首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
TRP proteins form ion channels that are activated following receptor stimulation. Several members of the TRP family are likely to be expressed in lymphocytes. However, in many studies, messenger RNA (mRNA) but not protein expression was analyzed and cell lines but not primary human or murine lymphocytes were used. Among the expressed TRP mRNAs are TRPC1, TRPC3, TRPM2, TRPM4, TRPM7, TRPV1, and TRPV2. Regulation of Ca2+ entry is a key process for lymphocyte activation, and TRP channels may both increase Ca2+ influx (such as TRPC3) or decrease Ca2+ influx through membrane depolarization (such as TRPM4). In the future, linking endogenous Ca2+/cation channels in lymphocytes with TRP proteins should lead to a better molecular understanding of lymphocyte activation.  相似文献   

2.
TRPM3, a member of the melastatin-like transient receptor potential channel subfamily (TRPM), is predominantly expressed in human kidney and brain. TRPM3 mediates spontaneous Ca2+ entry and nonselective cation currents in transiently transfected human embryonic kidney 293 cells. Using measurements with the Ca2+-sensitive fluorescent dye fura-2 and the whole-cell patch-clamp technique, we found that D-erythro-sphingosine, a metabolite arising during the de novo synthesis of cellular sphingolipids, activated TRPM3. Other transient receptor potential (TRP) channels tested [classic or canonical TRP (TRPC3, TRPC4, TRPC5), vanilloid-like TRP (TRPV4, TRPV5, TRPV6), and melastatin-like TRP (TRPM2)] did not significantly respond to application of sphingosine. Sphingosine-induced TRPM3 activation was not mediated by inhibition of protein kinase C, depletion of intracellular Ca2+ stores, and intracellular conversion of sphingosine to sphingosine-1-phosphate. Although sphingosine-1-phosphate and ceramides had no effect, two structural analogs of sphingosine, dihydro-D-erythro-sphingosine and N,N-dimethyl-D-erythro-sphingosine, also activated TRPM3. Sphingolipids, including sphingosine, are known to have inhibitory effects on a variety of ion channels. Thus, TRPM3 is the first ion channel activated by sphingolipids.  相似文献   

3.
The members of the superfamily of transient receptor potential (TRP) cation channels are involved in a plethora of cellular functions. During the last decade, a vast amount of evidence is accumulating that attributes an important role to these cation channels in different regulatory aspects of the alimentary tract. In this review we discuss the expression patterns and roles of TRP channels in the regulation of gastrointestinal motility, enteric nervous system signalling and visceral sensation, and provide our perspectives on pharmacological targeting of TRPs as a strategy to treat various gastrointestinal disorders. We found that the current knowledge about the role of some members of the TRP superfamily in neurogastroenterology is rather limited, whereas the function of other TRP channels, especially of those implicated in smooth muscle cell contractility (TRPC4, TRPC6), visceral sensitivity and hypersensitivity (TRPV1, TRPV4, TRPA1), tends to be well established. Compared with expression data, mechanistic information about TRP channels in intestinal pacemaking (TRPC4, TRPC6, TRPM7), enteric nervous system signalling (TRPCs) and enteroendocrine cells (TRPM5) is lacking. It is clear that several different TRP channels play important roles in the cellular apparatus that controls gastrointestinal function. They are involved in the regulation of gastrointestinal motility and absorption, visceral sensation and visceral hypersensitivity. TRP channels can be considered as interesting targets to tackle digestive diseases, motility disorders and visceral pain. At present, TRPV1 antagonists are under development for the treatment of heartburn and visceral hypersensitivity, but interference with other TRP channels is also tempting. However, their role in gastrointestinal pathophysiology first needs to be further elucidated.  相似文献   

4.
BackgroundCalcium and its signaling have a role in adipogenesis. Transient Receptor Potential (TRP) channels are non-selective cation channels with a high permeability to calcium.MethodsIn the present study the expression of multiple TRP channels on mouse 3T3-L1 preadipocyte and adipocyte cells, white (WAT) and brown (BAT) adipose tissues was investigated using real time PCR (RT-PCR).ResultsTRPV1, TRPV3, TRPM8, TRPC4, TRPC6 were differentially expressed in preadipocytes and adipocytes suggesting their significance in adipogenesis. Genes for multiple TRP channels were also expressed in murineWAT and BAT, out of which TRPV4, TRPV6 and TRPC6 showed differential expression.ConclusionPresent study demonstrates the expression of TRP channels in mouse cell lines and adipose tissues.  相似文献   

