首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although brain magnetic resonance imaging is a more sensitive diagnostic tool in the evaluation of coma, noncontrast head computed tomography (CT) may demonstrate highly specific findings in some cases of coma. We present a case of thiamine deficiency-induced coma associated with acute necrosis of fornices documented on CT and review cardinal neuroimaging features of Wernicke encephalopathy. Acute fornices necrosis is a novel finding on head CT suggestive of thiamine deficiency.  相似文献   

2.
3.
4.
Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal populations of the central nervous system, often associated with cytoskeletal protein aggregates forming intracytoplasmic and/or intranuclear inclusions in neurons and/or glial cells. Most neurodegenerative disorders are now classified either according to the hitherto known genetic mechanisms or to the major components of their cellular protein inclusions. The major basic processes inducing neurodegeneration are considered multifactorial ones caused by genetic, environmental, and endogenous factors. They include abnormal protein dynamics with defective protein degradation and aggregation, many of them related to the ubiquitin-proteasomal system, oxidative stress and free radical formation, impaired bioenergetics and mitochondrial dysfunctions, and "neuroinflammatory" processes. These mechanisms that are usually interrelated in complex vitious circles finally leading to programmed cell death cascades are briefly discussed with reference to their pathogenetic role in many, albeit diverse neurodegenerative diseases, like Alzheimer disease, synucleinopathies, tauopathies, and polyglutamine disorders. The impact of protein inclusions on cell dysfunction, activation or prevention of cell death cascades are discussed, but the molecular basis for the underlying disease mechanisms remains to be elucidated.  相似文献   

5.
All cellular components are subjected to continuous surveillance by intracellular quality control systems. The major players involved in this quality control are molecular chaperones, which detect the abnormal components, and proteases, which eliminate them from the cell. Malfunctioning of the cellular surveillance systems inexorably leads to cell toxicity, and often cell death, due to the accumulation of unwanted nonfunctional components inside cells. In this work, we review the contribution of the autophagic system to cellular quality control and the consequences that autophagy malfunction has on cellular function. Special emphasis is made on the recently identified role of this system in maintenance of neuronal homeostasis and in the links currently established between alterations in the autophagic system and major neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease.  相似文献   

6.
Neurotrophins and neurodegeneration   总被引:5,自引:0,他引:5  
There is growing evidence that reduced neurotrophic support is a significant factor in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In this review we discuss the structure and functions of neurotrophins such as nerve growth factor, and the role of these proteins and their tyrosine kinase (Trk) receptors in the aetiology and therapy of such diseases. Neurotrophins regulate development and the maintenance of the vertebrate nervous system. In the mature nervous system they affect neuronal survival and also influence synaptic function and plasticity. The neurotrophins are able to bind to two different receptors: all bind to a common receptor p75NTR, and each also binds to one of a family of Trk receptors. By dimerization of the Trk receptors, and subsequent transphosphorylation of the intracellular kinase domain, signalling pathways are activated. We discuss here the structure and function of the neurotrophins and how they have been, or may be, used therapeutically in AD, PD, Huntington's diseases, ALS and peripheral neuropathy. Neurotrophins are central to many aspects of nervous system function. However they have not truly fulfilled their therapeutic potential in clinical trials because of the difficulties of protein delivery and pharmacokinetics in the nervous system. With the recent elucidation of the structure of the neurotrophins bound to their receptors it will now be possible, using a combination of in silico technology and novel screening techniques, to develop small molecule mimetics with much improved pharmacotherapeutic profiles.  相似文献   

