首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The death ligand TRAIL has been suggested as a suitable biological agent for the selective induction of cell death in cancer cells. Moreover, TRAIL synergizes with DNA-damaging therapies such as chemotherapeutic drugs or ionizing irradiation (IR). Here, we show that synergy of TRAIL and IR, that is, crosssensitization between TRAIL and IR for induction of apoptosis, entirely depends on Bax proficiency in human DU145 and HCT116 carcinoma cells. DU145 prostate carcinoma cells that have lost Bax protein expression due to mutation fail to activate caspase-3 and -9 when exposed to TRAIL and IR. In contrast, TRAIL sensitized for IR-induced apoptosis and vice versa upon reconstitution of Bax expression. Notably, both DU145 and HCT116 still express significant levels of the multidomain proapoptotic Bcl-2 homolog Bak. This indicates that Bak is not sufficient to mediate crosssensitization and synergism between IR and TRAIL. These data clearly establish distinct roles for Bax and Bak in linking the TRAIL death receptor pathway to the mitochondrial apoptosis signaling cascade upon DNA damage by IR.  相似文献   

2.
In contrast to the initial notion that the biological activity of p14(ARF) strictly depends on a functional mdm-2/p53 signaling axis, we recently demonstrated that p14(ARF) mediates apoptosis in a p53/Bax-independent manner. Here, we show that p14(ARF) induces breakdown of the mitochondrial membrane potential and cytochrome c release before triggering caspase-9- and caspase-3/7-like activities in p53/Bax-deficient DU145 prostate cancer cells expressing wild-type Bak. Re-expression of Bax in these cells failed to further enhance p14(ARF)-induced apoptosis, suggesting that p14(ARF)-induced apoptosis primarily depends on Bak but not Bax in these cells. To further define the role of Bak and Bax in p14(ARF)-induced mitochondrial apoptosis, we employed short interference RNA for the knockdown of bak in isogeneic, p53 wild-type HCT116 colon cancer cells either proficient or deficient for Bax. There, combined loss of Bax and Bak attenuated p14(ARF)-induced apoptosis whereas single loss of Bax or Bak was only marginally effective, as in the case of DU145. Notably, HCT116 cells deficient for Bax and Bak failed to release cytochrome c and showed attenuated activation of caspase-9 (LEHDase) and caspase-3/caspase-7 (DEVDase) upon p14(ARF) expression. These data indicate that p14(ARF) triggers apoptosis via a Bax/Bak-dependent pathway in p53-proficient HCT116, whereas Bax is dispensable in p53-deficient DU145 cells. Nevertheless, a substantial proportion of p14(ARF)-induced cell death proceeds in a Bax/Bak-independent manner. This is also the case for inhibition of clonogenic growth that occurs, at least in part, through an entirely Bax/Bak-independent mechanism.  相似文献   

3.
The intracellular pathways leading to mitochondrial activation and subsequent cell death in the ceramide-mediated stress response have been intensively studied in recent years. Experimental evidence has been provided that ceramide-induced apoptosis is inhibited by overexpression of antiapoptotic proteins of the Bcl-2 family. However, the direct effect of proapoptotic gene products, e.g. Bax, on ceramide-induced death signalling has not yet been studied in detail. In the present work, we show by measurement of mitochondrial permeability transition, cytochrome c release, activation of caspase-3 and DNA fragmentation that ceramide-induced apoptosis is marginal in Bax-negative DU 145 cells. Reconstitution of Bax by generation of DU 145 cells stably expressing this proapoptotic factor, clearly enhanced ceramide-induced apoptosis at all levels of the mitochondrial signalling cascade. Using the broad-range caspase inhibitor zVAD-fmk and zDEVD-fmk, an inhibitor of caspase-3-like activities, we demonstrate that the ceramide-induced mitochondrial activation in Bax-transfected DU 145 cells is caspase-independent. On the other hand, apoptotic events located downstream of the mitochondria, e.g. DNA fragmentation, were shown to be caspase-dependent. This influence of Bax on ceramide-induced apoptosis was confirmed in another cellular system: whereas Bax-positive HCT116 wild type cells were very sensitive towards induction of cell death by C(2)-ceramide, sensitivity of Bax knock-out HCT116 cells was significantly reduced. Thus, we conclude that Bax is a key activator of ceramide-mediated death pathways.  相似文献   

