首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectivesThe αvβ3 integrin is a cell adhesion molecule known to be involved in stages of angiogenesis and metastasis. In this study, the chelators CB-TE2A and diamsar were conjugated to cyclic RGDyK and RGDfD and the biological properties of 64Cu-labeled peptides were compared.MethodsCB-TE2A-c(RGDyK) and diamsar-c(RGDfD) were labeled with 64Cu in 0.1 M NH4OAc (pH=8) at 95°C and 25°C, respectively. PET and biodistribution studies were carried out on M21 (αvβ3-positive) and M21L (αv-negative) melanoma-bearing mice. Binding affinity of the Cu-chelator–RGD peptides to αvβ3 integrins was determined by a competitive binding affinity assay.ResultsBiological studies showed higher concentration of 64Cu-CB-TE2A-c(RGDyK) in M21 tumor compared to M21L tumor at 1 and 4 h pi. Tumor concentration of 64Cu-CB-TE2A-c(RGDyK) was higher than that of 64Cu-diamsar-c(RGDfD). The difference is not due to differing binding affinities, since similar values were obtained for the agents. Compared to 64Cu-diamsar-c(RGDfD), there is more rapid liver and blood clearance of 64Cu-CB-TE2A-c(RGDyK), resulting in a lower liver and blood concentration at 24 h pi. Both 64Cu-labeled RGD peptides show similar binding affinities to αvβ3. The differences in their biodistribution properties are likely related to different linkers, charges and lipophilicities. The M21 tumor is clearly visualized with 64Cu-CB-TE2A-c(RGDyK) by microPET imaging. Administration of c(RGDyK) as a block significantly reduced the tumor concentration; however, the radioactivity background was also decreased by the blocking dose.ConclusionsBoth 64Cu-CB-TE2A-c(RGDyK) and 64Cu-diamsar-c(RGDfD) are potential candidates for imaging tumor angiogenesis. For diamsar-c(RGDfD), a linker may be needed between the Cu-chelator moiety and the RGD peptide to achieve optimal in vivo tumor concentration and clearance from nontarget organs.  相似文献   

2.
Integrin alpha(v)beta(3) plays a critical role in tumor angiogenesis and metastasis. Suitably radiolabeled cyclic arginine-glycine-aspartic (RGD) peptides can be used for noninvasive imaging of alpha(v)beta(3) expression and targeted radionuclide therapy. In this study, we developed (64)Cu-labeled multimeric RGD peptides, E{E[c(RGDyK)](2)}(2) (RGD tetramer) and E(E{E[c(RGDyK)](2)}(2))(2) (RGD octamer), for PET imaging of tumor integrin alpha(v)beta(3) expression. METHODS: Both RGD tetramer and RGD octamer were synthesized with glutamate as the linker. After conjugation with 1,4,7,10-tetra-azacyclododecane-N,N',N',N'-tetraacetic acid (DOTA), the peptides were labeled with (64)Cu for biodistribution and small-animal PET imaging studies (U87MG human glioblastoma xenograft model and c-neu oncomouse model). A cell adhesion assay, a cell-binding assay, receptor blocking experiments, and immunohistochemistry were also performed to evaluate the alpha(v)beta(3)-binding affinity/specificity of the RGD peptide-based conjugates in vitro and in vivo. RESULTS: RGD octamer had significantly higher integrin alpha(v)beta(3)-binding affinity and specificity than RGD tetramer analog (inhibitory concentration of 50% was 10 nM for octamer vs. 35 nM for tetramer). (64)Cu-DOTA-RGD octamer had higher tumor uptake and longer tumor retention than (64)Cu-DOTA-RGD tetramer in both tumor models tested. The integrin alpha(v)beta(3) specificity of both tracers was confirmed by successful receptor-blocking experiments. The high uptake and slow clearance of (64)Cu-DOTA-RGD octamer in the kidneys was attributed mainly to the integrin positivity of the kidneys, significantly higher integrin alpha(v)beta(3)-binding affinity, and the larger molecular size of the octamer, as compared with the other RGD analogs. CONCLUSION: Polyvalency has a profound effect on the receptor-binding affinity and in vivo kinetics of radiolabeled RGD multimers. The information obtained here may guide the future development of RGD peptide-based imaging and internal radiotherapeutic agents targeting integrin alpha(v)beta(3).  相似文献   

3.
In vivo imaging of alpha(v)beta(3) expression has important diagnostic and therapeutic applications. Multimeric cyclic RGD peptides are capable of improving the integrin alpha(v)beta(3)-binding affinity due to the polyvalency effect. Here we report an example of (18)F-labeled tetrameric RGD peptide for PET of alpha(v)beta(3) expression in both xenograft and spontaneous tumor models. METHODS: The tetrameric RGD peptide E{E[c(RGDyK)](2)}(2) was derived with amino-3,6,9-trioxaundecanoic acid (mini-PEG; PEG is poly(ethylene glycol)) linker through the glutamate alpha-amino group. NH(2)-mini-PEG-E{E[c(RGDyK)](2)}(2) (PRGD4) was labeled with (18)F via the N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) prosthetic group. The receptor-binding characteristics of the tetrameric RGD peptide tracer (18)F-FPRGD4 were evaluated in vitro by a cell-binding assay and in vivo by quantitative microPET imaging studies. RESULTS: The decay-corrected radiochemical yield for (18)F-FPRGD4 was about 15%, with a total reaction time of 180 min starting from (18)F-F(-). The PEGylation had minimal effect on integrin-binding affinity of the RGD peptide. (18)F-FPRGD4 has significantly higher tumor uptake compared with monomeric and dimeric RGD peptide tracer analogs. The receptor specificity of (18)F-FPRGD4 in vivo was confirmed by effective blocking of the uptake in both tumors and normal organs or tissues with excess c(RGDyK). CONCLUSION: The tetrameric RGD peptide tracer (18)F-FPRGD4 possessing high integrin-binding affinity and favorable biokinetics is a promising tracer for PET of integrin alpha(v)beta(3) expression in cancer and other angiogenesis related diseases.  相似文献   