7.
8.
Mechanisms of tau-induced neurodegeneration   总被引:2,自引:0,他引:2  
Alzheimer disease (AD) and related tauopathies are histopathologically characterized by a specific type of slow and progressive neurodegeneration, which involves the abnormal hyperphosphorylation of the microtubule associated protein (MAP) tau. This hallmark, called neurofibrillary degeneration, is seen as neurofibrillary tangles, neuropil threads, and dystrophic neurites and is apparently required for the clinical expression of AD, and in related tauopathies it leads to dementia in the absence of amyloid plaques. While normal tau promotes assembly and stabilizes microtubules, the non-fibrillized, abnormally hyperphosphorylated tau sequesters normal tau, MAP1 and MAP2, and disrupts microtubules. The abnormal hyperphosphorylation of tau, which can be generated by catalysis of several different combinations of protein kinases, also promotes its misfolding, decrease in turnover, and self-assembly into tangles of paired helical and or straight filaments. Some of the abnormally hyperphosphorylated tau ends up both amino and C-terminally truncated. Disruption of microtubules by the non-fibrillized abnormally hyperphosphorylated tau as well as its aggregation as neurofibrillary tangles probably impair axoplasmic flow and lead to slow progressive retrograde degeneration and loss of connectivity of the affected neurons. Among the phosphatases, which regulate the phosphorylation of tau, protein phosphatase-2A (PP2A), the activity of which is down-regulated in AD brain, is by far the major enzyme. The two inhibitors of PP-2A, I1PP2A and I2PP2A, which are overexpressed in AD, might be responsible for the decreased phosphatase activity. AD is multifactorial and heterogeneous and involves more than one etiopathogenic mechanism.  相似文献   

9.
Macrophages and neurodegeneration   总被引:10,自引:1,他引:9  
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Demyelination is a classical feature of MS lesions, and neurological deficits are often ascribed to the reduced signal conduction by demyelinated axons. However, recent studies emphasize that axonal loss is an important factor in MS pathogenesis and disease progression. Axonal loss is found in association with cellular infiltrates in MS lesions. In this review, we discuss the possible contribution of the innate immune system in this process. In particular, we describe how infiltrated macrophages may contribute to axonal loss in MS and in experimental autoimmune encephalomyelitis (EAE), the animal model for MS. An overview is given of the possible effects of mediators, which are produced by activated macrophages, such as such as pro-inflammatory cytokines, free radicals, glutamate and metalloproteases, on axonal integrity. We conclude that infiltrated macrophages, which are activated to produce pro-inflammatory mediators, may be interesting targets for therapeutic approaches aimed to prevent or reduce axonal loss during exacerbation of inflammation. Interference with the process of infiltration and migration of monocytes across the blood–brain barrier is one of the possibilities to reduce the damage by activated macrophages.  相似文献   

10.
11.
The transport of thiamine (T) and thiamine monophosphate (TMP) across the blood-brain barrier was measured in vivo in the rat. Different doses of [14C]T (15–550 nmol) and [14]TMP (11–110 nmol) were injected into the femoral vein. The content of T and its phosphoesters in blood and brain tissue (cerebellum, pons, medulla and cerebral cortex) 20 s after the injection was determined radiometrically after electrophoretic separation. Blood flow and blood volume in the same regions of the brain was also determined. Both T and TMP entered rapidly the cerebral tissue, where they were found chemically unmodified.The cerebral tissue extracted less than 7% of plasma T. At physiological plasma T concentrations, the rate of transport ranged from 0.43 to 0.65 nmol·g−1·h−1 with only minor differences among the various regions. T was transported into the nervous tissue by two separate mechanisms: one saturable, that at physiological plasma T levels accounted for 95% (cerebellum) to 91% (cerebral cortex) of the total T taken up, and one non-saturable, that was most efficient in the cerebral cortex. The Km (half-saturation constant) of the former transport mechanism ranged from 1.95 to 2.75 nmol·ml−1 in the 4 areas investigated. Vmax (maximal transport rate) values ranged from 6 to 9 nmol·g−1·h−1, the highest value being found in the cerebellum. The overall transport rate of TMP was on average 5–10 times as low as that of T and also showed a saturable and a non-saturable component. Both components were slower than those observed for T.  相似文献   

12.
13.
Neurovascular mechanisms of Alzheimer's neurodegeneration   总被引:27,自引:0,他引:27  
In contrast to traditional neuroncentric views of Alzheimer's disease (AD), recent findings indicate that neurovascular dysfunction contributes to cognitive decline and neurodegeneration in AD. Here, I propose the neurovascular hypothesis of AD, suggesting that faulty clearance of amyloid beta peptide (A beta) across the blood-brain barrier (BBB), aberrant angiogenesis and senescence of the cerebrovascular system could initiate neurovascular uncoupling, vessel regression, brain hypoperfusion and neurovascular inflammation. Ultimately, this would lead to BBB compromise, to chemical imbalance in the neuronal environment and to synaptic and neuronal dysfunction, injury and loss. Based on the neurovascular hypothesis, I suggest an array of new potential therapeutic approaches that could be developed for AD, to enhance A beta clearance and neurovascular repair, and to protect the neurovascular unit from divergent inducers of injury and apoptosis.  相似文献   