4.
Exogenous overexpression of hRFI, originally isolated in our laboratory, inhibits not only death receptor-mediated apoptosis but also the mitochondrial apoptosis induced by several chemotherapeutic agents including 5-fluorouracil (5-FU). Recently, it has become clear that hRFI targets and degradates caspase-8 and -10 in death receptor-mediated apoptosis by E3 ubiquitin activity in a ring finger domain homologous to that of X-chromosome-linked inhibitor of apoptosis protein (XIAP). However, the cellular mechanism of the inhibition of mitochondrial apoptosis by hRFI has not been fully elucidated. We prepared HCT116 overexpressing hRFI (HCT116/hRFI) cells and comprehensively analyzed the expression changes of 51 apoptosis-related genes with or without 5-FU treatment between HCT116/hRFI and mock cells using microfluidic low-density arrays. As a result, we identified four genes (Bcl-2, Bcl-XL, cIAP2, and CFLAR) whose expression was four or more times higher in HCT116/ hRFI cells than in HCT116/LacZ cells, and found that Bcl-2 and the ratio of Bcl-2/Bax or Bcl-2/Bak were upregulated when HCT116/hRFI cells were treated with 5-FU. Furthermore, we also validated the up-regulation of Bcl-2 and Bcl-XL in HCT116/hRFI cells treated with 5-FU by Western blot analysis. Such evidence suggests that the modulation of Bcl-2 family proteins seen in 5-FU treatment plays an important role in the anti-apoptotic function of HCT116/hRFI cells.  相似文献   

5.
Kim M  Park SY  Pai HS  Kim TH  Billiar TR  Seol DW 《Cancer research》2004,64(12):4078-4081
The hypoxic environment in solid tumors results from oxygen consumption by rapid proliferation of tumor cells. Hypoxia has been shown to facilitate the survival of tumor cells and to be a cause of malignant transformation. Hypoxia also is well known to attenuate the therapeutic activity of various therapies in cancer management. These observations indicate that hypoxia plays a critical role in tumor biology. However, little is known about the effects of hypoxia on apoptosis, especially on apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent apoptosis inducer that has been shown to specifically limit tumor growth without damaging normal cells and tissues in vivo. To address the effects of hypoxia on TRAIL-induced apoptosis, HCT116 human colon carcinoma cells were exposed to hypoxic or normoxic conditions and treated with soluble TRAIL protein. Hypoxia dramatically inhibited TRAIL-induced apoptosis in HCT116 cells, which are highly susceptible to TRAIL in normoxia. Hypoxia increased antiapoptotic Bcl-2 family member proteins and inhibitors of apoptosis proteins. Interestingly, these hypoxia-increased antiapoptotic molecules were decreased by TRAIL treatment to the levels lower than those of the untreated conditions, suggesting that hypoxia inhibits TRAIL-induced apoptosis via other mechanisms rather than up-regulation of these antiapoptotic molecules. Additional characterization revealed that hypoxia significantly inhibits TRAIL-induced translocation of Bax from the cytosol to the mitochondria in HCT116 and A549 cells, with the concomitant inhibition of cytochrome c release from the mitochondria. Bax-deficient HCT116 cells were completely resistant to TRAIL regardless of oxygen content, demonstrating a pivotal role of Bax in TRAIL-induced apoptotic signaling. Thus, our data indicate that hypoxia inhibits TRAIL-induced apoptosis by blocking Bax translocation to the mitochondria, thereby converting cells to a Bax-deficient state.  相似文献   

