首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The genome of the amylolytic yeast strain Lipomyces starkeyi NCYC 1436 was analysed using contour-clamped homogeneous electric field gel electrophoresis (CHEF). The banding pattern under a variety of running conditions indicating the presence of 11 different chromosome-sized DNA molecules. The sizes of these chromosome bands were determined by comparison with chromosomes from standard strains of Schizosaccharomyces pombe and Saccharomyces cerevisiae. The chromosomal bands were estimated to be within the range 0.7–2.8 Mb, with the genome (excluding mitochondrial DNA) estimated at 15 Mb. The molecular cloning of the TRP1 gene, isolated from a genomic library of this strain, is also reported: the gene was present on a 6.5-kb Sau3A DNA fragment, and complemented the trpC gene of E. coli. The DNA sequence was determined (EMBL accession No. Z68292) and compared to other tryptophan biosynthetic genes encoding N-(5′-phosphoribosyl) anthranilate isomerase (PRAI) activity. The gene was also used as a probe in hybridization studies, and by this means, its chromosomal location was identified. Received: 2 November 1995/5 January 1996  相似文献   

2.
Summary A Schizophyllum gene library was made in plasmid pRK9, Plasmids from this library were tested for their ability to complement several auxotrophic mutations of Escherichia coli. The goal was to isolate a Schizophyllum auxotrophic gene that could be used to transform a corresponding Schizophyllum auxotrophic mutant to prototrophy. Complementation was observed only for E. coli trpC indole 3-glycerol phosphate synthetase (IGPS) and phosphoribosyl-anthranilate isomerase (PRAI) mutations. Plasmids with a Schizophyllum sequence coding for both IGPS and PRAI activities were recovered from E. coli transformants. Expression of the Schizophyllum gene (TRP1) in E. coli is probably dependent on the Serratia marcescens promoter of plasmid pRK9. The DNA sequence containing the Schizophyllum TRP1 gene was not obviously rearranged in cloning.  相似文献   

3.
Summary We have cloned the structural gene HEM1 for 5-aminolevulinate (ALA) synthase from Saccharomyces cerevisiae by transformation and complementation of a yeast hem1–5 mutant which was previously shown to lack ALA synthase activity (Urban-Grimal and Labbe Bois 1981) and had no immunodetectable ALA synthase protein when tested with yeast ALA synthase antiserum. The gene was selected from a recombinant cosmid pool which contained wild-type yeast genomic DNA fragments of an average size of 40 kb. The cloned gene was identified by the restauration.of growth on a non fermentable carbon source without addition of exogenous ALA. Sub cloning of partial Sau3A digests and functional analysis by transformation allowed us to isolate three independent plasmids, each carrying a 6 kb yeast DNA fragment inserted in either orientation into the single BamHI site of the vector pHCG3 and able to complement hem1–5 mutation. Analysis of the three plasmids by restriction endonucleases showed that HEM1 is contained within a 2.9 kb fragment. The three corresponding yeast trans formants present a 1, 2.5 and 16 fold increase in ALA synthase activity as compared to the wild-type strain. The gene product immunodetected in the transformant yeast cells has identical size as the wild-type yeast ALA synthase and its amount correlates well with the increase in ALA synthase activity.  相似文献   

4.
Summary The ERG9 gene of Saccharomyces cerevisiae has been cloned by complementation of the erg9-1 mutation which affects squalene synthetase. From the 5kkb insert isolated, the functional gene has been localized on a DNA fragment of 2.5 kb. The presence of squalene synthetase activity in E. coli bearing the yeast DNA fragment isolated, indicates that the structural gene encoding squalene synthetase has been cloned. The sequence of the 2.5 kb fragment contains an open reading frame which could encode a protein of 444 amino acids with a deduced relative molecular mass of 51 600. The amino acid sequence reveals one to four potential transmembrane domains with a hydrophobic segment in the C-terminal region. The N-terminus of the deduced protein strongly resembles the signal sequence of yeast invertase suggesting a specific mechanism of integration into the membranes of the endoplasmic reticulum.  相似文献   

