首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect repellent N,N-diethyl-m-toluamide (DEET) and sunscreen oxybenzone are capable of enhancing skin permeation of each other when applied simultaneously. We carried out a cellular study in rat astrocytes and neurons to assess cell toxicity of DEET and oxybenzone and a 30-day study in Sprague-Dawley rats to characterize skin permeation and tissue disposition of the compounds. Cellular toxicity occurred at 1 μg/mL for neurons and 7-day treatment for astrocytes and neurons. DEET and oxybenzone permeated across the skin to accumulate in blood, liver, and brain after repeated topical applications. DEET disappeared from the application site faster than oxybenzone. Combined application enhanced the disposition of DEET in liver. No overt sign of behavioral toxicity was observed from several behavioral testing protocols. It was concluded that despite measurable disposition of the study compounds in vivo, there was no evidence of neurotoxicological deficits from repeated topical applications of DEET, oxybenzone, or both.  相似文献   

2.
The synergistic percutaneous enhancement between insect repellent DEET and sunscreen oxybenzone has been proven in our laboratory using a series of in vitro diffusion studies. In this study, we carried out an in vivo study to characterize skin permeation profiles from topical skin application of three commercially available repellent and sunscreen preparations. The correlation between skin disposition and drug metabolism was attempted by using data collected. Both DEET and oxybenzone permeated across the skin after the application and achieved substantial systemic absorption. Combined use of DEET and oxybenzone significantly enhanced the percutaneous penetration percentages (ranging 36-108%) due to mutual enhancement effects. Skin disposition indicated that DEET produced a faster transdermal permeation rate and higher systemic absorption extent, but oxybenzone formed a concentrated depot within the skin and delivered the content slowly over the time. In vivo AUCP/MRT of DEET and oxybenzone was increased by 37%/17% and 63%/10% when the two compounds were used together. No DEET was detected from the urine samples 48 h after the application. Tape stripping seemed to be a satisfactory approach for quantitative assessment of DEET and oxybenzone penetration into the stratum corneum. It was also concluded that pharmacological and toxicological perspectives from concurrent application of insect repellent and sunscreen products require further evaluation to ensure use efficacy and safety of these common consumer healthcare products.  相似文献   

3.
DEET and oxybenzone are two essential active ingredients in repellent and sunscreen products. We performed a series of in vitro diffusion studies to evaluate the transmembrane permeation of DEET and oxybenzone across three artificial membranes, low-density polyethylene (LDPE), low fouling composite (LFC) and mixed cellulose esters (MCE), from concurrent use of commercial repellent and sunscreen preparations. Permeation of DEET and oxybenzone across the test membranes was synergistically increased when both the repellent and the sunscreen formulations were applied simultaneously. Different application sequences and formulation types also resulted in variable permeation profiles of DEET and oxybenzone. Compared to biological piglet epidermis under the identical experimental conditions, transmembrane permeation of DEET was suppressed in LDPE and LFC membranes, but enhanced in MCE membrane; transmembrane permeation of oxybenzone was reduced in LFC membrane, but increased in LDPE and MCE membranes. Permeability coefficients of DEET and oxybenzone in all three artificial membranes were significantly different from those in piglet skin. It was concluded that the permeation profiles of the compounds were dependent upon physicochemical characteristics of the membranes and the formulations.  相似文献   

4.
Picaridin and oxybenzone are two active ingredients found in repellent and sunscreen preparations, respectively. We performed a series of in vitro diffusion studies to evaluate the transmembrane permeation of picaridin and oxybenzone across human epidermis and poly(dimethylsiloxane) (PDMS) membrane. Permeation of picaridin (PCR) and oxybenzone (OBZ) across human epidermis was suppressed when both active ingredients were used concurrently; increasing concentration of the test compounds further reduced the permeation percentage of picaridin and oxybenzone. While permeation characteristics were correlative between human epidermis and PDMS membrane, permeability of PDMS membrane was significantly larger than that of human epidermis. The findings were different from concurrent use of repellent DEET and sunscreen oxybenzone in which a synergistic permeation enhancement was observed. Further comparative studies are therefore needed to understand permeation mechanisms and interactions between picaridin and oxybenzone.  相似文献   