6.
Despite the fact that objective response rates to 5-FU are as low as 20%, 5-FU remains the most commonly used drug for the treatment of colorectal cancer. The lack of understanding of resistance to 5-FU, therefore, remains a significant impediment in maximizing its efficacy. We used intestinal epithelial cells with an inducible K-RasV12 to demonstrate that expression of oncogenic Ras promotes cell death upon 5-FU treatment. Accordingly, transient expression of the mutant RasV12, but not the WT Ras, enhanced 5-FU-induced apoptosis in 293T cells. Consistent with these data, we showed that targeted deletion of the mutant Ras allele in the HCT116 colon cancer cell line protected cells from 5-FU-induced apoptosis. Using isogenic colon cancer cell lines that differ only by the presence of the mutant Ras allele, HCT116 and Hke-3 cells, we demonstrated that signaling by oncogenic Ras promotes both accumulation of p53 and its phosphorylation on serine15 in response to 5-FU, a situation that favors apoptosis over growth arrest. However, despite the differential induction of p53 in HCT116 and Hke-3 cells, the expression of Puma, a gene with an important role in p53-dependent apoptosis, was not affected by Ras signaling. In contrast, we showed that Ras interferes with 5-FU-induced expression of gelsolin, a protein with known antiapoptotic activity. We ascertained the role of gelsolin in 5-FU-induced apoptosis by demonstrating that silencing of gelsolin expression through RNAi sensitized cells to 5-FU-induced apoptosis and that re-expression of gelsolin in cells harboring mutant Ras protected cells from 5-FU-induced apoptosis. These data therefore demonstrate that Ras mutations increase sensitivity to 5-FU-induced apoptosis at least in part through the negative regulation of gelsolin expression. Our data indicate that Ras mutations promote apoptosis in response to 5-FU treatment and imply that tumors with Ras mutations and/or reduced expression of gelsolin may show enhanced apoptosis in response to 5-FU also in vivo.  相似文献   

7.
eNOS protects prostate cancer cells from TRAIL-induced apoptosis   总被引:2,自引:0,他引:2  
Tong X  Li H 《Cancer letters》2004,210(1):63-71
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent anti-cancer agent because it induces apoptosis of most tumor cells with little or no effect on normal cells. In this study, we investigated the effect of TRAIL on human prostate normal and cancer cell lines, and found that the prostate cancer cell lines PC-3, ALVA-31, DU 145 and TSU-Pr1 were sensitive to TRAIL-induced apoptosis, while normal PrEC cells and cancer cell line LNCaP were resistant. No correlation was found between the sensitivity of cells to TRAIL and the expression of TRAIL receptors DR4 and DR5, and pro-apoptotic proteins Bax and Bak. However, LNCaP cells displayed a high Akt activity. Furthermore, we found that endothelial nitric oxide synthase (eNOS), one of the Akt substrates, was highly expressed in LNCaP but not in other cells. Inhibition of eNOS activity by NOS inhibitor sensitized LNCaP cells to TRAIL. Moreover, PC-3 cell clones stably expressing eNOS were resistant to TRAIL-induced apoptosis. Taken together, these results indicate that eNOS can regulate the sensitivity of prostate cancer cells to TRAIL, and down-regulation of eNOS activity may sensitize prostate cancer cells to TRAIL-based therapy.  相似文献   