5.
作为钙离子渗透性的瞬时受体电位(TRP),5种通道(TRPV1~4和TRPM2)被不同的高温激活,两种通道(TRPV1和TRPV8)被低温激活。越来越多的证据表明,TRPA1和TRPM8拮抗剂可预防顺铂、奥沙利铂和紫杉醇诱导的线粒体氧化应激、炎症、冷痛和痛觉过敏。TRPV1在顺铂引起的感觉神经元热痛觉和机械异常中有应答。TRPA1、TRPM8和TRPV2蛋白表达水平主要通过这些治疗方法在背根(DRG)和三叉神经节中增加。主要总结了5种温度调节TRP通道(TRPA1、TRPM8、TRPV1、TRPV2和TRPV4)。  相似文献   

6.
Psychiatric and neurological disorders are mostly associated with the changes in neural calcium ion signaling pathways required for activity-triggered cellular events. One calcium channel family is the TRP cation channel family, which contains seven subfamilies. Results of recent papers have discovered that calcium ion influx through TRP channels is important. We discuss the latest advances in calcium ion influx through TRP channels in the etiology of psychiatric disorders.Activation of TRPC4, TRPC5, and TRPV1 cation channels in the etiology of psychiatric disorders such as anxiety, fear-associated responses, and depression modulate calcium ion influx. Evidence substantiates that anandamide and its analog (methanandamide) induce an anxiolytic-like effect via CB1 receptors and TRPV1 channels. Intracellular calcium influx induced by oxidative stress has an significant role in the etiology of bipolar disorders (BDs), and studies recently reported the important role of TRP channels such as TRPC3, TRPM2, and TRPV1 in converting oxidant or nitrogen radical signaling to cytosolic calcium ion homeostasis in BDs. The TRPV1 channel also plays a function in morphine tolerance and hyperalgesia. Among psychotropic drugs, amitriptyline and capsazepine seem to have protective effects on psychiatric disorders via the TRP channels. Some drugs such as cocaine and methamphetamine also seem to have an important role in alcohol addiction and substance abuse via activation of the TRPV1 channel.Thus, we explore the relationships between the etiology of psychiatric disorders and TRP channel-regulated mechanisms. Investigation of the TRP channels in psychiatric disorders holds the promise of the development of new drug treatments.  相似文献   

7.
TRP channels in normal and dystrophic skeletal muscle   总被引:1,自引:0,他引:1  
TRP proteins constitute non-selective cation-permeable ion channels, most of which are permeable to Ca2?. In skeletal muscle, several isoforms of the TRPC (Canonical), TRPV (Vanilloid) and TRPM (Melastatin) subfamilies are expressed. In particular, TRPC1, C3 and C6, TRPV2 and V4, TRPM4 and TRPM7 have been consistently found in cultured myoblasts or in adult muscles. These channels seem to directly or indirectly respond to membrane stretch or to Ca2? stores depletion; some isoforms might also constitute unregulated Ca2? leak channels. Their function is largely unknown. TRPC1 and C3 have been involved in muscle development, in particular in myoblasts migration and differentiation. TRPC1 and V4 might allow a basal influx of Ca2? at rest. Their lack has consequences on muscle fatigue. TRPV2 seems to be stretch-sensitive. It localizes mainly in intracellular pools at rest, and translocates to the plasma membrane upon IGF-1 stimulation. TRP channels seem to be involved in the pathophysiology of muscle disorders. In particular in Duchenne muscular dystrophy, the lack of the cytoskeletal protein dystrophin induces a disregulation of several ion channels leading to an abnormal influx of Ca2?. We discuss here, the possible involvement of TRP channels in this abnormal influx of Ca2?.  相似文献   

8.
The mammalian branch of the Transient Receptor Potential (TRP) superfamily of cation channels consists of 28 members. They can be subdivided in six main subfamilies: the TRPC ('Canonical'), TRPV ('Vanilloid'), TRPM ('Melastatin'), TRPP ('Polycystin'), TRPML ('Mucolipin') and the TRPA ('Ankyrin') group. The TRPV subfamily comprises channels that are critically involved in nociception and thermo-sensing (TRPV1, TRPV2, TRPV3, TRPV4) as well as highly Ca2+ selective channels involved in Ca2+ absorption/reabsorption in mammals (TRPV5, TRPV6). In this review we summarize fundamental physiological properties of all TRPV members in the light of various cellular functions of these channels and their significance in the systemic context of the mammalian organism.  相似文献   

