months postpartum. In addition, pups were resistant to an oral challenge with an Stx2-producing EHEC strain at weaning and did not develop any symptomatology associated with Stx2 toxicity. Fostering experiments demonstrated that anti-Stx2B neutralizing IgG antibodies were transmitted through breast-feeding. Pups that survived the EHEC infection due to maternally transferred immunity prolonged an active and specific immune response that protected them against a subsequent challenge with intravenous Stx2. Our study shows that maternal immunization with BLS-Stx2B was very effective at promoting the transfer of specific antibodies, and suggests that preexposure of adult females to this immunogen could protect their offspring during the early phase of life.  相似文献   

2.
Hemolytic-uremic syndrome (HUS) is a serious complication predominantly associated with infection by enterohemorrhagic Escherichia coli (EHEC), such as E. coli O157:H7. EHEC can produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2), both of which are exotoxins comprised of active (A) and binding (B) subunits. In piglets and mice, Stx can induce fatal neurological symptoms. Polyclonal Stx2 antiserum can prevent these effects in piglets infected with the Stx2-producing E. coli O157:H7 strain 86-24. Human monoclonal antibodies (HuMAbs) against Stx2 were developed as potential passive immunotherapeutic reagents for the prevention and/or treatment of HUS. Transgenic mice bearing unrearranged human immunoglobulin (Ig) heavy and kappa light chain loci (HuMAb___Mouse) were immunized with formalin-inactivated Stx2. Thirty-seven stable hybridomas secreting Stx2-specific HuMAbs were isolated: 33 IgG1kappa A-subunit-specific and 3 IgG1kappa and 1 IgG3kappa B-subunit-specific antibodies. Six IgG1kappa A-subunit-specific (1G3, 2F10, 3E9, 4H9, 5A4, and 5C12) and two IgG1kappa B-subunit-specific (5H8 and 6G3) HuMAbs demonstrated neutralization of > 95% activity of 1 ng of Stx2 in the presence of 0.04 microg of HuMAb in vitro and significant prolongation of survival of mice given 50 microg of HuMAb intraperitoneally (i.p.) and 25 ng of Stx2 intravenously. When administered i.p. to gnotobiotic piglets 6 or 12 h after infection with E. coli O157:H7 strain 86-24, HuMAbs 2F10, 3E9, 5H8, and 5C12 prolonged survival and prevented development of fatal neurological signs and cerebral lesions. The Stx2-neutralizing ability of these HuMAbs could potentially be used clinically to passively protect against HUS development in individuals infected with Stx-producing bacteria, including E. coli O157:H7.  相似文献   

3.
We have developed a novel vaccine against Shiga toxin (Stx)-producing Escherichia coli (STEC) infection using a recombinant Mycobacterium bovis BCG (rBCG) system. Two intraperitoneal vaccinations with rBCG expressing the Stx2 B subunit (Stx2B) resulted in an increase of protective serum IgG and mucosal IgA responses to Stx2B in BALB/c mice. When orally challenged with 103 CFU of STEC strain B2F1 (O91: H21), the immunized mice survived statistically significantly longer than the nonvaccinated mice. We suggest that intraperitoneal immunization with rBCG expressing Stx2B would be a potential vaccine strategy for STEC.  相似文献   

4.
Hemolytic uremic syndrome (HUS) is the major complication of gastrointestinal infections with enterohemorrhagic Escherichia coli (EHEC) and is mediated by the production of Shiga toxins (Stx). Although it has been previously reported that not only HUS patients but healthy children have anti-Stx antibodies, very little is known about how these infections impact on mucosal immune system to generate a specific immune response. This work aimed to evaluate the immune responses elicited after a single oral dose of EHEC in a mouse model of HUS at weaning. We found sequential activation of T and B lymphocytes together with an increased percentage of IgA-bearing B cells in Peyer’s patches and mesenteric lymph nodes. We also found fecal anti-EHEC IgA and serum anti-Stx2 IgG in EHEC-inoculated mice. Besides, these mice were partially protected against an intravenous challenge with Stx2. These data demonstrate that one episode of EHEC infection is enough to induce activation in the gut-associated lymphoid tissue, especially the B cell compartment, and lead to the production of specific IgA in mucosal tissue and the generation of systemic protection against Stx2 in a percentage of intragastrically inoculated mice. These data also support the epidemiologic observation that a second episode of HUS is very rare.  相似文献   