8.
Despite the fact that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in cancer cells, TRAIL resistance in cancer cells has challenged the use of TRAIL as a therapeutic agent. First, prostate carcinoma cell lines (DU145, LNCaP and PC3) were screened for sensitivity to adenovirus delivery of TRAIL (Ad5hTRAIL). As amplified Ikappa B kinase (IKK) activity is responsible for the constitutive nuclear factor-kappaB (NF-kappaB) activation leading to uncontrolled cell growth and metastasis, a dual vector approach using both an adenovirus vector (Ad) expressing the dominant-negative mutant of IKKbeta (AdIKKbetaKA) and Ad5hTRAIL was employed to determine if prostate cancer cells were sensitized to TRAIL in the setting of IKK inhibition. Inhibition of the NF-kappaB pathway through IKK blockade sensitized all three prostate cancer cell lines to TRAIL, regardless of NF-kappaB activation or decoy receptor gene expression. Moreover, a novel quantitative real-time RT-PCR assay and conventional flow cytometry analysis indicated that TRAIL-resistant DU145 and LNCaP cells, but not TRAIL-sensitive PC3 cells, expressed substantial amounts of TRAIL Decoy Receptor 4. In conclusion, TRAIL decoy receptor expression appeared to be the chief determinant of TRAIL resistance encountered in prostate carcinoma cell lines.  相似文献   

9.
The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16(INK4a) and p14(ARF), which are frequently inactivated in human cancer. Whereas p16(INK4a) acts through engagement of the Rb-cdk4/6-cyclin D pathway, both the pro-apoptotic and cell cycle-regulatory functions of p14(ARF) were shown to be primarily dependent on the presence of functional p53. Recent reports have also implicated p14(ARF) in p53-independent mechanisms of cell cycle regulation and apoptosis induction, respectively. To further explore the pro-apoptotic function of p14(ARF) in relation to functional cellular p53, we constructed a replication-deficient adenoviral vector for overexpression of p14(ARF) (Ad-p14(ARF)). As expected, Ad-p14(ARF) efficiently induced apoptosis in p53/Rb wild-type U-2OS osteosarcoma cells at low multiplicities of infection. Interestingly, Ad-p14(ARF) also induced apoptosis in both p53-deleted SAOS-2 osteosarcoma cells and HCT116 colon cancer cells with a bi-allelic knock-out of p53 (HCT116-p53(-/-)). Similarly, adenovirus-mediated overexpression of p14(ARF) induced apoptosis in p53/Bax-mutated DU145 prostate cancer cells as well as in HCT116 cells devoid of functional Bax (HCT116-Bax(-/-)). Restoration of Bax expression by retroviral gene transfer in DU145 cells did not further enhance p14(ARF)-triggered cell death. Infection with Ad-p14(ARF) induced activation of mitochondrial permeability shift transition, caspase activation and apoptotic DNA fragmentation irrespective of the presence or absence of either Bax or functional cellular p53. Nevertheless, overexpression of the anti-apoptotic Bcl-2 homolog Bcl-x(L) markedly inhibited p14(ARF)-induced apoptosis. This may indicate that p14(ARF) triggers a so far unknown activator of mitochondrial apoptosis which can be inhibited by Bcl-2 but which acts either independently or downstream of Bax. Taken together, this report demonstrates the participation of signaling pathways apart from the p53/Mdm-2 rheostat and Bax in p14(ARF)-mediated apoptosis.  相似文献   

10.
Modulation of TRAIL-induced tumor cell apoptosis in a hypoxic environment   总被引:2,自引:0,他引:2  
Hypoxia induces Hif-1alpha and selects for loss of wild-type p53 function, both of which can promote tumor cell survival. We evaluated the ability of TRAIL to induce apoptosis of human tumor cell lines exposed to hypoxia. H460 lung cancer cells express low levels of Hif-1alpha, stabilize wild-type p53 during hypoxia, and undergo TRAIL-induced apoptosis. In U2OS osteosarcoma or PA1 ovarian teratocarcinoma cells, high levels of Hif-1alpha and low levels of stable p53 are detected during hypoxia, and cells undergo low levels of TRAIL-induced apoptosis as compared to H460 cells. H460 cells are sensitized to TRAIL-induced apoptosis, whereas U2OS are protected, and little apoptosis is observed in relatively TRAIL-resistant PA1 during hypoxia. Forced expression of Hif-1alpha is also surprisingly a potent inducer of apoptosis in wild-type p53 expressing H460 cells and further promotes TRAIL-induced apoptosis. TRAIL-sensitive wild-type p53-expressing HCT116 colon carcinoma cells modestly elevate Hif-1alpha levels and are equally or slightly more sensitive to TRAIL during hypoxia. In contrast, p53-null HCT116 have higher levels of Hif-1alpha during normoxia and are extremely sensitive to TRAIL, but are protected from TRAIL-induced apoptosis during hypoxia. We hypothesize that a hypoxic tumor microenvironment may alter sensitivity to TRAIL, which may be impacted by Hif-1alpha levels and p53 status. These findings suggest that particular attention to hypoxic regions of tumors and sensitizers to hypoxia-induced cell death may be required to optimize therapeutic combinations using TRAIL.  相似文献   