4.
The BB2 receptor subtype, of the bombesin family of receptors, has been shown to be highly overexpressed in a variety of human tumors, including prostate cancer. Bombesin (BBN), a 14-amino acid peptide, has been shown to target the BB2 receptor with high affinity. 64Cu (half-life = 12.7 h, beta+: 18%, E(beta+ max) = 653 keV; beta-: 37%, E(beta- max) = 578 keV) is a radioisotope that has clinical potential for application in both diagnostic imaging and radionuclide therapy. Recently, new chelation systems such as 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4,11-diacetic acid (CB-TE2A) have been reported to significantly stabilize the 64Cu radiometal in vivo. The increased stability of the 64Cu-CB-TE2A chelate complex has been shown to significantly reduce nontarget retention compared with tetraazamacrocycles such as 1,4,7,10-tetraazacyclodoadecane-N,N',N',N'-tetraacetic acid (DOTA). The aim of this study was to determine whether the CB-TE2A chelation system could significantly improve the in vivo stability of 64Cu bombesin analogs. The study directly compares 64Cu bombesin analogs using the CB-TE2A and DOTA chelation systems in a prostate cancer xenograft SCID (severely compromised immunodeficient) mouse model. METHODS: The CB-TE2A-8-AOC-BBN(7-14)NH2 and DOTA-8-AOC-BBN(7-14)NH2 conjugates were synthesized and radiolabeled with 64Cu. The receptor-binding affinity and internalization profile of each metallated conjugate was evaluated using PC-3 cells. Pharmacokinetic and small-animal PET/CT studies were performed using female SCID mice bearing PC-3 xenografts. RESULTS: In vivo BB2 receptor targeting was confirmed by tumor uptake values of 6.95 +/- 2.27 and 4.95 +/- 0.91 %ID/g (percentage injected dose per gram) at the 15-min time point for the 64Cu-CB-TE2A and 64Cu-DOTA radioconjugates, respectively. At the 24-h time point, liver uptake was substantially reduced for the 64Cu-CB-TE2A radioconjugate (0.21 +/- 0.06 %ID/g) compared with the 64Cu-DOTA radioconjugate (7.80 +/- 1.51 %ID/g). The 64Cu-CB-TE2A-8-AOC-BBN(7-14)NH2 radioconjugate demonstrated significant clearance, 98.60 +/- 0.28 %ID, from the mouse at 24 h after injection. In contrast, only 67.84 +/- 5.43 %ID of the 64Cu activity was excreted using the 64Cu-DOTA-8-AOC-BBN(7-14)NH2 radioconjugate because of nontarget retention. CONCLUSION: The pharmacokinetic and small-animal PET/CT studies demonstrate significantly improved nontarget tissue clearance for the 64Cu-CB-TE2A8-AOC-BBN(7-14)NH2. This is attributed to the improved in vivo stability of the 64Cu-CB-TE2A chelate complex as compared with the 64Cu-DOTA chelate complex.  相似文献   

5.
PURPOSE: We and others have reported that (18)F- and (64)Cu-labeled arginine-glycine-aspartate (RGD) peptides allow positron emission tomography (PET) quantification of integrin alpha(v)beta(3) expression in vivo. However, clinical translation of these radiotracers is partially hindered by the necessity of cyclotron facility to produce the PET isotopes. Generator-based PET isotope (68)Ga, with a half-life of 68 min and 89% positron emission, deserves special attention because of its independence of an onsite cyclotron. The goal of this study was to investigate the feasibility of (68)Ga-labeled RGD peptides for tumor imaging. METHODS: Three cyclic RGD peptides, c(RGDyK) (RGD1), E[c(RGDyK)](2) (RGD2), and E{E[c(RGDyK)](2)}(2) (RGD4), were conjugated with macrocyclic chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and labeled with (68)Ga. Integrin affinity and specificity of the peptide conjugates were assessed by cell-based receptor binding assay, and the tumor targeting efficacy of (68)Ga-labeled RGD peptides was evaluated in a subcutaneous U87MG glioblastoma xenograft model. RESULTS: U87MG cell-based receptor binding assay using (125)I-echistatin as radioligand showed that integrin affinity followed the order of NOTA-RGD4 > NOTA-RGD2 > NOTA-RGD1. All three NOTA conjugates allowed nearly quantitative (68)Ga-labeling within 10 min (12-17 MBq/nmol). Quantitative microPET imaging studies showed that (68)Ga-NOTA-RGD4 had the highest tumor uptake but also prominent activity accumulation in the kidneys. (68)Ga-NOTA-RGD2 had higher tumor uptake (e.g., 2.8 +/- 0.1%ID/g at 1 h postinjection) and similar pharmacokinetics (4.4 +/- 0.4 tumor/muscle ratio, 2.0 +/- 0.1 tumor/liver ratio, and 1.1 +/- 0.1 tumor/kidney ratio) compared with (68)Ga-NOTA-RGD1. CONCLUSIONS: The dimeric RGD peptide tracer (68)Ga-NOTA-RGD2 with good tumor uptake and favorable pharmacokinetics warrants further investigation for potential clinical translation to image integrin alpha(v)beta(3).  相似文献   