5.
Enterohemorrhagic Escherichia coli (EHEC) strains are important human food-borne pathogens. EHEC strains elaborate potent Shiga toxins (Stx1, and/or Stx2) implicated in the development of hemorrhagic colitis (HC) or hemolytic-uremic syndrome (HUS). In this report, we evaluated the immunogenicity and protective efficacy of Stx1 subunit B (StxB1) administered by transcutaneous immunization (TCI). Three groups of Dutch Belted rabbits received patches containing StxB1, StxB1 in combination with Escherichia coli heat-labile enterotoxin (LT), or LT alone. An additional group of naïve rabbits served as controls. The protective efficacy following TCI with StxB1 was assessed by challenging rabbits with a virulent Stx1-producing strain, RDEC-H19A, capable of inducing HC and HUS in rabbits. Antibodies specific to StxB1 from serum and bile samples were determined by enzyme-linked immunosorbent assay and toxin neutralization test. Rabbits immunized with StxB1 demonstrated improved weight gain and reduced Stx-induced histopathology. Rabbits receiving StxB or StxB1/LT showed a significant increase in serum immunoglobulin G titers specific to StxB1 as well as toxin neutralization titers. These data demonstrated that the StxB delivered by TCI could induce significant systemic immune responses. Thus, Stx subunit B vaccine delivered by a patch for a high-risk population may be a practical approach to prevent (and/or reduce) Stx-induced pathology.  相似文献   

6.
Hemolytic-uremic syndrome (HUS) is a serious complication which is predominantly associated in children with infection by Shiga toxin-producing Escherichia coli (STEC). By using HuMAb-Mouse (Medarex) animals, human monoclonal antibodies (Hu-MAbs) were developed against Shiga toxin 1 (Stx1) for passive immunotherapy of HUS. Ten stable hybridomas comprised of fully human heavy- and light-chain immunoglobulin elements and secreting Stx1-specific Hu-MAbs (seven immunoglobulin M(kappa)() [IgM(kappa)] elements [one specific for the A subunit and six specific for the B subunit] and three IgG1(kappa) elements specific for subunit B) were isolated. Two IgM(kappa) Hu-MAbs (2D9 and 15G9) and three IgG1(kappa) Hu-MAbs (5A4, 10F4, and 15G2), all specific for subunit B, demonstrated marked neutralization of Stx1 in vitro and significant prolongation of survival in a murine model of Stx1 toxicosis.  相似文献   

7.
Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) include Shiga toxin 1 (Stx1) as well as Shiga toxin 2 (Stx2). Stx1 is cell associated, whereas Stx2 is localized to the culture supernatant. We have analyzed the secretion of Stx2 by generating histidine-tagged StxB (StxB-H). Although neither StxB1-H nor StxB2-H was secreted in StxB-H-overexpressed EHEC, StxB2-H-overexpressed EHEC showed inhibited Stx2 secretion. On the other hand, StxB1-H-overexpressed EHEC showed no alteration of Stx2 secretion. B-subunit chimeras of Stx1 and Stx2 were used to identify the specific residue of StxB2 that the Stx2 secretory system recognizes. Alteration of the serine 31 residue to an asparagine residue (S31N) in StxB2-H enabled the recovery of Stx2 secretion. On the other hand, alteration of the asparagine 32 residue to a serine residue (N32S) in StxB1-H caused the partial secretion of a point-mutated histidine-tagged B subunit in EHEC. Based on the evidence, it appeared possible that this residue might contain secretion-related information for Stx2 secretion. To investigate this hypothesis, we constructed an isogenic mutant EHEC (Stx1B subunit, N32S) strain and an isogenic mutant EHEC (Stx2B subunit, S31N) strain. Although the mutant Stx2 was cell associated in isogenic mutant EHEC, mutant Stx1 was not extracellular. However, when we used plasmids for the expression of the mutant holotoxins, the overexpressed mutant Stx1 was found in the supernatant fraction, and the overexpressed mutant Stx2 was found in the cell-associated fraction in mutant holotoxin gene-transformed EHEC. These results indicate that the serine 31 residue of the B subunit of Stx2 contains secretion-related information.  相似文献   