11.
Lipoxygenases induce malignant tumor progression and lipoxygenase inhibitors have been considered as promising anti-tumor agents. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for new cancer therapeutics. Combined treatment with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, and TRAIL markedly induced apoptosis in Jurkat T-cell leukemia cells at suboptimal concentrations for each agent. The combined treatment efficiently activated caspase-3, -8 and -10, and Bid. The underling mechanism by which NDGA enhanced TRAIL-induced apoptosis was examined. NDGA did not change the expression levels of anti-apoptotic factors, Bcl-x(L), Bcl-2, cIAP-1, XIAP and survivin. The expression of death receptor-related genes was investigated and it was found that NDGA specifically up-regulated the expression of death receptor 5 (DR5) at mRNA and protein levels. Down-regulation of DR5 by small interfering RNA prevented the sensitizing effect of NDGA on TRAIL-induced apoptosis. Furthermore, NDGA sensitized prostate cancer and colorectal cancer cells to TRAIL-induced apoptosis. In contrast, NDGA neither enhanced TRAIL-induced apoptosis nor up-regulated DR5 expression in normal peripheral blood mononuclear cells. Another lipoxygenase inhibitor, AA861, also up-regulated DR5 and sensitized Jurkat and DU145 cells to TRAIL. These results indicate that lipoxygenase inhibitors augment the apoptotic efficiency of TRAIL through DR5 up-regulation in malignant tumor cells, and raise the possibility that the combination of lipoxygenase inhibitor and TRAIL is a promising strategy for malignant tumor treatment.  相似文献   

12.
Multiple apoptotic stimuli induce conformational changes in Bax, a proapoptotic protein from the Bcl-2 family and its deficiency is a frequent cause of chemoresistance in colon adenocarcinomas. Curcumin, a dietary compound from turmeric, is known to induce apoptosis in a variety of cancer cells. To understand the role of Bax in curcumin-induced apoptosis we used HCT116 human colon cancer cells with one allele of Bax gene (Bax+/-) and Bax knockout HCT116 (Bax-/-) cells in which Bax gene is inactivated by homologous recombination. Cell viability decreased in a concentration-dependent manner in Bax+/- cells treated with curcumin (0-50 microM) whereas only minimal changes in viability were observed in Bax-/- cells upon curcumin treatment. In Bax-/- cells curcumin-induced activation of caspases 9 and 3 was blocked and that of caspase 8 remained unaltered. Curcumin-induced release of cytochrome c, Second mitochondria derived activator of caspase (Smac) and apoptosis inducing factor (AIF) was also blocked in Bax-/- cells and reintroduction of Bax, downregulation of the antiapoptotic protein Bcl-XL by antisense DNA as well as the overexpression of Smac, highly sensitized the Bax-/- cells toward curcumin-induced apoptosis. There was no considerable difference in the percentage of apoptotic cells in Bak RNAi transfected Bax+/- or Bax-/- cells treated with curcumin when compared with their corresponding vector transfected cells treated with curcumin. The present study demonstrates the role of Bax but not Bak as a critical regulator of curcumin-induced apoptosis and implies the potential of targeting antiapoptotic proteins like Bcl-XL or overexpression of proapoptotic proteins like Smac as interventional approaches to deal with Bax-deficient chemo-resistant cancers for curcumin-based therapy.  相似文献   