6.
18F-labeled BBN-RGD heterodimer for prostate cancer imaging.   总被引:2,自引:0,他引:2  
Both bombesin (BBN) analogs and cyclic RGD peptides have been suitably radiolabeled for prostate cancer imaging. However, the limited expression of gastrin-releasing peptide receptor (GRPR) and integrin alpha(v)beta(3) as well as unfavorable in vivo kinetics limited further applications of these imaging agents. We hypothesize that a peptide ligand recognizing both GRPR and integrin will be advantageous because of its dual-receptor-targeting ability. METHODS: A BBN-RGD heterodimer was synthesized from bombesin(7-14) and c(RGDyK) through a glutamate linker and then labeled with (18)F via the N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) prosthetic group. The receptor-binding characteristics and tumor-targeting efficacy of (18)F-FB-BBN-RGD were tested in vitro and in vivo. RESULTS: FB-BBN-RGD had comparable integrin alpha(v)beta(3)-binding affinity with c(RGDyK) and comparable GRPR-binding affinity with BBN(7-14). (18)F-FB-BBN-RGD had significantly higher tumor uptake compared with monomeric RGD and monomeric BBN peptide tracer analogs at all time points examined. The PC-3 tumor uptake of (18)F-FB-BBN-RGD was inhibited only partially in the presence of an excess amount of unlabeled BBN(7-14) or c(RGDyK) but was blocked completely in the presence of both BBN(7-14) and c(RGDyK). Compared with (18)F-FB-BBN and (18)F-FB-RGD, (18)F-FB-BBN-RGD also had improved pharmacokinetics, resulting in a significantly higher imaging quality. CONCLUSION: Dual integrin alpha(v)beta(3) and GRPR recognition showed significantly improved tumor-targeting efficacy and pharmacokinetics compared with (18)F-labeled RGD and BBN analogs. The same heterodimeric ligand design may also be applicable to other receptor system combinations and other imaging modalities.  相似文献   

7.
Arg-Gly-Asp (RGD) derivatives have been labeled with various radioisotopes for the imaging of angiogenesis in ischemic tissue, in which alpha(v)beta(3) integrin plays an important role. In this study, cyclic Arg-Gly-Asp-D-Tyr-Lys [c(RGDyK)] was conjugated with 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bz-NOTA) and then labeled with (68)Ga. The labeled RGD so produced was subjected to an in vitro binding assay and in vivo biodistribution and PET studies. METHODS: A mixture of SCN-Bz-NOTA (660 nmol) and c(RGDyK) (600 nmol) in 0.1 M sodium carbonate buffer (pH 9.5) was allowed to react for 20 h at room temperature in the dark for thiourea bond formation. The conjugate obtained was purified by semipreparative high-performance liquid chromatography (HPLC). The purified c(RGDyK)-SCN-Bz-NOTA (NOTA-RGD) was then labeled with (68)Ga from a (68)Ge/(68)Ga generator and purified by semipreparative HPLC. A competitive binding assay for c(RGDyK) and NOTA-RGD was performed with (125)I-c(RGDyK) as a radioligand and alpha(v)beta(3) integrin-coated plates as a solid phase. (68)Ga-NOTA-RGD (0.222 MBq/100 microL) was injected, through a tail vein, into mice with hind limb ischemia and into mice bearing human colon cancer SNU-C4 xenografts. Biodistribution and imaging studies were performed at 1 and 2 h after injection. RESULTS: The labeling of NOTA-RGD with (68)Ga was straightforward. The K(i) values of c(RGDyK) and NOTA-RGD were 1.3 and 1.9 nM, respectively. In the biodistribution study, the mean +/- SD uptake of (68)Ga-NOTA-RGD by ischemic muscles was 1.6+/-0.2 percentage injected dose per gram (%ID/g); this uptake was significantly blocked by cold c(RGDyK) to 0.6+/-0.3 %ID/g (P<0.01). Tumor uptake was 5.1+/-1.0 %ID/g, and the tumor-to-blood ratio was 10.3+/-4.8. Small-animal PET revealed rapid excretion through the urine and high levels of tumor and kidney uptake. CONCLUSION: Stable (68)Ga-NOTA-RGD was obtained in a straightforward manner at a high yield and showed a high affinity for alpha(v)beta(3) integrin, specific uptake by angiogenic muscles, a high level of uptake by tumors, and rapid renal excretion. (68)Ga-NOTA-RGD was found to be a promising radioligand for the imaging of angiogenesis.  相似文献   