14.
Mitochondria are key organelles in eukaryotic cells that not only generate adenosine triphosphate but also perform such critical functions as hosting essential biosynthetic pathways, calcium buffering, and apoptotic signaling. In vivo, mitochondria form dynamic networks that undergo frequent morphologic changes through fission and fusion. In neurons, the imbalance of mitochondrial fission/fusion can influence neuronal physiology, such as synaptic transmission and plasticity, and affect neuronal survival. Core components of the mitochondrial fission/fusion machinery have been identified through genetic studies in model organisms. Mutations in some of these genes in humans have been linked to rare neurodegenerative diseases such as Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy. Recent studies also have implicated aberrant mitochondrial fission/fusion in the pathogenesis of more common neurodegenerative diseases such as Parkinson’s disease. These studies establish mitochondrial dynamics as a new paradigm for neurodegenerattve disease research. Compounds that modulate mitochondrial fission/fusion could have therapeutic value in disease intervention.  相似文献   

15.
Transgenic zebrafish model of neurodegeneration   总被引:4,自引:0,他引:4  
In Alzheimer's disease (AD), the microtubule-associated protein, tau, is compromised in its normal association with microtubules and forms into paired helical filaments (PHF) that are the hallmark cytoskeletal pathology of the disease. Several posttranslational modifications of tau including phosphorylation have been implicated in AD pathogenesis. In addition, and importantly, mutations in the genes encoding human tau have recently been implicated in a variety of hereditary dementias, collectively termed frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). This has rekindled interest in the importance of tau in neurodegenerative diseases (cf. Vogel [1998] Science 280:1524-1525; Goedert et al. [1998] Neuron 21:955-958; D'Souza et al. [1999] PNAS 96:5598-5603). Despite significant progress in the field of tau biology and neurodegenerative diseases, several important issues remain unresolved. The early functional consequences of tau alterations in living neurons is incompletely understood, and it is not clear how tau in neurodegenerative diseases becomes redistributed from its normal concentration in neuronal axons to pathological inclusions in neuronal soma known as neurofibrillary tangles (NFT). One of the reasons for these gaps in knowledge is the relative paucity of model systems to study these processes. We have developed a transgenic model system to study the functional consequences and trafficking patterns in zebrafish neurons of human tau either mutated on sites associated with hereditary dementias or altered at select posttranslational modification sites. The overall guiding hypothesis is that the model allows dissection of a hierarchy of events relevant to potential mechanisms of neurodegenerative diseases related to critical early stages in development of disease. We showed that a FTDP-17 mutant form of human tau expressed in zebrafish neurons produced a cytoskeletal disruption that closely resembled the NFT in human disease. This model system will prove useful in the study of other mutant taus in vertebrate neurons in vivo, and the approaches developed here will have broad usefulness in the study of functional consequences and potential genetic analyses of introducing into living vertebrate neurons other molecules involved in the pathogenesis of neurodegenerative diseases.  相似文献   

16.
Toll-like receptors in neurodegeneration   总被引:1,自引:0,他引:1  
  相似文献   

17.
Abstract  The objective of this article is to review the clinical presentation and neurobiology of degeneration of the enteric nervous system with emphasis on human data where available. Constipation, incontinence and evacuation disorders are frequently encountered in the ageing population. Healthy lower gastrointestinal function is essential for successful ageing as it is critical to maintaining independence and autonomy to pursue further activity. One clinical expression of enteric neurodegeneration is constipation. However, the aetiology may be multifactorial as disturbances of epithelial, muscle or neural function may all result from neurodegeneration. There is evidence of loss of excitatory (e.g. cholinergic) enteric neurons and interstitial cells of Cajal, whereas inhibitory (including nitrergic) neurons appear unaffected. Understanding neurodegeneration in the enteric nervous system is key to developing treatments to reverse it. Neurotrophins have been shown to accelerate colonic transit and relieve constipation in the medium term; they are also implicated in maintenance programmes in adult enteric neurons through a role in antioxidant defence. However, their effects in ageing colon require further study. There is evidence that 5-HT2 and 5-HT4 mechanisms are involved in development, maintenance and survival of enteric neurons. Further research is needed to understand and potentially reverse enteric neurodegeneration.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号