13.
Resveratrol, a polyphenol present in wine and grapes, can inhibit tumor cell growth in vitro and tumorigenesis in vivo. Some of its effects have been linked to activation of the p53 tumor suppressor; however, p53 is frequently mutated in tumors, particularly in the common and often therapy-resistant colon cancers. Using the human wild-type p53-expressing HCT116 colon carcinoma cell line and HCT116 cells with both p53 alleles inactivated by homologous recombination, we show in the current study that resveratrol at concentrations comparable to those found in some foods can induce apoptosis independently of p53. The cell death is primarily mitochondria-mediated and not receptor-mediated. No cells survived in cultures continuously exposed to 100 microM resveratrol for 120 hr. When compared with 5-FU, resveratrol stimulated p53 accumulation and activity only weakly and with delayed kinetics and neither the increased levels nor the activity affected apoptosis detectably. The apoptosis agonist Bax was overproduced in response to resveratrol regardless of p53 status, yet the kinetics of Bax expression were influenced by p53. Remarkably, apoptosis was preceded by mitochondrial proliferation and signs of epithelial differentiation. Thus, resveratrol triggers a p53-independent apoptotic pathway in HCT116 cells that may be linked to differentiation.  相似文献   

14.
Wang C  Youle RJ 《Oncogene》2012,31(26):3177-3189
The intrinsic mitochondrial apoptotic pathway acts through two core pro-apoptotic proteins Bax (Bcl2-associated X protein) and Bak (Bcl2-antagonist/killer 1). Although Bax and Bak seem to have redundant roles in apoptosis, accumulating evidence also suggests that they might not be interchangeable under certain conditions, at least in some human cell lines. Here we report the generation of Bak knockout as well as BaxBak double knockout HCT116 human colon carcinoma cells. We show that Bak is dispensable for apoptosis induced by a variety of stimuli including ABT-737 but not for fluorouracil-induced apoptosis. In addition, Bax deficiency only provides partial protection against camptothecin and cisplatin-induced apoptosis and no protection against killing by Puma or ABT-737 plus Noxa overexpression. Moreover, Bak is activated normally in response to many chemotherapeutic drugs in the presence of Bax, but remains kept in check by Mcl-1 in the absence of Bax. Our data suggest that Bax and Bak are functionally redundant, but they are counteracted by distinct anti-apoptotic Bcl-2 family proteins in different species.  相似文献   

15.
TRAIL preferentially induces apoptosis in tumor cells and virus-infected cells. Unlike other tumor necrosis factor family members, TRAIL does not kill cells from most normal tissues and has thus been proposed as a promising new cancer treatment. Our study demonstrated that IFNgamma combined with TRAIL can trigger apoptosis in vitro in several resistant thyroid tumor cell lines, such as thyroid anaplastic carcinoma cells (ARO cells), while either agent alone exerts only a minimal effect. We further tested this effect on a mouse thyroid tumor model, when in vivo tumor growth was also significantly inhibited by this combination. The mechanism of how IFNgamma sensitized thyroid carcinoma cells to TRAIL-induced apoptosis was investigated by screening global gene alterations in ARO cells treated with IFNgamma. Microarray data revealed that a proapoptotic gene, Bak, is markedly upregulated by IFNgamma, and this was confirmed by RNase protection assay. Western blot analysis also showed a significant increase in Bak at the protein level. Upregulation of Bak and sensitization for apoptosis by IFNgamma was blocked by overexpression of antisense Bak in ARO cells. Furthermore, overexpression of Bak sensitized ARO cell to TRAIL-induced apoptosis without the need for IFNgamma pretreatment. This suggests that Bak is a regulatory molecule involved in IFNgamma-facilitated TRAIL-mediated apoptosis in thyroid cancer cells.  相似文献   