8.
Brain tumors are highly angiogenesis dependent. The cell adhesion receptor integrin alpha(v)beta(3) is overexpressed in glioma and activated endothelial cells and plays an important role in brain tumor growth, spread and angiogenesis. Suitably labeled alpha(v)beta(3)-integrin antagonists may therefore be useful for imaging brain tumor associated angiogenesis. Cyclic RGD peptide c(RGDyK) was labeled with (18)F via N-succinimidyl-4-[(18)F]fluorobenzoate through the side-chain epsilon-amino group of the lysine residue. The radiotracer was evaluated in vivo for its tumor targeting efficacy and pharmacokinetics in subcutaneously implanted U87MG and orthotopically implanted U251T glioblastoma nude mouse models by means of microPET, quantitative autoradiography and direct tissue sampling. The N-4-[(18)F]fluorobenzoyl-RGD ([(18)F]FB-RGD) was produced in less than 2 h with 20-25% decay-corrected yields and specific activity of 230 GBq/micromol at end of synthesis. The tracer showed very rapid blood clearance and both hepatobiliary and renal excretion. Tumor-to-muscle uptake ratio at 30 min was approximately 5 in the subcutaneous U87MG tumor model. MicroPET imaging with the orthotopic U251T brain tumor model revealed very high tumor-to-brain ratio, with virtually no uptake in the normal brain. Successful blocking of tumor uptake of [(18)F]FB-RGD in the presence of excess amount of c(RGDyK) revealed receptor specific activity accumulation. Hence, N-4-[(18)F]fluorobenzoyl labeled cyclic RGD peptide [(18)F]FB-RGD is a potential tracer for imaging alpha(v)beta(3)-integrin positive tumors in brain and other anatomic locations.  相似文献   

9.
Integrin alpha(v)beta(3) plays a critical role in tumor-induced angiogenesis and metastasis and has become a promising diagnostic indicator and therapeutic target for various solid tumors. Radiolabeled RGD peptides that are integrin specific can be used for noninvasive imaging of integrin expression level as well as for integrin-targeted radionuclide therapy. METHODS: In this study we developed a tetrameric RGD peptide tracer (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) (DOTA is 1,4,7,10-tetraazacyclododecane-N,N',N',N'-tetraacetic acid) for PET imaging of integrin alpha(v)beta(3) expression in female athymic nude mice bearing the subcutaneous UG87MG glioma xenografts. RESULTS: The RGD tetramer showed significantly higher integrin binding affinity than the corresponding monomeric and dimeric RGD analogs, most likely due to a polyvalency effect. The radiolabeled peptide showed rapid blood clearance (0.61 +/- 0.01 %ID/g at 30 min and 0.21 +/- 0.01 %ID/g at 4 h after injection, respectively [%ID/g is percentage injected dose per gram]) and predominantly renal excretion. Tumor uptake was rapid and high, and the tumor washout was slow (9.93 +/- 1.05 %ID/g at 30 min after injection and 4.56 +/- 0.51 %ID/g at 24 h after injection). The metabolic stability of (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) was determined in mouse blood, urine, and liver and kidney homogenates at different times after tracer injection. The average fractions of intact tracer in these organs at 1 h were approximately 70%, 58%, 51%, and 26%, respectively. Noninvasive microPET studies showed significant tumor uptake and good contrast in the subcutaneous tumor-bearing mice, which agreed well with the biodistribution results. Integrin alpha(v)beta(3) specificity was demonstrated by successful blocking of tumor uptake of (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) in the presence of excess c(RGDyK) at 1 h after injection. The highest absorbed radiation doses determined for the human reference adult were received by the urinary bladder wall (0.262 mGy/MBq), kidneys (0.0296 mGy/MBq), and liver (0.0242 mGy/MBq). The average effective dose resulting from a single (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) injection was estimated to be 0.0164 mSv/MBq. CONCLUSION: The high integrin and avidity and favorable biokinetics make (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) a promising agent for peptide receptor radionuclide imaging and therapy of integrin-positive tumors.  相似文献   

10.
Radiolabeled alpha(v)beta(3)-integrin antagonists are increasingly investigated as a means of imaging angiogenesis. Several methods of labeling alpha(v)beta(3)-integrin binding peptide with (18)F have been reported recently. In the present study, we devised a straightforward means for labeling Arg-Gly-Asp (RGD) peptide with (18)F via hydrazone formation between c(RGDyK)-hydrazinonicotinic acid (HYNIC) (3) and 4-[(18)F]-fluorobenzaldehyde ([(18)F]4). The resulting reaction mixture was purified by HPLC to give 4'-[(18)F]-fluorobenzylidenehydrazone-6-nicotinamide-c(RGDyK) ([(18)F]5). The conjugation efficiency of 3 and 4 to form [(18)F]5 was 95.2%, and the radiochemical purity of [(18)F]5 after purification was >99%. The specific activity of [(18)F]5 estimated by radio-HPLC was 20.5 GBq/mumol (end of synthesis). Competitive binding assay of c(RGDyK) (1) and 5 was performed using [(125)I]iodo-c(RGDyK) as a radioligand, and K(i) values were found to be 2.8 and 21.7 nM, respectively. For the biodistribution study, the angiogenic mouse model was established by inducing unilateral ischemia on the left hindlimbs of ICR mice after femoral artery ablation. Seven days after inducing ischemia, [(18)F]5 was administered to the mice through the tail vein. Ischemic muscle uptake of [(18)F]5 was significantly higher than that of normal muscle (P<.01). Specific uptake was confirmed by coinjection of 1 with [(18)F]5. Here, we successfully labeled RGD peptide with (18)F via hydrazone formation between 3 and 4, resulting to [(18)F]5. [(18)F]5 was found to have high affinity for alpha(v)beta(3)-integrin and to accumulate specifically in ischemic hindlimb muscle of mice. We suggest that (18)F labeling via formation of hydrazone between HYNIC peptide and [(18)F]4 is a useful method for labeling c(RGDyK), which can be applied for imaging angiogenesis.  相似文献   

11.