8.
The closely related Shiga toxins, Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2), can bind to Gb3 receptors. However, Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains are more commonly associated with serious human disease (viz., hemolytic-uremic syndrome) than Stx1-producing strains. To clarify the relationship between properties and toxicity of these toxins, we constructed and analyzed a hybrid holotoxin composed of Stx2A and Stx1B, designated as Stx2A1B, and a B subunit chimeric holotoxin composed of Stx2A and Stx2B (III V), designated as Stx2A2B (III V). The affinity of Stx2A1B to Gb3 was lower than that of Stx1, higher than that of Stx2 and identical to that of Stx2A2B (III V). On the other hand, the 50% lethal dose (LD(50)) for mice of Stx2A1B was lower than that of Stx1, but higher than that of Stx2. These results suggested that pathogenicity in mice was inversely related to the receptor affinity of the holotoxins. However, LD(50) of Stx2A1B was not identical to that of Stx2A2B (III V). Gel filtration analysis indicated that Stx2A2B (III V) was relatively less stable than Stx2A1B. Moreover, cross-linking experiments demonstrated that the modes of cell surface binding of Stx2A2B (III V) and Stx2A1B were different. These results indicated that the receptor affinity, stability and binding mode of Shiga toxins might be important determinants for toxicity in mice.  相似文献   

9.
Oral infection with enterohemorrhagic Escherichia coli (EHEC) may cause severe enteritis, followed in up to 10% of cases by an extraintestinal complication, the hemolytic uremic syndrome (HUS). HUS is characterized by a triad of symptoms: anemia, thrombocytopenia, and acute renalfailure due to thrombotic microangiopathy. EHEC produces several virulence factors, among which a family of phage-encoded cytotoxins, called Shiga toxin 1 and Shiga toxin 2, seems to be most important. However, since an appropriate animal model is not available, pathogenicity of these emerging enteric pathogens is still poorly understood. Germ-free gnotobiotic piglets infected orally with an O1577:H7 or an O26:H11 EHEC wild-type isolate, both producing Shiga toxin 2, developed intestinal and extraintestinal manifestations of EHEC disease, including thrombotic microangiopathy in the kidneys, the morphologic hallmark of HUS in humans. Thus, gnotobiotic piglets are suitable to further study the pathophysiology of EHEC-induced HUS. It can be expected that data obtainedfrom this animal model will improve our current standard of knowledge about this emerging infectious disease.  相似文献   

10.
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 infections are considered a public health problem in both developed and developing countries because of their increasing incidence and the severity of clinical presentation. Approximately 10% of infected patients develop complications such as haemolytic uraemic syndrome (HUS) characterized by acute renal failure, thrombocytopenia and haemolytic anaemia. The precise sequence of events leading to HUS is still understood incompletely. Because of the lack of a reproducible small animal model for EHEC infections, in vivo studies examining EHEC-host early interactions are limited and insufficient. The aim of this study was to characterize the weaned BALB/c mouse as a model of E. coli O157:H7 infection. In this paper we report that human Shiga toxin 2 (Stx2)-producing EHEC strains can adhere to the intestinal epithelium of weaned BALB/c mice, and produce local damage which leads to systemic disease and death in a percentage of infected mice. The lethality of the EHEC strain is closely age-dependent, and is related to the bacterial ability to colonize intestine and to produce Stx2. It can be concluded that the weaned BALB/c mouse can be used as a small animal model to study host early responses, and the role of bacterial pathogenic factors in the induction of systemic disease, thus providing a useful tool for the evaluation of therapeutic or vaccine approaches.  相似文献   

11.
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for causing hemolytic-uremic syndrome (HUS), and systemic administration of Shiga toxin (Stx)-specific human monoclonal antibodies (HuMAbs) is considered a promising approach for prevention or treatment of the disease in children. The goal of the present study was to investigate the ability of Stx2-specific HuMAbs to protect against infections with STEC strains that produce Stx2 variants. Dose-response studies on five HuMAbs, using the mouse toxicity model, revealed that only the three directed against the A subunit were protective against Stx2 variants, and 5C12 was the most effective among the three tested. Two HuMAbs directed against the B subunit, while highly effective against Stx2, were ineffective against Stx2 variants. In a streptomycin-treated mouse model, parenteral administration of 5C12 significantly protected mice up to 48 h after oral bacterial challenge. We conclude that 5C12, reactive against the Stx2 A subunit, is an excellent candidate for immunotherapy against HUS and that antibodies directed against the A subunit of Stx2 have broad-spectrum activity that includes Stx2 variants, compared with those directed against the B subunit.  相似文献   