5.
Summary The RAD4 gene of yeast required for the incision step of DNA excision repair and the REV2 (= RAD5) gene involved in mutagenic DNA repair could not be isolated from genomic libraries propagated in E. coli regardless of copy number of the shuttle vector in yeast. Transformants with plasmids conferring UV resistance to a rad4-4 or a rev2-1 mutant were only recovered if yeast was transformed directly without previous amplification of the gene bank in E. coli. DNA preparations from these yeast clones yielded no transformants in E. coli but retransformation of yeast was possible. This lead to the isolation of a defective derivative of the rad4 complementing plasmid. The modified plasmid was now capable of transforming E. coli but still interfered significantly with its growth.Dedicated to Prof. Dr. Fritz Kaudewitz on the occasion of his 65th birthday  相似文献   

6.
Summary A fragment of DNA which functions as an autonomous replication sequence in yeast was cloned from Cephalosporium acremonium. Mitochondrial DNA (mtDNA) was isolated from an industrial strain of C. acremonium (08G-250-21) highly developed for the production of the antibiotic, cephalosporin C. Size, 27 kb, and restriction pattern indicated this DNA was identical to mtDNA previously isolated (Minuth et al. 1982) from an ancestral strain (ATTC 14553) which produces very low amounts of cephalosporin C. A 1.9 kb Pst1 fragment of the Cephalosporium mtDNA was inserted into a Pst1 site of the yeast integrative plasmid, Ylp5, to produce a 7.5 kb plasmid, designated pPS1. The structure of pPS1 was verified by restriction analysis and hybridization.PS1 transformed Saccharomyces cerevisiae (DBY-746) to uracil prototrophy at a frequency of 272 transformants/g DNA. Transformation frequencies of 715 transformants/g DNA and zero were obtained for the replicative plasmid, YRp7, and the integrative plasmid YIp5, respectively. Southern hybridization and transformation of E. coli by DNA from yeast transformed by pPS1 verified that pPS1 replicates autonomously in yeast.The uracil-independent pPS1-yeast transformants were mitotically unstable. The average retention of pPS1 after three days growth in selective and non-selective medium was 4.5% and 0.4%, respectively, compared to retentions of 4.6% and 0.5% for YRp7. The properties of pPS1 were compared to those of a related plasmid, pCP2. pCP2 was constructed (Tudzynski et al. 1982) by inserting the C. acremonium 1.9 kb Pst1 fragment into the yeast integrative plasmid, pDAM1.  相似文献   

7.
Summary A plasmid, pYsup1-1, containing a DNA fragment able to suppress the recessive mutant phenotype of the suppressor locus sup1 (allele sup1-ts36) of Saccharomyces cerevisiae was isolated from a bank of yeast chromosomal DNA cloned in cosmid p3030. The complementing gene was localized on a 2.6 kb DNA fragment by further subcloning. Evidence is presented that the cloned DNA segment codes for the sup1 structural gene (chromosome IIR).  相似文献   

8.
Summary DNA fragments containing the LEU2 gene of Candida utilis have been isolated, utilizing the genome library (constructed in YRp12) of this organism. Two recombinant plasmids pZR84 and pZR32, containing the cloned LEU2 gene, were 4.24 kb and 10.4 kb, respectively, and were shown to complement leu2 mutation in Saccharomyces cerevisiae and leuB mutation in Escherichia coli. The cloned fragment in pZR84 contained one restriction site each for EcoRI and PvuII, and two for HindIII, but none for SalI, BamHI or Pstl. This cloned fragment hybridized with the total DNA from C. utilis and from Leu+ transformants of S. cerevisiae, but not with that from untransformed S. cerevisiae. Subcloning analyses showed that a 2.34 kb BamHI HindIII fragment of the cloned C. utilis sequence contains the region essential for the expression of the LEU2 gene.Journal Article No. 11669 from the Michigan Agricultural Experiment Station  相似文献   