5.
The permeation behaviours of the insect repellent N,N-diethyl-m-toluamide (DEET) and the sunscreen oxybenzone were assessed in a series of in-vitro diffusion studies, using piglet skin and poly (dimethylsiloxane) (PDMS) membrane. The transmembrane permeability of DEET and oxybenzone across piglet skin and PDMS membrane was dependent on dissolving vehicles and test concentrations. An enhanced permeation increase across piglet skin was found for DEET and oxybenzone when both compounds were present in the same medium (DEET: 289% in propylene glycol, 243% in ethanol and 112% in poly(ethylene glycol) (PEG-400); oxybenzone: 139% in PEG-400, 120% in propylene glycol and 112% in ethanol). Permeation enhancement was also observed in PDMS membrane (DEET: 207% in ethanol, 124% in PEG-400 and 107% in propylene glycol; oxybenzone: 254% in PEG-400, 154% in ethanol and 105% in propylene glycol). PDMS membrane was found to be a suitable candidate for in-vitro diffusion evaluations. This study shows that the permeations of the insect repellent DEET and the sunscreen oxybenzone were synergistically enhanced when they were applied simultaneously.  相似文献   

6.
Chen T  Burczynski FJ  Miller DW  Gu X 《Die Pharmazie》2010,65(11):835-839
Concurrent application of insect repellent picaridin or DEET with sunscreens has become prevalent due to concerns on West Nile virus and skin cancer. The objectives of this study were to characterize the percutaneous permeation of picaridin and sunscreen oxybenzone from commercially available preparations and to compare the differences in permeability between picaridin and DEET in association with oxybenzone. In vitro diffusion studies were carried out to measure transdermal permeation of picaridin and oxybenzone from four different products, using various application concentrations and sequences. Results were then compared to those of repellent DEET and sunscreen oxybenzone under identical conditions. Transdermal permeation of picaridin across human epidermis was significantly lower than that of DEET, both alone and in combination with oxybenzone. Concurrent use resulted in either no changes or suppression of transdermal permeation of picaridin and oxybenzone. This finding was different from concurrent use of DEET and oxybenzone in which a synergistic permeation enhancement was observed. In addition, permeation of picaridin, DEET and oxybenzone across human epidermis was dependent on application concentration, use sequence, and preparation type. It was concluded from this comparative study that picaridin would be a better candidate for concurrent use with sunscreen preparations in terms of minimizing percutaneous permeation of the chemicals.  相似文献   

7.
Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%–628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%–338% than that through LDPE.KEY WORDS: Diffusion, Human skin, Artificial membrane, Permeability, Concurrent use, Insect repellent, Sunscreen  相似文献   

8.
Objectives Vector‐borne diseases are still a major mortality factor in Africa and South‐east Asia and effective mosquito repellents are therefore needed. An efficient and safe in‐vitro assay system using artificial blood and skin substitute could facilitate the development of novel repellents, as most assays currently rely on human subjects or vertebrate whole blood. Moreover, examining the skin permeation profiles could provide safer mosquito repellents. The new assay system could serve as an initial system for testing new repellent candidates upon validation with DEET and its analogues. Methods N,N‐Diethyl‐meta‐toluamide (DEET) and five analogues were synthesised and used to validate a novel in‐vitro bioassay using artificial blood and collagen membrane. Repellency against Aedes aegypti was correlated with lipophilicity and skin permeation. Key findings The new in‐vitro assay showed good reproducibility (interday relative standard deviation <10% at high concentrations). Four of the five DEET analogues showed repellency similar or superior to that of DEET. Repellency correlated linearly with lipophilicity but stronger repellents tended to permeate skin better. Conclusions The new in‐vitro assay using blood substitute and collagen membrane significantly simplifies screening of possible mosquito repellents. Lipophilicity as well as skin permeation profiles should be considered before testing of compounds that are candidates for mosquito repellents.  相似文献   