12.
Hemolytic-uremic syndrome (HUS), the life-threatening complication following infection by the intestinal pathogen Escherichia coli O157:H7, is due to the ability of the pathogen to produce toxins in the Shiga toxin (Stx) family. Activated neutrophils are observed in HUS patients, yet it is unclear whether Stx exerts a direct effect on neutrophils or whether the toxin acts indirectly. The effect of Stx1 and Stx2 on human neutrophils was examined. Neither Stx1 nor Stx2 altered the rate of neutrophil apoptosis. Minimal binding of either toxin to neutrophils was observed, and the toxin was easily eluted from the cells. Stx1 and Stx2 were found to circulate in the plasma of mice following intravenous injection, and both toxins were cleared rapidly from the blood. Together these results suggest that neither Stx1 nor Stx2 interacts directly with neutrophils.  相似文献   

13.
14.
Shiga toxin 2 (Stx2) is believed to be a major virulence factor of enterohemorrhagic Escherichia coli (EHEC) contributing to hemolytic uremic syndrome (HUS). The complement system has recently been found to be involved in the pathogenesis of EHEC-associated HUS. Stx2 was shown to activate complement via the alternative pathway, to bind factor H (FH) at short consensus repeats (SCRs) 6–8 and 18–20 and to delay and reduce FH cofactor activity on the cell surface.  相似文献   

15.
Immunoglobulin A (IgA) is considered to play a major role in protection of the mucosal surface. However, its immunological and biological properties have not been extensively studied because the production of IgA class monoclonal antibodies (mAbs) is difficult. We compared the properties of IgA and IgG mAbs against Shiga toxin B subunits (Stx1B). These mAbs were secreted from hybridomas that had been produced from mice after intranasal immunization with recombinant Stx1B and cholera toxin. The dose response curves for the binding of the IgA (clone G2G7) and IgG (clone D11C6) mAbs to immobilized Stx1B were similar, as revealed on ELISA. The majority of the IgA mAb formed dimers while the IgG mAb was monomeric, as judged by immunoblot analysis. The IgG mAb completely inhibited the binding of Stx1B to Burkitt's lymphoma cell line Ramos, while the inhibition by the IgA mAb was only partial. The IgG mAb was able to neutralize the cytotoxicity of Stx1 holotoxin towards Vero cells, whereas the IgA mAb was not. The binding affinity of each binding site was compared by means of surface plasmon resonance analysis involving a capture method, with which the binding of soluble Stx1B to immobilized mAb was detected. The association rate was similar but the dissociation rate was twofold faster in the case of the IgA mAb, resulting in twofold higher affinity of the IgG mAb. These results suggest that one can obtain high affinity IgA mAb but toxin neutralization is another challenge as to therapeutic antibodies of the IgA class.  相似文献   

16.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains cause food-borne outbreaks of hemorrhagic colitis and, less commonly, a serious kidney-damaging sequela called the hemolytic uremic syndrome (HUS). Stx, the primary virulence factor expressed by STEC, is an AB5 toxin with two antigenically distinct forms, Stx1a and Stx2a. Although both toxins have similar biological activities, Stx2a is more frequently produced by STEC strains that cause HUS than is Stx1a. Here we asked whether Stx1a and Stx2a act differently when delivered orally by gavage. We found that Stx2a had a 50% lethal dose (LD50) of 2.9 μg, but no morbidity occurred after oral intoxication with up to 157 μg of Stx1a. We also compared several biochemical and histological parameters in mice intoxicated orally versus intraperitoneally with Stx2a. We discovered that both intoxication routes caused similar increases in serum creatinine and blood urea nitrogen, indicative of kidney damage, as well as electrolyte imbalances and weight loss in the animals. Furthermore, kidney sections from Stx2a-intoxicated mice revealed multifocal, acute tubular necrosis (ATN). Of particular note, we detected Stx2a in kidney sections from orally intoxicated mice in the same region as the epithelial cell type in which ATN was detected. Lastly, we showed reduced renal damage, as determined by renal biomarkers and histopathology, and full protection of orally intoxicated mice with monoclonal antibody (MAb) 11E10 directed against the toxin A subunit; conversely, an irrelevant MAb had no therapeutic effect. Orally intoxicated mice could be rescued by MAb 11E10 6 h but not 24 h after Stx2a delivery.  相似文献   