Purpose

The development of a new bifunctional chelator, which holds radiometals strongly in living systems, is a prerequisite for the successful application of disease-specific biomolecules to medical diagnosis and therapy. Recently, TE2A was reported to make kinetically more stable Cu(II) complexes than TETA. Herein, we report a new synthetic route to TE2A and explore its potential as a bifunctional chelator.

Methods

TE2A was synthesized using the regioselective alkylation of benzyl bromoacetate and successive deprotection of the methylene bridge and benzyl group. Salt-free TE2A was radiolabeled with 64Cu and microPET imaging was performed to follow the clearance pattern of the 64Cu-TE2A complex. TE2A was conjugated with cyclic RGD peptide and the TE2A-c(RGDyK) conjugate was radiolabeled with 64Cu.

Results

TE2A was prepared in salt-free form from cyclam in an overall yield of 74%. The microPET images showed that 64Cu-TE2A is excreted rapidly from the body by the kidney and liver. TE2A was successfully conjugated with c(RGDyK) peptide through one carboxylate group and the TE2A-c(RGDyK) conjugate was radiolabeled with 64Cu in 94% yield within 30 min.

Conclusion

TE2A can be used by itself as a bifunctional chelator without any further structural modification.  相似文献   

12.
The aim of this study is to develop a novel arginine-glycine-aspartic acid (RGD) peptide-containing ligand for (99m)Tc labeling as alpha(v)beta(3) integrin receptor-targeted imaging agent. BPy-RGD conjugate was successfully synthesized by coupling of 5-carboxylate-2,2'-bipyridine and c(RGDyK) peptide through EDC/SNHS in aqueous solution and was characterized by MADLI-TOF-MS (m/z=802.72, C(38)H(48)N(11)O(9)). (99m)Tc(CO)(3)-BPy-RGD was prepared by exchange reaction between [(99m)Tc(H(2)O)(3)(CO)(3)](+) and BPy-RGD. Final product was purified by HPLC and tested for octanol/water partition coefficient. Cell-binding assays of BPy-RGD and unmodified c(RGDyK) were tested in MDA-MB-435 cells ((125)I-echistatin as radioligand). Preliminary biodistribution of the (99m)Tc(I)-labeled radiotracer in orthotopic MDA-MB-435 breast tumor xenograft model was also evaluated. The BPy-RGD conjugate had good integrin-binding affinity (50% inhibitory concentration (IC(50))=92.51+/-22.69 nM), slightly lower than unmodified c(RGDyK) (IC(50)=59.07+/-11.03 nM). The hydrophilic radiotracer also had receptor-mediated activity accumulation in MDA-MB-435 tumor (1.45+/-0.25 percentage of injected dose per gram (%ID/g) at 1.5h postinjection (p.i.)), which is known to be integrin positive. After blocking with c(RGDyK), the tumor uptake was reduced from 0.71+/-0.01%ID/g to 0.33+/-0.18%ID/g at 4h p.i. (99m)Tc(I) tricarbonyl complex of cyclic RGD peptide is a promising strategy for integrin targeting. Further modification of the bipyridine-conjugated RGD peptide by using more potent RGD peptides and fine tuning of the tether group between the RGD moiety and (99m)Tc(CO)(3)(+) core to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress.  相似文献   