9.
The synergic in vitro skin permeation enhancing-effect of N,N-diethyl-m-toluamide (DEET) and dodecylamine was investigated in order to develop a novel non-scrotal matrix-type transdermal delivery system of testosterone (TS). When DEET was loaded in DuroTak® 87-2510 together with 2% TS and 3% dodecylamine, the in vitro rat skin permeation rate of TS synergistically increased as DEET concentration increased up to 0.5%. No further increase in permeation was observed thereafter and a plateau was observed up to 3.8% DEET. Moreover, compared to 0.5% DEET concentration, the addition of 3.8% of DEET in combination with 3% dodecylamine and 6% TS further increased the permeation rate of TS, and the maximum permeation rate of 11.21 μg/cm2/h was achieved. The in vitro skin permeation rates of TS from a transdermal delivery system of DuroTak® 87-2510 containing 6% TS, 3% dodecyamine, and 3.8% DEET were in the following order: hairless mouse skin > rat skin > human cadaver skin. Assuming that a system with a surface area of 60 cm2 is applied, the human cadaver skin permeation rate of 5.74 μg/cm2/h achieved in this study can be interpreted as being equivalent to delivering ~ 8.?27?mg of TS per day. Considering that the commercially available product (Testoderm®TTS) for non-scrotal skin of the same surface area is designed to administer 5?mg of TS per day, the new formulation could maintain therapeutic plasma concentration of TS at a smaller surface area of 40 cm2.  相似文献   

10.
The percutaneous absorption and metabolism of three structurally related compounds, benzoic acid, p-aminobenzoic acid (PABA), and ethyl aminobenzoate (benzocaine), were determined in vitro through hairless guinea pig skin. Benzocaine was also studied in human skin. Absorption of benzocaine was rapid and similar through both viable and nonviable skin. The absorption of the two acidic compounds, benzoic acid and PABA, was greater through nonviable skin. A small portion (6.9%) of absorbed benzoic acid was conjugated with glycine to form hippuric acid. Although N-acetyl-benzocaine had not been observed as a metabolite of benzocaine when studied by other routes of administration, both PABA and benzocaine were extensively N-acetylated during percutaneous absorption. Thus, the metabolism of these compounds should be considered in an accurate assessment of absorption after topical application.David Nathan: Results submitted as partial fulfillment of requirements for the M.S. in Pharmaceutical Science degree (Cosmetic Science)  相似文献   

11.
The pharmacokinetics of pyrrole (Py)‐imidazole (Im) polyamides was studied in rats after the intravenous administration of these compounds. Py‐Im polyamide (A) was composed of Ac‐ImPyPy‐ImPyPy‐β‐Dp (β: β‐alanine, Dp: N,N‐dimethylaminopropylamide). Py‐Im polyamide (B) was composed of Ac‐PyIm‐β‐ImIm‐PyPy‐β‐PyPy‐β‐Dp. Py‐Im polyamide (C) was composed of Ac‐PyPy‐β‐PyImPy‐PyPyPy‐β‐ImPy‐β‐Dp. The molecular weight of Py‐Im polyamide (A) was 1035.12, that of Py‐Im polyamide (B) was 1422.51 and that of Py‐Im polyamide (C) was 1665.78. After the intravenous injection of Py‐Im polyamide (A) at 1.3, 2.0, 7.5 and 15.0 mg/kg, Py‐Im polyamides (B) and (C) at 1.0, 2.0, 3.0 and 5.0 mg/kg, the average systemic clearance and the volume of distribution at the steady state obtained by a non‐compartmental method were in the ranges of 4.6–6.4 ml/min/kg and 244–412 ml/kg, 8.9–10.3 ml/min/kg and 1990–4567 ml/kg, and 7.3–11.9 ml/min/kg and 407–667 ml/kg, respectively. Dose linearity of Py‐Im polyamides was observed. The plasma concentration‐time profiles after the intravenous administration of Py‐Im polyamides (A) and (B) were fitted well by a two‐compartment model. Py‐Im polyamide (C) was observed at high concentrations in the lungs. The plasma concentration‐time profiles after the intravenous administration of Py‐Im polyamide (C) were described using a catenary two‐compartment model. This model is useful for describing the time course after the administration of high‐molecular‐weight Py‐Im polyamides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The absorption and disposition of methotrexate (MTX) in the plasma, synovial fluid (SF), skin, and muscle tissue were studied following administration of a topical MTX gel in rabbits and rats. In rabbits, MTX concentrations in the plasma increased steadily toward the peak (5·9 ± 2·8 ng mL−1) which appeared at ∼2 h postdose and declined with the elimination half-life of 4·48 ± 1·74 h. At 1 h after the topical dose, the MTX concentrations in the skin (49·0 ± 19·8 μg g−1), muscle (12·7 ± 3·3 ng g−1), and SF (19·2 ± 10·1 ng g−1) underneath the dosed stifle joint were significantly higher (p <0·05) than those of the untreated stifle joint, indicating the potential therapeutic value of topical delivery of MTX for rheumatoid arthritis. A large fraction (∼59%) of MTX which was found in the skin at 1 h postdose was present in the stratum corneum, indicating its extensive binding capacity for MTX. The MTX concentrations in the muscle and SF of the dosed stifle joint at 1 h postdose were 1·8 and 2·6 times higher than those in the dosed elbow joint, respectively, reflecting the effect of dose site on the permeation of MTX. Using a new filter paper method, the amounts of SF obtained from the elbow and stifle joints of four rabbits were 26·3 ± 8·3 and 48·8 ± 5·2 mg, respectively. A significant enhancer effect of N,N -diethyl-n -toluamide (DEET) on the disposition of MTX in the stratum corneum of rabbit ear was observed (p < 0·05) by the tape-stripping method. In rats, the gel containing 4% DEET resulted in a twofold increase in the permeation of MTX into the muscle over the 4 h period postdose. A modified HPLC method with a linear calibration curve (r > 0·999) over the range of 2–50 ng mL−1, quantitation limit of 0·5 ng mL−1, and mean recovery of ∼87% was used for the quantitation of MTX in the tissue and fluid samples. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.