9.
Members of the transient receptor potential (TRP) channel superfamily are present in vascular smooth muscle cells and play important roles in the regulation of vascular contractility. The TRPC3 and TRPC6 channels are activated by stimulation of several excitatory receptors in vascular smooth muscle cells. Activation of these channels leads to myocyte depolarization, which stimulates Ca2+ entry via voltage-dependent Ca2+ channels (VDCC), leading to vasoconstriction. The TRPV4 channels in arterial myocytes are activated by epoxyeicosatrienoic acids, and activation of the channels enhances Ca2+ spark and transient Ca2+-sensitive K+ channel activity, thereby hyperpolarizing and relaxing vascular smooth muscle cells. The TRPC6 and TRPM4 channels are activated by mechanical stimulation of cerebral artery myocytes. Subsequent depolarization and activation of VDCC Ca2+ entry is directly linked to the development of myogenic tone in vitro and to autoregulation of cerebral blood flow in vivo. These findings imply a fundamental importance of TRP channels in the regulation of vascular smooth muscle tone and suggest that TRP channels could be important targets for drug therapy under conditions in which vascular contractility is disturbed (e.g. hypertension, stroke, vasospasm).  相似文献   

10.
1. The influx of Ca2+, Mg2+ and Na+ and the efflux of K+ have central importance for the function and survival of vascular smooth muscle cells, but progress in understanding the influx/efflux pathways has been restricted by a lack of identification of the genes underlying many of the non-voltage-gated cationic channels. 2. The present review highlights evidence suggesting the genes are mammalian homologues of the Transient Receptor Potential (TRP) gene of the fruit-fly Drosophila. The weight of evidence supports roles for TRPC1, TRPP2/1 and TRPC6, but recent studies point also to TRPC3, TRPC4/5, TRPV2, TRPM4 and TRPM7. 3. Activity of these TRP channels is suggested to modulate contraction and sense changes in intracellular Ca2+ storage, G-protein-coupled receptor activation and osmotic stress. Roles in relation to myogenic tone, actions of vasoconstrictors substances, Mg2+ homeostasis and the vascular injury response are suggested. 4. Knowledge that TRP channels are relevant to vascular smooth muscle cells in both their contractile and proliferative phenotypes should pave the way for a better understanding of vascular biology and provide the basis for the discovery of a new set of therapeutic agents targeted to vascular disease.  相似文献   

11.
Ca2+ entry forms an essential component of platelet activation; however, the mechanisms associated with this process are not understood. Ca2+ entry upon receptor activation occurs as a consequence of intracellular store depletion (referred to as store-operated Ca2+ entry or SOCE), a direct action of second messengers on cation entry channels or the direct occupancy of a ligand-gated P2(Xi) receptor. The molecular identity of the SOCE channel has yet to be established. Transient receptor potential (TRP) proteins are candidate cation entry channels and are classified into a number of closely related subfamilies including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin) and TRPML (mucolipins). From the TRPC family, platelets have been shown to express TRPC6 and TRPC1, and are likely to express other TRPC and other TRP members. TRPC6 is suggested to be involved with receptor-activated, diacyl-glycerol-mediated cation entry. TRPC1 has been suggested to be involved with SOCE, though many of the suggested mechanisms remain controversial. As no single TRP channel has the properties described for SOCE in platelets, it is likely that it is composed of a heteromeric association of TRP and related subunits, some of which may be present in intracellular compartments in the resting cell.  相似文献   