13.
There has been increasing interest in peptides containing the Arg-Gly-Asp (RGD) sequence for targeting of alpha(v)beta(3) integrins to image angiogenesis. [(18)F]Galacto-RGD has been successfully used for positron emission tomography applications in patients. Here we report on the preclinical characterization of a (99m)Tc-labeled derivative for single-photon emission computed tomography. c(RGDyK) was derivatized with HYNIC at the amino group of the lysine [c(RGDyK(HYNIC)) or HYNIC-RGD]. (99m)Tc labeling was performed using coligands (tricine and EDDA), as well as (99m)Tc(CO)(3)(H(2)O)(3). Radiolabeled peptides were characterized with regard to lipophilicity, protein binding and stability in buffer, serum and tissue homogenates. Integrin receptor activity was determined in internalization assays using alpha(v)beta(3)-receptor-positive M21 and alpha(v)beta(3)-receptor-negative M21L melanoma cells. Biodistribution was evaluated in normal and nude mice bearing M21, M21L and small cell lung tumors. HYNIC-RGD could be labeled at high specific activities using tricine, tricine-trisodium triphenylphosphine 3,3',3'-trisulfonate (TPPTS), tricine-nicotinic acid (NA) or EDDA as coligands. [(99m)Tc]EDDA/HYNIC-RGD, [(99m)Tc]tricine-TPPTS/HYNIC-RGD and [(99m)Tc]tricine-NA/HYNIC-RGD showed protein binding (<5%) considerably lower than [(99m)Tc](CO)(3)/HYNIC-RGD and [(99m)Tc]tricine/HYNIC-RGD. [(99m)Tc]EDDA/HYNIC-RGD revealed high in vitro stability accompanied by low lipophilicity with a log P value of -3.56, comparable to that of [(18)F]Galacto-RGD. In M21 cells for this compound, the highest level of specific and rapid cell uptake (1.25% mg protein(-1)) was determined. In vivo, rapid renal excretion, low blood retention, low liver and muscle uptakes and low intestinal excretion 4 h postinjection were observed. Tumor uptake values were 2.73% ID/g in M21 alpha(v)beta(3)-receptor-positive tumors versus 0.85% ID/g in receptor-negative tumors 1 h postinjection. Small cell lung tumors could be visualized using gamma camera imaging. [(99m)Tc]EDDA/HYNIC-RGD shows encouraging properties to target alpha(v)beta(3) receptors in vivo with high stability and favorable pharmacokinetics. Tumor uptake studies showed specific targeting of alpha(v)beta(3)-receptor-positive tumors with tumor-to-organ ratios comparable to those of [(18)F]Galacto-RGD.  相似文献   

14.
INTRODUCTION: alpha(v)beta(3) Integrin is expressed in sprouting endothelial cells in growing tumors, whereas it is absent in quiescent blood vessels. In addition, various tumor cell types express alpha(v)beta(3) integrin. alpha(v)beta(3) Integrin, a transmembrane heterodimeric protein, binds to the arginine-glycine-aspartic acid (RGD) amino acid sequence of extracellular matrix proteins such as vitronectin and plays a pivotal role in invasion, proliferation and metastasis. Due to the selective expression of alpha(v)beta(3) integrin in tumors, radiolabeled RGD peptides and peptidomimetics are attractive candidates for tumor targeting. METHODS: A cyclic RGD peptide, a peptoid-peptide hybrid, an all-peptoid and a peptidomimetic compound were synthesized, conjugated with 1,4,7,10-tetraazadodecane-N,N',N',N'-tetraacetic acid (DOTA) and radiolabeled with (111)In. Their in vitro and in vivo alpha(v)beta(3)-binding characteristics were determined. RESULTS: IC(50) values were 236 nM for DOTA-E-c(RGDfK), 219 nM for DOTA-peptidomimetic, >10 mM for DOTA-all-peptoid and 9.25 mM for the peptoid-peptide hybrid DOTA-E-c(nRGDfK). (111)In-labeled compounds, except for [(111)In]DOTA-all-peptoid, showed specific uptake in human alpha(v)beta(3)-expressing tumors xenografted in athymic mice. Tumor uptake for [(111)In]DOTA-E-c(RGDfK) was 1.73+/-0.4% ID/g (2 h postinjection) and that of [(111)In]DOTA-peptidomimetic was 2.04+/-0.3% ID/g. Tumor uptake for the peptoid-peptide hybrid [(111)In]DOTA-E-c(nRGDfK) was markedly lower (0.45+/-0.07% ID/g). The all-peptoid [(111)In]DOTA-E-c(nRGnDnFnK) did not show specific uptake in tumors (0.11+/-0.04% ID/g). CONCLUSIONS: The peptidomimetic compound and the cyclic RGD peptide have a high affinity for alpha(v)beta(3) integrin, and these compounds have better tumor-targeting characteristics than the peptoid-peptide hybrid and the all-peptoid.  相似文献   

15.
Recently, the somatostatin receptor subtype 2 (SSTR2) selective antagonist sst2-ANT was determined to have a high affinity for SSTR2. Additionally, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-sst2-ANT showed high uptake in an SSTR2-transfected, tumor-bearing mouse model and suggested that radiolabeled SSTR2 antagonists may be superior to agonists for imaging SSTR2-positive tumors. This report describes the synthesis and evaluation of 64Cu-CB-4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-sst2-ANT (64Cu-CB-TE2A-sst2-ANT) as a PET radiopharmaceutical for the in vivo imaging of SSTR2-positive tumors. METHODS: Receptor-binding studies were performed to determine the dissociation constant of the radiopharmaceutical 64Cu-CB-TE2A-sst2-ANT using AR42J rat pancreatic tumor cell membranes. The internalization of 64Cu-CB-TE2A-sst2-ANT was compared with that of the 64Cu-labeled agonist 64Cu-CB-TE2A-tyrosine3-octreotate (64Cu-CB-TE2A-Y3-TATE) in AR42J cells. Both radiopharmaceuticals were also compared in vivo through biodistribution studies using healthy rats bearing AR42J tumors, and small-animal PET/CT of 64Cu-CB-TE2A-sst2-ANT was performed. RESULTS: The dissociation constant value for the radiopharmaceutical was determined to be 26 +/- 2.4 nM, and the maximum number of binding sites was 23,000 fmol/mg. 64Cu-CB-TE2A-sst2-ANT showed significantly less internalization than did 64Cu-CB-TE2A-Y3-TATE at time points from 15 min to 4 h. Biodistribution studies revealed that the clearance of 64Cu-CB-TE2A-sst2-ANT from the blood was rapid, whereas the clearance of 64Cu-CB-TE2A-sst2-ANT from the liver and kidneys was more modest at all time points. Tumor-to-blood and tumor-to-muscle ratios were determined to be better for 64Cu-CB-TE2A-sst2-ANT than those for 64Cu-CB-TE2A-Y3-TATE at the later time points, although liver and kidney uptake was significantly higher. Small-animal imaging using 64Cu-CB-TE2A-sst2-ANT revealed excellent tumor-to-background contrast at 4 h after injection, and standardized uptake values remained high even after 24 h. CONCLUSION: The PET radiopharmaceutical 64Cu-CB-TE2A-sst2-ANT is an attractive agent, worthy of future study as a PET radiopharmaceutical for the imaging of somatostatin receptor-positive tumors.  相似文献   