Purpose

Acyclic nucleoside phosphonates possess unique antiviral and antineoplastic activities; however, their polar phosphonate moiety is associated with low ability to cross biological membranes. We explored the potential of transdermal and topical delivery of 2,6-diaminopurine derivative cPr-PMEDAP.

Methods

In vitro diffusion of cPr-PMEDAP was investigated using formulations at different pH and concentration and with permeation enhancer through porcine and human skin.

Results

Ability of 0.1?C5% cPr-PMEDAP to cross human skin barrier was very low with flux values ~40 ng/cm2/h, the majority of compound found in the stratum corneum. The highest permeation rates were found at pH 6; increased donor concentration had no influence. The permeation enhancer dodecyl 6-dimethylaminohexanoate (DDAK, 1%) increased flux of cPr-PMEDAP (up to 61 times) and its concentration in nucleated epidermis (up to ~0.5 mg of cPr-PMEDAP/g of the tissue). No deamination of cPr-PMEDAP into PMEG occurred during permeation studies, but N-dealkylation into PMEDAP mediated by skin microflora was observed.

Conclusions

Transdermal or topical application of cPr-PMEDAP enabled by the permeation enhancer DDAK may provide an attractive alternative route of administration of this potent antitumor and antiviral compound.  相似文献   

14.
The objective of this study was to determine the influence of Transcutol CG concentration on the transdermal permeation and skin accumulation of two ultraviolet (UV) absorbers, 2-hydroxy-4-methoxybenzophenone (oxybenzone) and 2-octyl-4-methoxycinnamate (cinnamate). The concentration of the UV absorber was held constant at 6% (w/w) for all vehicle systems while the concentration of Transcutol CG was varied from 0 to 50% (w/w). Data showed that both UV absorbers exhibited increases in skin accumulation with increasing concentrations of Transcutol CG. Skin accumulation of oxybenzone was significantly (P<0.05) greater than that of cinnamate for all formulations investigated. Oxybenzone skin accumulation ranged from 22.9+/-2.8 microg/mg (0% Transcutol CG) to 80.8+/-27.2 microg/mg (50% Transcutol CG). Cinnamate skin accumulation ranged from 9.0+/-0.9 microg/mg to 39.8+/-12.2 microg/mg at 0 and 50% Transcutol CG, respectively. No significant differences were found in the transdermal permeation of oxybenzone or cinnamate for any of the formulations tested. The results of this study demonstrate that the inclusion of Transcutol CG in sunscreen formulations increases the skin accumulation of the UV absorbers oxybenzone and cinnamate without a concomitant increase in transdermal permeation.  相似文献   