12.
The aim of this study was to generate new insight into chemical regulation of transient receptor potential (TRP) channels with relevance to glucose homeostasis and the metabolic syndrome. Human TRP melastatin 2 (TRPM2), TRPM3, and TRP canonical 5 (TRPC5) were conditionally overexpressed in human embryonic kidney 293 cells and studied by using calcium-measurement and patch-clamp techniques. Rosiglitazone and other peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were investigated. TRPM2 was unaffected by rosiglitazone at concentrations up to 10 μM but was inhibited completely at higher concentrations (IC(50), ~22.5 μM). TRPM3 was more potently inhibited, with effects occurring in a biphasic concentration-dependent manner such that there was approximately 20% inhibition at low concentrations (0.1-1 μM) and full inhibition at higher concentrations (IC(50), 5-10 μM). PPAR-γ antagonism by 2-chloro-5-nitrobenzanilide (GW9662) did not prevent inhibition of TRPM3 by rosiglitazone. TRPC5 was strongly stimulated by rosiglitazone at concentrations of ≥10 μM (EC(50), ~30 μM). Effects on TRPM3 and TRPC5 occurred rapidly and reversibly. Troglitazone and pioglitazone inhibited TRPM3 (IC(50), 12 μM) but lacked effect on TRPC5, suggesting no relevance of PPAR-γ or the thiazolidinedione moiety to rosiglitazone stimulation of TRPC5. A rosiglitazone-related but nonthiazolidinedione PPAR-γ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino)ethyl]-l-tyrosine (GW1929), was a weak stimulator of TRPM3 and TRPC5. The natural PPAR-γ agonist 15-deoxy prostaglandin J(2), had no effect on TRPM3 or TRPC5. The data suggest that rosiglitazone contains chemical moieties that rapidly, strongly, and differentially modulate TRP channels independently of PPAR-γ, potentially contributing to biological consequences of the agent and providing the basis for novel TRP channel pharmacology.  相似文献   

13.
Phosphatidylinositol-4,5-bisphosphate (PIP2) has emerged as a versatile regulator of TRP ion channels. In many cases, the regulation involves interactions of channel proteins with the lipid itself independent of its hydrolysis products. The functions of the regulation mediated by such interactions are diverse. Some TRP channels absolutely require PIP2 for functioning, while others are inhibited. A change of gating is common to all, endowing the lipid a role for modulation of the sensitivity of the channels to their physiological stimuli. The activation of TRP channels may also influence cellular PIP2 levels via the influx of Ca2+ through these channels. Depletion of PIP2 in the plasma membrane occurs upon activation of TRPV1, TRPM8, and possibly TRPM4/5 in heterologous expression systems, whereas resynthesis of PIP2 requires Ca2+ entry through the TRP/TRPL channels in Drosophila photoreceptors. These developments concerning PIP2 regulation of TRP channels reinforce the significance of the PLC signaling cascade in TRP channel function, and provide further perspectives for understanding the physiological roles of these ubiquitous and often enigmatic channels.  相似文献   

14.
Modulation of TRPC5 cation channels by halothane, chloroform and propofol   总被引:1,自引:0,他引:1  
BACKGROUND AND PURPOSE: TRPC5 is a mammalian homologue of the Drosophila Transient Receptor Potential (TRP) channel and has expression and functions in the cardiovascular and nervous systems. It forms a calcium-permeable cation channel that can be activated by a variety of signals including carbachol (acting at muscarinic receptors), lanthanides (e.g. Gd3+) and phospholipids (e.g. lysophosphatidylcholine: LPC). Here we report the effects of inhalational (halothane and chloroform) and intravenous (propofol) general anaesthetics upon TRPC5. EXPERIMENTAL APPROACH: Human TRPC5 channels were expressed in HEK 293 cells and studied using fura-2 and patch-clamp recording to measure intracellular calcium and membrane currents respectively at room temperature. Human TRPM2 channels were studied for comparison. KEY RESULTS: TRPC5 activation by carbachol, Gd3+ or LPC was inhibited by halothane and chloroform at > or =0.1 and 0.2 mM respectively. Neither agent inhibited TRPM2. Propofol had an initial stimulatory effect on TRPC5 (evident in patch-clamp recordings only) and an inhibitory effect at > or =10 microM. TRPM2 was not affected by propofol. Propofol inhibited activation of TRPC5 by Gd3+ but not LPC, suggesting the effect was not directly on the channel. Propofol's anti-oxidant property was not necessary for its inhibitory effect because di-isopropyl benzene, a propofol analogue that lacks the hydroxyl group, also inhibited TRPC5.Conclusions and implications:The data show the sensitivity of TRPC5 channel to general anaesthetics and suggest that some of the effects could have clinical relevance. The effects may be explained in part by the sensitivity of the channel to biophysical properties of the lipid bilayer.  相似文献   