16.
To date, the in vivo imaging of quantum dots (QDs) has been mostly qualitative or semiquantitative. The development of a dual-function PET/near-infrared fluorescence (NIRF) probe can allow for accurate assessment of the pharmacokinetics and tumor-targeting efficacy of QDs. METHODS: A QD with an amine-functionalized surface was modified with RGD peptides and 1,4,7,10-tetraazacyclodocecane-N,N',N',N'-tetraacetic acid (DOTA) chelators for integrin alpha(v)beta(3)-targeted PET/NIRF imaging. A cell-binding assay and fluorescence cell staining were performed with U87MG human glioblastoma cells (integrin alpha(v)beta(3)-positive). PET/NIRF imaging, tissue homogenate fluorescence measurement, and immunofluorescence staining were performed with U87MG tumor-bearing mice to quantify the probe uptake in the tumor and major organs. RESULTS: There are about 90 RGD peptides per QD particle, and DOTA-QD-RGD exhibited integrin alpha(v)beta(3)-specific binding in cell cultures. The U87MG tumor uptake of (64)Cu-labeled DOTA-QD was less than 1 percentage injected dose per gram (%ID/g), significantly lower than that of (64)Cu-labeled DOTA-QD-RGD (2.2 +/- 0.3 [mean +/- SD] and 4.0 +/- 1.0 %ID/g at 5 and 18 h after injection, respectively; n = 3). Taking into account all measurements, the liver-, spleen-, and kidney-to-muscle ratios for (64)Cu-labeled DOTA-QD-RGD were about 100:1, 40:1, and 1:1, respectively. On the basis of the PET results, the U87MG tumor-to-muscle ratios for DOTA-QD-RGD and DOTA-QD were about 4:1 and 1:1, respectively. Excellent linear correlation was obtained between the results measured by in vivo PET imaging and those measured by ex vivo NIRF imaging and tissue homogenate fluorescence (r(2) = 0.93). Histologic examination revealed that DOTA-QD-RGD targets primarily the tumor vasculature through an RGD-integrin alpha(v)beta(3) interaction, with little extravasation. CONCLUSION: We quantitatively evaluated the tumor-targeting efficacy of a dual-function QD-based probe with PET and NIRF imaging. This dual-function probe has significantly reduced potential toxicity and overcomes the tissue penetration limitation of optical imaging, allowing for quantitative targeted imaging in deep tissue.  相似文献   

17.
Radiolabeled cyclic peptides containing the amino acid sequence arginine-glycine-aspartate (RGD peptides) have successfully been used to image the expression of the alpha(v)beta(3) integrin in malignant tumors. However, the alpha(v)beta(3) integrin also plays an important role in angiogenesis induced by chronic inflammatory processes. Therefore, the aim of this study was to evaluate whether radiolabeled RGD peptides may also be used to assess alpha(v)beta(3) expression in inflammatory diseases. We studied a hapten-induced delayed-type hypersensitivity reaction (DTHR) as a model for inflammatory processes, since DTHRs are involved in many human autoimmune disorders. METHODS: The abdominal skin of mice was sensitized by application of 2,4,6-trinitrochlorobenzene (TNCB). One week later, a DTHR was elicited by challenging the right ear with TNCB. Application of TNCB was then repeated every 48 h to induce chronic skin inflammation. Small-animal PET and autoradiography with the alpha(v)beta(3) ligands (18)F-galacto-RGD and (125)I-gluco-RGD were performed at various times after TNCB application. The time course of tracer uptake by the treated ears was compared with histologic skin changes. RESULTS: The first challenge with TNCB caused, within 12 h, an acute inflammatory response with dense dermal infiltrates of polymorphonuclear leukocytes and lymphocytes. However, autoradiography revealed no significant increase in (125)I-gluco-RGD uptake at that time (mean uptake ratio for treated ear to untreated ear, 1.02 +/- 0.1 [SD]). Further challenges with TNCB resulted in chronic skin inflammation with markedly increased small-vessel density in the ear tissue. This was paralleled by a continuous increase in uptake of (125)I-gluco-RGD. After 13 challenges, the uptake ratio had increased to 2.30 +/- 0.27 (P < 0.005 compared with baseline). Enhanced uptake of radiolabeled RGD peptides in chronic inflammation was also demonstrated noninvasively by PET with (18)F-galacto-RGD. Pretreatment of the mice with nonradiolabeled cyclic peptide c(RGDfV) almost completely blocked uptake of (18)F-galacto-RGD by the challenged ear, thus confirming the specificity of tracer uptake. CONCLUSION: Radiolabeled RGD peptides allow a noninvasive assessment of alpha(v)beta(3) expression in inflammatory processes. PET with (18)F-galacto-RGD might become a powerful tool to distinguish between the acute and chronic phases of T cell-mediated immune responses and may represent a new biomarker for disease activity in autoimmune disorders.  相似文献   