9.
Chromosomal DNA banding patterns were obtained for three strains of Torulaspora pretoriensis by contour-clamped homogenous-electric-field gel electrophoresis. Chromosomes were resolved into six or seven bands in the range of 800 to 2000 kb, and a polymorphism of these lengths was observed. By Southern-blot analysis, the three strains were shown to lack the DNA sequences homologous to the URA3, LEU2, TRP1, and HO genes of Saccharomyces cerevisiae. A uracil auxotrophic mutant derived from T. pretoriensis was transformed with three plasmids (YEp24, YRpHI, and YCp50) carrying the URA3 gene of S. cerevisiae by the lithium acetate method.  相似文献   

10.
《Journal of neurogenetics》2013,27(4):216-233
Abstract: Transient receptor potential (TRP) channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by changing membrane voltage and increasing cellular Ca2+. This review outlines in detail the history of the founding member of the TRP family, the Drosophila TRP channel. The field began with a spontaneous mutation in the trp gene that led to a blind mutant during prolonged intense light. It was this mutant that allowed for the discovery of the first TRP channels. A combination of electrophysiological, biochemical, Ca2+ measurements, and genetic studies in flies and in other invertebrates pointed to TRP as a novel phosphoinositide-regulated and Ca2+-permeable channel. The cloning and sequencing of the trp gene provided its molecular identity. These seminal findings led to the isolation of the first mammalian homologues of the Drosophila TRP channels. We now know that TRP channel proteins are conserved through evolution and are found in most organisms, tissues, and cell-types. The TRP channel superfamily is classified into seven related subfamilies: TRPC, TRPM, TRPV, TRPA, TRPP, TRPML, and TRPN. A great deal is known today about participation of TRP channels in many biological processes, including initiation of pain, thermoregulation, salivary fluid secretion, inflammation, cardiovascular regulation, smooth muscle tone, pressure regulation, Ca2+ and Mg2+ homeostasis, and lysosomal function. The native Drosophila photoreceptor cells, where the founding member of the TRP channels superfamily was found, is still a useful preparation to study basic features of this remarkable channel.  相似文献   

11.
Summary A 9.2 kb Pst1 restriction fragment, repeated tandemly head-to-tail in the genome, contains the 5.8S, 16–18S, and 23–28S ribosomal RNA (rRNA) genes of Cephalosporium acremonium, a filamentous fungus used at the industrial scale for production of cephalosporin antibiotics. These rRNA genes were located in Pst1 digests of C. acremonium genomic DNA using a hybridization probe that contained the 5.8S, 18S, and 25S rRNA genes from the yeast Saccharomyces cerevisiae. This probe was also used in screening a recombinant lambda library to identify phage carrying rRNA genes of C. acremonium. Yeast rRNA genes contained separately on individual 32P-labeled plasmids were used to demonstrate that a cloned 7.2 kb C. acremonium sequence, represented in the repeated 9.2 kb Pst1 fragment, contained DNA from the C. acremonium 5.8S, 16–18S, and 23–28S rRNA genes. These genes were ordered with the 5.8S gene located between the 16–18S and 23–28S rRNA genes. The order of the 16–18S, 5.8S, and 23–28S rRNA genes observed in C. acremonium is the same as that observed in rRNA repeats of many other lower eucaryotes, e.g. S. cerevisiae, Aspergillus nidulans, and Neurospora crassa.  相似文献   

12.
Summary The cdc40 mutation has been previously shown to be a heat-sensitive cell-division-cycle mutation. At the restrictive temperature, cdc40 cells arrest at the end of DNA replication, but retain sensitivity to hydroxyurea (Kassir and Simchen 1978). The mutation has also been shown to affect commitment to meiotic recombination and its realization. Here we show that mutant cells are extremely sensitive to Methyl-Methane Sulfonate (MMS) when the treatment is carried out at restrictive temperature. Incubation at 37 °C prior to, or after MMS treatment at 23 °C, does not result in lower survival. It is concluded that the CDC40 gene product has a role in DNA repair, possibly holding together or protecting the DNA during the early stages of repair.The CDC40 gene was cloned on a 2.65 kb DNA fragment. A 2 plasmid carrying the gene was integrated and mapped to chromosome IV, between trp4 and ade8, by the method of marker loss. Conventional tetrad analysis has shown cdc40 to map 1.7 cM from trp4.  相似文献   