17.
Enterohaemorrhagic Escherichia coli in human medicine   总被引:3,自引:0,他引:3  
Enterohaemorrhagic Escherichia coli (EHEC) are the pathogenic subgroup of Shiga toxin (Stx)-producing E. coli. EHEC can cause non-bloody and bloody diarrhoea, and the haemolytic uraemic syndrome (HUS). HUS is a major cause of acute renal failure in children. E. coli O57:H7 is the predominant, but far from being the only, serotype that can cause HUS. The cascade leading from gastrointestinal infection to renal impairment is complex, with the microvascular endothelium being the major histopathological target. EHEC also produce non-Stx molecules, such as cytolethal distending toxin, which can contribute to the endothelial or vascular injury. Because there are no specific therapies for EHEC infections, efficient reservoir and human preventive strategies are important areas of ongoing investigations. This review will focus on the microbiology, epidemiology, and pathophysiology of EHEC-associated diseases, and illustrate future challenges and opportunities for their control.  相似文献   

18.
Escherichia coli O157 is the major cause of diarrhea-associated hemolytic uremic syndrome (HUS). Strains causing HUS contain either Shiga toxin 1 (Stx1) or Stx2, or both. In adult volunteers, conjugate vaccines of detoxified lipopolysaccharide (LPS) elicited bactericidal antibodies to E. coli O157. Here, the detoxified LPS was conjugated with improved schemes to the nontoxic B subunit of Stx1. Mice injected with these bivalent conjugates elicited both bactericidal antibodies to E. coli O157 and neutralization antibodies to Stx1.  相似文献   

19.
The haemolytic uraemic syndrome (HUS) is a clinical syndrome consisting of haemolytic anaemia, thrombocytopenia, and acute renal insufficiency. HUS is the most frequent cause of acute renal failure in childhood. It has been previously suggested that the presence of Shiga toxin (Stx) is necessary but not sufficient for HUS development, and cytokines such as tumour necrosis factor-alpha (TNF-alpha) and IL-1beta appear to be necessary to develop the syndrome. Since the mononuclear phagocytic system (MPS) is the major source of these cytokines, macrophages might be one of the relevant targets for Stx action in the pathophysiology of HUS. In this study our objective was to examine the role of the hepatic and splenic macrophages in a mouse model of HUS induced by injection of Shiga toxin type-2 (Stx2) or Stx2 plus lipopolysaccharide (LPS). For this purpose, depletion of mice macrophages by liposome-encapsulated clodronate (lip-clod), followed by injection of STx2 or Stx2 plus LPS, was assayed. In this study we show that depletion of hepatic and splenic macrophages by clodronate treatment induces a survival of 50% in animals treated with Stx2 alone or in presence of LPS. This maximal effect was observed when lip-clod was injected 48-72 h before Stx2 injection. Biochemical and histological parameters show characteristics of the lesion produced by Stx2, discarding non-specific damage due to LPS or lip-clod. In addition, we determined that the toxic action of Stx2 is similar in BALB/c and N:NIH nude mice, indicating the T cell compartment is not involved in the Stx2 toxicity. Briefly, we demonstrate that macrophages play a central role in the pathophysiology of HUS, and that the systemic production of cytokines by liver and/or spleen is for Stx2 to manifest its full cytotoxic effect. In addition, the toxicity of Stx2 alone, or in presence of LPS, is independent of the T cell compartment.  相似文献   

20.
The enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains 933 and 86-24 as well as the uropathogenic E. coli (UPEC) strain 536 were compared with their isogenic rec A mutants and rec A trans -complemented strains in intravenous lethality and lung toxicity assays in mice. While the wild-type EHEC strains were fully virulent, the virulence of the rec A mutants was strongly reduced. Complementation of the EHEC rec A mutants with the cloned E. coli recA gene restored their virulence capacity. The stx2EHEC mutant TUV86-2 as well as its isogenic rec A mutant were completely avirulent in both assays. In contrast, RecA had no influence on the virulence of UPEC strain 536. We conclude that the lethality observed with EHEC is presumably mainly due to Shiga toxin, which is severely down-regulated in the rec A mutants as a result of lacking spontaneous phage induction. Therefore, the EHEC rec A+strains 933 and 86-24 were compared for their Shiga toxin 2 (Stx2) production with the respective rec A-counterparts. The rec A mutants of the EHEC strains were significantly reduced in toxin synthesis and were devoid of Stx2 specific phage production. Complementation of the EHEC rec A mutants with the cloned rec A gene enabled the rec A mutants to restore toxin and phage production. These results suggest that the higher level of Stx2 synthesis in the EHEC strains is the result of a higher level of spontaneous Stx2 specific phage induction, which is controlled by RecA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号