18.
The development of noninvasive methods to visualize and quantify integrin alpha(v)beta(3) expression in vivo appears to be crucial for the success of antiangiogenic therapy based on integrin antagonism. Precise documentation of integrin receptor levels will allow appropriate selection of patients who will most likely benefit from an antiintegrin treatment regimen. Imaging can also be used to provide an optimal dosage and time course for treatment based on receptor occupancy studies. In addition, imaging integrin expression will be important to evaluate antiintegrin treatment efficacy and to develop new therapeutic drugs with favorable tumor targeting and in vivo kinetics. We labeled the dimeric RGD peptide E[c(RGDyK)](2) with (18)F and evaluated its tumor-targeting efficacy and pharmacokinetics of (18)F-FB-E[c(RGDyK)](2) ((18)F-FRGD2). METHODS: E[c(RGDyK)](2) was labeled with (18)F by conjugation coupling with N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) under a slightly basic condition. The in vivo metabolic stability of (18)F-FRGD2 was determined. The diagnostic value after injection of (18)F-FRGD2 was evaluated in various xenograft models by dynamic microPET followed by ex vivo quantification of tumor integrin level. RESULTS: Starting with (18)F(-) Kryptofix 2.2.2./K(2)CO(3) solution, the total reaction time for (18)F-FRGD2, including final high-performance liquid chromatography purification, is about 200 +/- 20 min. Typical decay-corrected radiochemical yield is 23% +/- 2% (n = 20). (18)F-FRGD2 is metabolically stable. The binding potential extrapolated from graphical analysis of PET data and Logan plot correlates well with the receptor density measured by sodium dodecyl sulfate polyacrylamide electrophoresis and autoradiography in various xenograft models. The tumor-to-background ratio at 1 h after injection of (18)F-FRGD2 also gives a good linear relationship with the tumor tissue integrin level. CONCLUSION: The dimeric RGD peptide tracer (18)F-FRGD2, with high integrin specificity and favorable excretion profile, may be translated into the clinic for imaging integrin alpha(v)beta(3) expression. The binding potential calculated from simplified tracer kinetic modeling such as the Logan plot appears to be an excellent indicator of tumor integrin density.  相似文献   

19.
20.
Radiolabeled RGD peptides that target alpha(v)beta3 integrin are promising tracers for imaging tumor angiogenesis. Integrins and angiogenesis also play important roles in healing of ischemic lesions. Thus, we investigated the biodistribution of radiolabeled RGD and expression of alpha(v) integrin in a mouse model of hindlimb ischemia. METHODS: 125I-3-Iodo-D-Tyr4-cyclo(-Arg-Gly-Asp-D-Tyr-Val-) (125I-c(RGD(I)yV)) was synthesized and tested for endothelial binding. Hindlimb ischemia was induced in ICR mice through femoral artery ablation, and perfusion was measured with laser Doppler blood flowmetry. 125I-c(RGD(I)yV) biodistribution was evaluated in control animals (n = 7) and ischemic models on day 3, 8, or 14 (n = 6 each). Control experiments were performed using a radiolabeled peptide with a scrambled amino acid sequence (125I-GfVGV). Microsections of hindlimb tissue were immunostained for alpha(v) integrin expression and stained with alkaline phosphatase to localize vascular endothelial cells. RESULTS: 125I-c(RGD(I)yV) retained specific binding to human umbilical vein endothelial cells. Perfusion in ischemic hindlimbs immediately fell to 10% +/- 4% of contralateral levels and gradually recovered to 22% +/- 11% and 64% +/- 9% on days 8 and 14, respectively. 125I-c(RGD(I)yV) uptake in ischemic muscles significantly increased from a control level of 0.16 +/- 0.05 %ID/g (percentage injected dose per gram of tissue) to 0.85 +/- 0.76 %ID/g at day 3, 0.43 +/- 0.23 %ID/g at day 8, and 0.43 +/- 0.28 %ID/g at day 14 (all P < 0.05). Ischemic muscle-to-lung count ratios had a virtually identical trend: 0.42 +/- 0.25 for controls, 2.34 +/- 1.70 at day 3 (P < 0.02), 1.46 +/- 0.52 at day 8 (P < 0.001), and 1.39 +/- 0.94 at day 14 (P < 0.02). In contrast, uptake of the control peptide in ischemic hindlimbs was not different from that of controls. Immunohistochemistry revealed substantially increased alpha(v) integrin staining in ischemic hindlimb tissue. CONCLUSION: Radioiodine RGD uptake is significantly enhanced in ischemic hindlimbs of a mouse model, and is accompanied by an increase in alpha(v) integrin expression. Further investigation is thus warranted to illuminate the potential role of radiolabeled RGD for noninvasive monitoring of peripheral ischemic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号