13.
Seventeen transient receptor potential (TRP) family proteins are encoded by the C. elegans genome, and they cover all of the seven TRP subfamilies, including TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML. Classical forward and reverse genetic screens have isolated mutant alleles in every C. elegans trp gene, and their characterizations have revealed novel functions and regulatory mechanisms of TRP channels. For example, the TRPC channels TRP-1 and TRP-2 control nicotine-dependent behavior, while TRP-3, a sperm TRPC channel, is regulated by sperm activation and required for sperm–egg interactions during fertilization. Similar to their vertebrate counterparts, C. elegans TRPs function in sensory physiology. For instance, the TRPV channels OSM-9 and OCR-2 act in chemosensation, osmosensation, and touch sensation, the TRPA member TRPA-1 regulates touch sensation, while the TRPN channel TRP-4 mediates proprioception. Some C. elegans TRPM, TRPP, and TRPML members exhibit cellular functions similar to their vertebrate homologues and have provided insights into human diseases, including polycystic kidney disease, hypomagnesemia, and mucolipidosis type IV. The availability of a complete set of trp gene mutants in conjunction with its facile genetics makes C. elegans a powerful model for studying the function and regulation of TRP family channels in vivo.  相似文献   

14.
Summary The dihydrofolate reductase gene of Saccharomyces cerevisiae has been isolated by selection of trimethoprim resistant Escherichia coli transformed with a gene bank of yeast DNA in plasmid pBR322. From 9.2 kilobase pair BamHI DNA fragment this gene has been localized to a 1.76 kb fragment, the restriction map of which appears different from those reported for the E. coli and the mouse dihydrofolate reductase genes.The enzyme encoded by the chimeric plasmid was established as yeast dihydrofolate reductase by its sensitivity to antifolates in vivo through growth studies and in vitro by enzyme assay. Since, the expression of this gene occurs independent of its orientation within the chimeric plasmid, the 1.76 kb fragment may contain functional regulatory sequences in addition to the structural sequences for yeast dihydrofolate reductase.This work was carried out in part at Merck & Co., Rahway, New Jersey, USA and at Southern Biotech, Inc., Tampa, Florida. USA  相似文献   

15.
Candida guilliermondii is an interesting biotechnological model for the industrial production of value-added metabolites and also remains an opportunistic emerging fungal agent of candidiasis often associated with oncology patients. The aim of the present study was to establish a convenient transformation system for C. guilliermondii by developing both an ATCC 6260-derived recipient strain and a recyclable selection marker. We first disrupted the TRP5 gene in the wild-type strain and demonstrated that trp5 mutants were tryptophan auxotroph as well as being resistant to the antimetabolite 5-fluoroanthranilic acid (FAA). Following an FAA selection of spontaneous mutants derived from the ATCC 6260 strain and complementation analysis, we demonstrated that trp5 genotypes could be directly recovered on FAA-containing medium. The TRP5 wild-type allele, flanked by two short repeated sequences of its 3'UTR, was then used to disrupt the FCY1 gene in C. guilliermondii trp5 recipient strains. The resulting fcy1 mutants displayed strong flucytosine resistance and a counter-selection on FAA allowed us to pop-out the TRP5 allele from the FCY1 locus. To illustrate the capacity of this blaster system to achieve a second round of gene disruption, we knocked out both the LEU2 and the HOG1 genes in the trp5, fcy1 background. Although all previously described yeast "TRP blaster" disruption systems used TRP1 as counter-selectable marker, this study demonstrated the potential of the TRP5 gene in such strategies. This newly created "TRP5 blaster" disruption system thus represents a powerful genetic tool to study the function of a large pallet of genes in C. guilliermondii.  相似文献   

16.
Summary Neurospora trp-1 + transformants, obtained by transforming a trp-1 inl strain with plasmid DNA containing the wild type trp1 + gene, were characterized by genetic and Southern blot analyses. The transforming trp-1 gene integrated at or near the resident site in all of the trp-1 + transformants obtained with circular DNA or DNA cut within the trp-1 coding region. The frequency of homologous integration decreased substantially when the donor DNA was cleaved outside the trp-1 coding region. The transformants were very stable mitotically and, in general, also showed meiotic stability. Analysis of trp-1 + transformants obtained with another recipient strain, trp-1 + ga-2 aro-9 inl, showed that homologous integration of donor DNA occurred in only 20% of the transformants, whether circular or linear DNA was used. Thus, the host strain employed for transformation appears to be a major factor in determining the fate of transforming DNA. Southern blot analysis of transformants showed that integration of the transforming DNA at the homologous site occurred by double crossover or gene conversion events rather than by insertion of the entire plasmid DNA. Multiple and apparently non functional integration events were observed in some transformants.  相似文献   