15.
Neuropathic pain is a debilitating disease which affects central as well as peripheral nervous system. Transient receptor potential (TRP) channels are ligand-gated ion channels that detect physical and chemical stimuli and promote painful sensations via nociceptor activation. TRP channels have physiological role in the mechanisms controlling several physiological responses like temperature and mechanical sensations, response to painful stimuli, taste, and pheromones. TRP channel family involves six different TRPs (TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPA1) which are expressed in pain sensing neurons and primary afferent nociceptors. They function as transducers for mechanical, chemical, and thermal stimuli into inward currents, an essential first step for provoking pain sensations. TRP ion channels activated by temperature (thermo TRPs) are important molecular players in acute, inflammatory, and chronic pain states. Different degree of heat activates four TRP channels (TRPV1–4), while cold temperature ranging from affable to painful activate two indistinctly related thermo TRP channels (TRPM8 and TRPA1). Targeting primary afferent nociceptive neurons containing TRP channels that play pivotal role in revealing physical stimuli may be an effective target for the development of successful pharmacotherapeutics for clinical pain syndromes. In this review, we highlighted the potential role of various TRP channels in different types of neuropathic pain. We also discussed the pharmacological activity of naturally and synthetically originated TRP channel modulators for pharmacotherapeutics of nociception and neuropathic pain.  相似文献   

16.
The Transient Receptor Potential (TRP) channels family consists of seven different subfamilies, namely TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane protein) and TRPN (NomPC-like) that are related to several physiological and pathological processes. Recent years have witnessed an increased interest of research into the connection between TRP channels and cancer, leading to the discovery of tumor-related functions such as regulation of proliferation, differentiation, apoptotis, angiogenesis, migration and invasion during cancer progression. Among the TRP families, TRPCs, TRPMs and TRPVs are mainly related to malignant growth and progression. Depending on the type and stage of the cancer, regulation of TRPs mRNA and protein expression have been reported; these changes may regulate ion-dependent cell proliferation and resistance of cancer cells to apoptotic-induced cell death with consequent cancer promoting effects and resistance to chemotherapic treatments. Considerable efforts have been made to fight cancer cells and targeted therapy seems to be the most promising strategy: in this regard, ion channels belonging to the TRP channel superfamily could play an important role. Aim of this review is to summarize data reported so far on the expression and the functional role of TRP channels during cancer growth and progression, and the relationship with clinico-pathological markers. Moreover, the feasibility of TRP channels as target of chemotherapy and the different approaches by which these channels can be targeted will be analyzed in detail. Deeper investigations are required to understand the role TRP channels in cancer in order to develop further knowledge of TRP proteins as valuable diagnostic and/or prognostic markers, as well as targets for pharmaceutical intervention and targeting.  相似文献   

17.
Mammals contain 28 genes encoding Transient Receptor Potential (TRP) proteins. The proteins assemble into cationic channels, often with calcium permeability. Important roles in physiology and disease have emerged and so there is interest in whether the channels might be suitable therapeutic drug targets. Here we review selected members of three subfamilies of mammalian TRP channel (TRPC5, TRPM2 and TRPA1) that show relevance to sensing of adversity by cells and biological systems. Summarized are the cellular and tissue distributions, general properties, endogenous modulators, protein partners, cellular and tissue functions, therapeutic potential, and pharmacology. TRPC5 is stimulated by receptor agonists and other factors that include lipids and metal ions; it heteromultimerises with other TRPC proteins and is involved in cell movement and anxiety control. TRPM2 is activated by hydrogen peroxide; it is implicated in stress-related inflammatory, vascular and neurodegenerative conditions. TRPA1 is stimulated by a wide range of irritants including mustard oil and nicotine but also, controversially, noxious cold and mechanical pressure; it is implicated in pain and inflammatory responses, including in the airways. The channels have in common that they show polymodal stimulation, have activities that are enhanced by redox factors, are permeable to calcium, and are facilitated by elevations of intracellular calcium. Developing inhibitors of the channels could lead to new agents for a variety of conditions: for example, suppressing unwanted tissue remodeling, inflammation, pain and anxiety, and addressing problems relating to asthma and stroke.  相似文献   