16.
Although DU145 prostate cancer cells are resistant to exogenously applied Fas agonist CH-11 (anti-Fas monoclonal antibody), Fas-resistance can be overcome using a FasL expressing adenovirus (AdGFPFasL(TET)) [Hyer et al., Molecular Therapy, 2000; 2:348-58 (ref.12)]. The purpose of this study was to try to understand why DU145 cells are resistant to CH-11 and determine the signaling pathway utilized by AdGFPFasL(TET) to induce apoptosis in these Fas-resistant cells. Using immunoblot analysis, we show that AdGFPFasL(TET) is capable of initiating the classic Fas-mediated apoptotic pathway in DU145 cells, which includes activation of caspases-8, -3, -7, and -9, BID cleavage, cytochrome c release from mitochondria, and PARP cleavage. In contrast, CH-11 binds to Fas, but is unable to transmit the death signal beyond the plasma membrane suggesting a block at the DISC (death inducing signaling complex). The anti-apoptotic protein c-FLIP (cellular Flice-like inhibitory protein), which has been shown to inhibit Fas-mediated apoptosis at the DISC, was down-regulated following AdGFPFasL(TET) treatment prompting us to investigate its role in inhibiting CH-11-induced cell death. Using c-FLIP anti-sense oligonucleotides to down-regulate c-FLIP we sensitized DU145 cells to CH-11-induced apoptosis. These data suggest that c-FLIP may play a critical role in regulating Fas-mediated apoptosis in prostate cancer cells and that modulation of c-FLIP may enhance Fas signaling based therapies.  相似文献   

17.
We examined the patterns of induction of apoptosis, Fas expression, and the influence of the status of the p53 tumor suppressor gene, in response to treatment of human colon carcinoma cell lines to 5-fluorouracil (FUra) combined with leucovorin (LV) under conditions of both DNA-directed (HT29, VRC5/c1, and RKO) and RNA-directed (HCT8 and HCT116) cytotoxicity. Acute apoptosis was induced in cell lines expressing wtp53 (RKO, HCT8, and HCT116), independent of the mechanism of FUra action. In HT29 cells that expressed mp53, apoptosis was a delayed event. Cell lines undergoing DNA-directed FUra cytotoxicity demonstrated marked accumulation of cells in S-phase (HT29 and RKO), whereas those lines undergoing RNA-directed cytotoxicity (HCT8 and HCT116) demonstrated marked cell cycle phase arrest in G2-M, both reversible by dThd. dThd partially protected HCT8 and HCT116 cells from FUra-LV-induced apoptosis but had no influence on FUra-LV-induced loss in clonogenic survival. In cells expressing wtp53, the Fas death receptor was induced in response to FUra-LV treatment. FUra-LV sensitized RKO cells to the anti-Fas monoclonal antibody CH-11 that was completely reversed by dThd, demonstrating the involvement of DNA damage in FUra-LV-induced, Fas-dependent sensitization to CH-11. In contrast, FUra-LV sensitized HCT116 cells to CH-11-induced apoptosis, which was not dThd reversible. Transduction of HT29 cells with Ad-wtp53 induced elevated Fas expression and sensitized the cells to FUra-LV-induced apoptosis. Data indicate that the presence of a wtp53 gene determines FUra-LV-induced Fas expression, the kinetics of FUra-LV-induced apoptosis and not the extent of apoptosis induced, both being independent of the mechanism of FUra action. Therefore, in colon carcinomas that express wtp53, the approach to sensitize tumors to Fas-mediated apoptosis may be further enhanced from the effect of FUra-LV in elevating Fas expression in a p53-dependent manner.  相似文献   