15.
Memantine is a non‐competitive N‐methyl‐D‐aspartate (NMDA) receptor antagonist used to treat Alzheimer's disease. We investigated memantine pharmacokinetics after oral, IV and patch administration in rats, and compared memantine pharmacokinetics after multiple‐ or single‐dose oral and transdermal administration. Venous blood was collected at preset intervals in single‐ and multiple‐dose studies. Non‐compartmental pharmacokinetics was analysed for all formulations. The oral, IV and patch memantine doses were 10 mg/kg, 2 mg/kg and 8.21 ± 0.89 mg/kg, respectively. The maximum plasma concentration was lower and the half‐life longer after patch administration than oral and IV administration. Memantine bioavailability was 41 and 63% for oral and patch administration, respectively. Steady state was achieved around 24 hr for oral and patch administration. The mean AUC increased after oral or patch administration from single to multiple dose. The memantine patch formulation displayed a longer duration of action and lower peak plasma concentration. However, drug exposure was similar to the oral formulation at each dose. Additionally, the memantine patch formulation displayed a smaller interindividual variability and lower accumulation than the oral formulation.  相似文献   

16.
Various volatile organic compounds (VOCs) act as a causative agent of skin inflammation. We investigated the effect of topical application of several VOCs and formalin on microvascular leakage in rat skin. We tested capsaicin, which is a reagent that specifically causes the skin response via endogenously released tachykinins. Evans blue dye extravasation served as an index of the increase in skin vascular permeability. After shaving the abdomen, we applied formalin, m-xylene, toluene, styrene, benzene, ethylbenzene, acetone, diethyl ether, hexane, heptane, cyclohexane and capsaicin to the skin. At 40 min after application, skin samples were collected. Among all of the VOCs tested, all of the aromatic compounds significantly produced skin microvascular leakage that was similar to formalin and capsaicin. We also investigated the skin responses seen after the intravenous administration of CP-99,994 (1.5 or 5 mg/kg), which is a tachykinin NK1 receptor antagonist, ketotifen (1 or 3 mg/kg), which is a histamine H1 receptor antagonist that stabilizes the mast cells, and the topical application of capsazepine (22.5 or 50 mM), which is the transient receptor potential vanilloid 1 (TRPV1) antagonist. The response induced by formalin and capsaicin was completely inhibited by CP-99,994. On the other hand, the antagonist partially reduced the response induced by m-xylene, toluene and styrene by 39%, 50% and 46%, respectively. Capsazepine and ketotifen did not alter the response induced by formalin or any of the aromatic compounds. Like capsaicin, formalin and the aromatic compounds at least partially caused skin microvascular leakage, which was due to tachykinin NK1 receptor activation related to the release of tachykinins from the sensory nerve endings. However, it is unlikely that mast cells and TRPV1 play an important role in the skin response.  相似文献   