18.
Members of the transient receptor potential (TRP) superfamily of ion channels have now been defined as molecular transducers capable of reproducing the spectrum of temperature sensation exhibited by mammals. Because of their pivotal role in sensory transduction, many of these channels represent good targets for drug discovery. With a view to gaining further insight into the functional and pharmacological properties of these channels, we have used the whole-cell patch-clamp technique to study the human cold-sensitive menthol receptor transient receptor potential melastatin 8 (TRPM8) and compared its behavior with that of its distant relative, the heat-sensitive capsaicin-gated transient receptor potential vanilloid 1 (TRPV1). It is remarkable to find that TRPM8, in addition to its behavior as an outwardly rectifying, nonselective cation channel, shares many functional and pharmacological properties with TRPV1. TRPM8 exhibits prominent time- and voltage-dependent behavior, a property that may underlie the conserved rectification or gating mechanisms exhibited by these channels. We also show that TRPM8 is modulated by ethanol but unlike TRPV1 is insensitive to extracellular acidification. There is also significant overlap in the antagonist pharmacology of these channels with many TRPV1 antagonists such as capsazepine, N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl) tetrahydropyrazine-1(2H)-carboxamide (BCTC), (2R)-4-(3-chloro-2-pyridinyl)-2-methyl-N-[4-(trifluoromethyl)phenyl]-1-piperazinecarboxamide (CTPC), and N-(2-bromophenyl)-N'-{2-[ethyl(3-methylphenyl)amino]ethyl}-urea (SB-452533) exhibiting similar activity at TRPM8. Overall, the degree of pharmacological overlap between TRPV1 and TRPM8 has implications for the interpretation of studies conducted with these ligands to date and highlights a clear challenge for the design of selective TRP channel antagonists. Our finding that N-(3-methoxyphenyl)-4-chlorocinnamide (SB-366791), at least, represents an apparently selective antagonist for TRPV1 suggests that this goal is attainable.  相似文献   

19.

Background and purpose:

Isoform-specific ion channel blockers are useful for target validation in drug discovery and can provide the basis for new therapeutic agents and aid in determination of physiological functions of ion channels. The aim of this study was to generate a specific blocker of human TRPM3 channels as a tool to help investigations of this member of the TRP cationic channel family.

Experimental approach:

A polyclonal antibody (TM3E3) was made to a conserved peptide of the third extracellular (E3) loop of TRPM3 and tested for binding and functional effect. Studies of channel activity were made by whole-cell planar patch-clamp and fura-2 intracellular Ca2+ measurement.

Key results:

Ionic current mediated by TRPM3 was inhibited partially by TM3E3 over a period of 5–10 min. Ca2+ entry in TRPM3-expressing cells was also partially inhibited by TM3E3 in a peptide-specific manner and independently of the type of agonist used to activate TRPM3. TM3E3 had no effect on TRPC5, TRPV4, TRPM2 or an endogenous ATP response.

Conclusions and implications:

The data show the successful development of a specific TRPM3 inhibitor and give further confidence in E3 targeting as an approach to producing isoform-specific ion channel blockers.  相似文献   

20.
1 2-aminoethoxydiphenyl borate (2-APB) has been widely used to examine the roles of inositol 1,4,5-trisphosphate receptors (IP3Rs) and store-operated Ca2+ entry and is an emerging modulator of cationic channels encoded by transient receptor potential (TRP) genes. 2 Using Ca2+-indicator dye and patch-clamp recording we first examined the blocking effect of 2-APB on human TRPC5 channels expressed in HEK-293 cells. 3 The concentration-response curve has an IC50 of 20 microM and slope close to 1.0, suggesting one 2-APB molecule binds per channel. The blocking effect is not shared by other Ca2+ channel blockers including methoxyverapamil, nifedipine, N-propargylnitrendipine, or berberine. 4 In whole-cell and excised membrane patch recordings, 2-APB acts from the extracellular but not intracellular face of the membrane. 5 Block of TRPC5 by 2-APB is less at positive voltages, suggesting that it enters the electric field or acts by modulating channel gating. 6 2-APB also blocks TRPC6 and TRPM3 expressed in HEK-293 cells, but not TRPM2. 7 Block of TRP channels by 2-APB may be relevant to cell proliferation because 2-APB has a greater inhibitory effect on proliferation in cells overexpressing TRPC5. 8 Our data indicate a specific and functionally important binding site on TRPC5 that enables block by 2-APB. The site is only available via an extracellular route and the block shows mild voltage-dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号