17.
Summary A 1.27 kb DNA fragment of the 15 kb DNA of Chlamydomonas reinhardtii has been cloned and sequenced. A 906 bp long open reading frame was found showing homology with the URF2 genes of mammals and insects. This homology is functional evidence for Chlamydomonas reinhardtii 15 kb DNA representing indeed mitochondrial DNA. This is the first report of an URF2 gene in mitochondria of a photosynthetic organism. The absence of a TGA codon within the gene suggests that it is used as stop codon like in higher plants and not as tryptophan like in animal and fungal mitochondria.  相似文献   

18.
Summary The cloned NADP-specific glutamate dehydrogenase (GDH) genes of Aspergillus nidulans (gdhA) and Neurospora crassa (am) have been shown to hybridize under reduced stringency conditions to genomic sequences of the yeast Schwanniomyces occidentalis. Using 5 and 3 gene-specific probes, a unique 5.1 kb BclI restriction fragment that encompasses the entire Schwanniomyces sequence has been identified. A recombinant clone bearing the unique BclI fragments has been isolated from a pool of enriched clones in the yeast/E. coli shuttle vector pWH5 by colony hybridization. The idenity of the plasmid clone was confirmed by functional complementation of the Saccharomyces cerevisiae ghd-1 mutation. The nucleotide sequence of the Schw. occidentalis GDH gene, which consists of 1380 nucleotides in a continuous reading frame of 459 amino acids, has been determined. The predicted amino acid sequence shows considerable homology with GDH proteins from other fungi and significant homology with all other available GDH sequences.  相似文献   

19.
Summary Six unlinked loci for invertase structural genes are known in the yeast Saccharomyces cerevisiae: SUC1-SUC5 and SUC7. These genes are similar in structure and expression but not identical. Different yeast strains possess none, one or several of these genes.We have isolated the genes SUC1-SUC5, subcloned them into the multicopy vector YEp24 and compared the expression of the five SUC genes in one recipient strain. SUC2 was isolated by transformation of a suc0 strain with a gene pool and complementation to sucrose fermentation. SUC4 was cloned from a minipool of chromosomal fragments which were shown to contain SUC4 by Southern hybridization. SUC1, SUC3 and SUC5 were isolated using the method of plasmid eviction. A plasmid containing regions flanking SUC4 was integrated next to these SUC genes. The plasmid together with the SUC genes were then cut out of the chromosome using an appropriate restriction endonuclease.The length of chromosomal DNA fragments containing the different SUC genes were 4.8 kb for SUC1, 5.2 kb for SUC2, 4.8 kb for SUC3, 12.8 kb for SUC4 and 17.2 kb for SUC5.Fragments containing the complete SUC genes and the sequences controlling their expression were subcloned into YEp24 and transformed into a strain without any active invertase gene. Invertase activity of transformants was measured after growth repressing (8% glucose) and derepressing (2% raffinose) conditions. As expected from results with strains carrying the individual SUC genes in a chromosomal location, the SUC genes were expressed to a different extent.Dedicated to Prof. Dr. Fritz Kaudewitz on the occasion of his 65th birthdayThis work was supported by Deutsche Forschungsgemeinschaft  相似文献   

20.
Summary The DNA of Saccharomyces exiguus was analyzed by Southern hybridization using cloned MATa, MAT, and HO genes of Saccharomyces cerevisiae as probes. It was shown that S. exiguus has a DNA sequence homologous with the HO gene of S. cerevisiae and that this DNA sequence is on a chromosome of about 940 kb of DNA in S. exiguus. However, there is no DNA sequence in S. exiguus that is homologous with the MAT genes of S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号