17.
Loxoprofen (LX) is a prodrug‐type non‐steroidal anti‐inflammatory drug which is used not only as an oral drug but also as a transdermal formulation. As a pharmacologically active metabolite, the trans‐alcohol form of LX (trans‐OH form) is generated after oral administration to humans. The objectives of this study were to evaluate the generation of the trans‐OH form in human in vitro skin and to identify the predominant enzyme for its generation. In the permeation and metabolism study using human in vitro skin, both the permeation of LX and the formation of the trans‐OH form increased in a time‐ and dose‐dependent manner after the application of LX gel to the skin. In addition, the characteristics of permeation and metabolism of both LX and the trans‐OH form were examined by a mathematical pharmacokinetic model. The Km value was calculated to be 10.3 mm in the human in vitro skin. The predominant enzyme which generates the trans‐OH form in human whole skin was identified to be carbonyl reductase 1 (CBR1) by immunodepletion using the anti‐human CBR1 antibody. The results of the enzyme kinetic study using the recombinant human CBR1 protein demonstrated that the Km and Vmax values were 7.30 mm and 402 nmol/min/mg protein, respectively. In addition, it was found that no unknown metabolites were generated in the human in vitro skin. This is the first report in which LX is bioactivated to the trans‐OH form in human skin by CBR1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Purpose. SDZ ENA 713 (rivastigmine) is an acetylcholinesterase inhibitor intended for therapeutic use in Alzheimer's disease. The present study compared the pharmacokinetics of [14C]SDZ ENA 713 after intravenous, oral, and dermal administration to male minipigs, and also examined the effects of dose level and skin abrasion on transdermal absorption. Methods. Four groups of 3 minipigs each received a single intravenous (0.1 mg/kg), single oral (1.0 mg/kg), or topical doses of 18 mg or 54 mg of [14C]SDZ ENA 713. Topical doses were administered as dermal patches on two occasions 10 days apart. On Study Day 1, test patches were applied to a virgin skin site. Placebo patches were applied to a separate skin site and were replaced daily during Days 1–10. On Study Day 11, test patches were applied to the site on which the placebo patches had been previously applied. After each dose, serial blood and quantitative urine and feces were collected at designated intervals for 7 days. Concentrations of radioactivity, parent drug, and metabolite ZNS 114–666 were measured in whole blood. Radioactivity was also determined in excreta, skin application sites (at study termination), and on used dermal patches (at 24 hr after application). Results. Oral doses of [14C]SDZ ENA 713 were rapidly (tmax = 0.83 hr) and efficiently (ca. 93%) absorbed, although the bioavailability of the parent drug was low, ca. 0.5%, apparently due to extensive first-pass metabolism. Radioactivity was excreted mainly in the urine (90%) with a half-life of 56 hr, slightly longer than that observed after an intravenous dose, 46 hr. After dermal administration of [14C]SDZ ENA 713 to a virgin skin site, absorption was 8% at both dose levels investigated. Following daily application of placebo patches for 10 days, absorption from a [14C]SDZ ENA 713 dermal patch increased by approximately twofold, 17% and 19% of the 18 mg and 54 mg doses, respectively. The increase is possibly due to hydration or abrasion of the skin as a result of repeated application and removal of the adhesive patches. Whereas total absorption from the dermal dose was smaller than that from the oral dose, essentially all of the absorbed drug via the dermal route reached the systemic circulation intact, thus yielding a SDZ ENA 713 bioavailability 20–40 times greater than that of the oral dose. Metabolite ZNS 114–666 was rapidly formed and accounted for <4% of total drug-related material in the systemic circulation. Conclusions. Dermal administration in minipigs provided a markedly greater bioavailability of SDZ ENA 713 than the oral route. The extent of absorption was independent of dose within the range tested, and appeared to be enhanced by hydration or abrasion of the skin application site.  相似文献   

19.
Objectives Diethyltoluamide and ethylhexyl p‐methoxycinnamate (OMC) are two active ingredients in insect repellent and sunscreen products, respectively. The concurrent application of these two substances often increases their systemic absorption, compromising the safety and efficiency of the cosmetic product. In this study, diethyltoluamide and OMC were incorporated into solid lipid nanoparticles, a colloidal drug delivery system, to reduce percutaneous absorption and avoid toxic effects and also maintain the efficacy of the two active compounds on the skin surface for a long duration. Methods Solid lipid nanoparticles were prepared based on an ultrasonication technique and characterized by differential scanning calorimetry (DSC) analyses. In‐vitro studies determined the percutaneous absorption of diethyltoluamide and OMC. Key findings DSC data carried out on unloaded and diethyltoluamide‐ and/or OMC‐loaded solid lipid nanoparticles highlighted that diethyltoluamide and OMC modified the temperature and the enthalpy change associated to the calorimetric peak of solid lipid nanoparticles. The concurrent presence of the two compounds in the solid lipid nanoparticles caused a synergic effect, indicating that the lipid matrix of nanoparticles guaranteed a high encapsulation of both diethyltoluamide and OMC. Results from the in‐vitro study demonstrated that the particles were able to reduce the skin permeation of the two cosmetic ingredients in comparison with an oil‐in‐water emulsion. Conclusions This study has provided supplementary evidence as to the potential of lipid nanoparticles as carriers for topical administration of cosmetic active compounds.  相似文献   

20.
Poly(N-isopropylacrylamide) (PNIPA) and Poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPA-co-AA)) microgels loaded with 5-aminolevulinic acid (ALA) were prepared by the spray-drying method. The amount of drug loaded was 290?µg ALA/mg microgel for PNIPA and 244?µg ALA/mg microgel for P(NIPA-co-AA) microgels. Maximum in vitro drug release took place within 15–30?min for PNIPA and 1–1.5?h for P(NIPA-co-AA) microgels as a function of pH, at 37°C. Transdermal delivery from microgels showed permeation fluxes 10 times higher than the passive diffusion flux. The cytotoxicity of microgels synthesized in HeLa cells after the application of photodynamic therapy (PDT) was superior compared with the administration of ALA in solution alone. Finally, the use of these microgels as a delivery vehicle for ALA constitutes a system capable of enhancing its topical administration and PDT effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号