18.
Mechanisms of resistance to TRAIL-induced apoptosis in cancer   总被引:22,自引:0,他引:22  
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a potential anticancer agent. However, considerable numbers of cancer cells, especially some highly malignant tumors, are resistant to apoptosis induction by TRAIL, and some cancer cells that were originally sensitive to TRAIL-induced apoptosis can become resistant after repeated exposure (acquired resistance). Understanding the mechanisms underlying such resistance and developing strategies to overcome it are important for the successful use of TRAIL for cancer therapy. Resistance to TRAIL can occur at different points in the signaling pathways of TRAIL-induced apoptosis. Dysfunctions of the death receptors DR4 and DR5 due to mutations can lead to resistance. The adaptor protein Fas-associated death domain (FADD) and caspase-8 are essential for assembly of the death-inducing signaling complex, and defects in either of these molecules can lead to TRAIL resistance. Overexpression of cellular FADD-like interleukin-1beta-converting enzyme-inhibitory protein (cFLIP) correlates with TRAIL resistance in several types of cancer. Overexpression of Bcl-2 or Bcl-X(L), loss of Bax or Bak function, high expression of inhibitor of apoptosis proteins, and reduced release of second mitochondria-derived activator of caspases (Smac/Diablo) from the mitochondria to the cytosol have all been reported to result in TRAIL resistance in mitochondria-dependent type II cancer cells. Finally, activation of different subunits of mitogen-activated protein kinases or nuclear factor-kappa B can lead to development of either TRAIL resistance or apoptosis in certain types of cancer cells.  相似文献   

19.
TRAIL-induced apoptosis has been considered a promising therapeutic approach for tumors that are resistant to chemotherapy, which is usually mediated via mitochondrial apoptotic cascades. Recent studies have shown that in certain cancer cells, TRAIL-mediated apoptosis is also dependent on mitochondrial involvement, suggesting that similar mechanisms of resistance to chemotherapy might be implicated in the resistance of tumor cells to TRAIL. We have used TRAIL-resistant leukemic cells that are deficient in both Bax and Bak to determine the roles of these Bcl-2 members in TRAIL-mediated apoptosis. Exposure of these cells to TRAIL did not have an impact on cell viability, although it induced the processing of caspase-3 to its active p20 subunit. The activity of the p20 caspase-3 appeared to be inhibited as no autoprocessing of this p20 subunit or cleavage of known caspase-3 substrates were detected. Also, in the absence of Bax and Bak, no release of mitochondrial apoptogenic proteins was observed following TRAIL treatment. Adenoviral transduction of the Bax, but not the Bak gene, to the Bax/Bak-deficient leukemic cells rendered them TRAIL-sensitive as assessed by enhanced apoptotic death and caspase-3 processing. These findings demonstrate preferential utilization of Bax over Bak in leukemic cell response to specific apoptotic stimulation.  相似文献   

20.
Chemoresistance in cancer has previously been attributed to gene mutations or deficiency. Caspase mutations or Bax deficiency can lead to resistance to cancer drugs. We recently demonstrated that Bak initiates a caspase/Bax-independent cell death pathway. We show that Plumbagin (PL) (5-hydroxy-2-methyl-1,4-napthoquinone), a medicinal plant-derived naphthoquinone that is known to have anti-tumor activity in a variety of models, induces caspase-independent cell death in HCT116 Bax knockout (KO) or MCF-7 Bax knockdown (KD) cells that express wild-type (WT) Bak. The re-expression of Bax in HCT116 Bax KO cells fails to enhance the PL-induced cell death. Additionally, Bak knockdown by shRNA efficiently attenuates PL-induced cell death. These results suggest that PL-induced cell death depends primarily on Bak, not Bax, in these cells. Further experimentation demonstrated that p53 Ser15 phosphorylation and mitochondrial translocation mediated Bak activation and subsequent cell death. Knockdown of p53 or a p53 Ser15 mutant significantly inhibited p53 mitochondrial translocation and cell death. Furthermore, we found that Akt mediated p53 phosphorylation and the subsequent mitochondrial accumulation. Taken together, our data elaborate the role of Bak in caspase/Bax-independent cell death and suggest that PL may be an effective agent for overcoming chemoresistance in cancer cells with dysfunctional caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号