首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
1. The effects of intracerebroventricular (i.c.v.) injection of selective and potent NK1 (RP 67580), NK2 (SR 48968) and NK3 (R 486, [Trp7, beta-Ala8]NKA(4-10)) receptor antagonists were assessed on the cardiovascular and behavioural responses elicited by the i.c.v. injection of substance P (SP), neurokinin A (NKA) or [MePhe7]neurokinin B ([MePhe7]NKB) in the conscious freely moving rat. 2. SP, NKA and [MePhe7]NKB (5-650 pmol) evoked dose-dependent increases in mean arterial blood pressure (MAP) and heart rate (HR) with the rank order of potency SP > NKA > [MePhe7]NKB. The cardiovascular responses were accompanied by excessive face washing, grooming and wet dog shakes. 3. The cardiovascular effects and face washing behaviour induced by SP (25 pmol) were significantly reduced by the pre-injection (i.c.v., 5 min earlier) of RP 67580 (6.5 nmol). However, this antagonist failed to affect the central effects of 25 pmol NKA or [MePhe7]NKB. 4. The cardiovascular and behavioural responses (except for wet dog shakes) elicited by NKA (25 pmol) were significantly reduced by 6.5 nmol SR 48968. However, the latter antagonist had no effect on the SP or [MePhe7]NKB-mediated responses. 5. Both cardiovascular and behavioural effects produced by either SP or NKA (25 pmol) were completely abolished when rats were pretreated with a combination of RP 67580 (6.5 nmol) and SR 48968 (6.5 nmol), yet this combination of antagonists failed to modify the central effects of [MePhe7]NKB. 6. R 486 (6.5 nmol) inhibited the cardiovascular effects as well as wet dog shakes produced by [MePhe7]NKB, but it was inactive against the responses induced by either SP or NKA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. The cardiovascular responses to intravenous (i.v.) injection of natural tachykinins, substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and selective tachykinin (NK) receptor agonists, [Sar9, Met(O2)11]SP, [beta Ala8]NKA(4-10), [MePhe7]NKB and senktide were assessed in conscious, freely moving, guinea-pigs. 2. SP and [Sar9, Met(O2)11]SP (1-1000 pmol kg-1) induced dose-dependent decreases in mean arterial blood pressure (MAP) accompanied by increases in heart rate (HR). NKA evoked only weak hypotensive effects at high doses (3000 pmol kg-1) whereas [beta Ala8]NKA(4-10) (1-3000 pmol kg-1) had no effects. By contrast, NKB [MePhe7]NKB (1-10,000 pmol kg-1) and senktide (1-1000 pmol kg-1), produced dose-related hypertensive effects with the following rank order of potency: senktide > [MePhe7]NKB > NKB. Bradycardia occurred simultaneously with the increases in arterial pressure. 3. The pressor response to intravenous injection of senktide (300 pmol kg-1) was partially reduced by pretreatment with prazosin (0.71 mumol kg-1), or clonidine (0.38 mumol kg-1) and was completely inhibited by the combination of the two compounds. Atropine (1.5 mumol kg-1) suppressed the decrease in HR induced by senktide without altering the blood pressure response. These findings suggest that the blood pressure response to senktide is an indirect effect mediated by noradrenaline released from sympathetic nerve endings, whereas the bradycardia is of vagal reflex origin. 4. SR 142801, ((S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl) piperidin-3-yl) propyl)-4-phenyl-piperidin-4-yl)-N-methylacetamide), a potent and specific non-peptide NK3 receptor antagonist dose-dependently (0.46-4.6 mumol kg-1, i.v.; 4.6-46 mumol kg-1, p.o.) inhibited the cardiovascular effects of senktide and displayed a long-lasting inhibitory effect after oral administration. By contrast, SR 142806 (4.6 mumol kg-1, i.v.), the (R)-enantiomer of SR 142801 had no effect on the responses to senktide. SR 142801 at a high dose (15 mumol kg-1, i.v.) was inactive toward the [Sar9, Met(O2)11]SP-induced hypotension. 5. SR 142801 did not modify MAP in conscious guinea-pigs both after i.v. (4.6 and 15 mumol kg-1) and oral (46 and 150 mumol kg-1) administration, showing a lack of agonistic properties. However, a slight reduction in HR was observed only after i.v. injection. 6. In conclusion, these results show evident differences in the functional role of tachykinin receptors in the peripheral control of the cardiovascular system. Furthermore, a clear pressor effect of senktide, which was selectively blocked by SR 142801, was observed in conscious guinea-pigs. Hence, this antagonist appears suitable for investigating the functional role of NK3 receptors.  相似文献   

3.
1. The aim of this study was to determine whether neurokinin B (NKB) or specific agonists of tachykinin NK(3) receptors, [MePhe(7)]NKB and senktide, were able to induce airway hyperresponsiveness in guinea-pigs. The effects of these compounds were compared to those of substance P (SP), neurokinin A (NKA) and the preferential tachykinin NK(1) ([Sar(9), Met(0(2))(11)]SP) or NK(2) ([betaAla(8)]NKA (4-10)) receptor agonists. 2. In guinea-pigs pretreated with phosphoramidon (10(-4) M aerosol for 10 min) and salbutamol (8.7x10(-3) M for 10 min), all tachykinins administrated by aerosol (3x10(-7) to 10(-4) M) induced airway hyperresponsiveness 24 h later, displayed by an exaggerated response to the bronchoconstrictor effect of acetylcholine (i.v.). The rank order of potency was: [betaAla(8)]NKA (4-10)>NKA=NKB=senktide=[MePhe(7)]NKB=[Sar(9),Met(0(2))(11)]SP>SP. 3. Airway hyperresponsiveness induced by [MePhe(7)]NKB was prevented by the tachykinin NK(3) (SR 142801) and NK(2) (SR 48968) receptor antagonists. 4. Bronchoconstriction induced by tachykinins administered by aerosol was also determined. SP, NKA, NKB and the tachykinin NK(1) and NK(2) receptor agonist induced bronchoconstriction. The rank order of potency was: NKA=[betaAla(8)]NKA (4-10)>NKB=SP=[Sar(9), Met(0(2))(11)]SP. Under similar conditions, and for concentrations which induce airway hyperresponsiveness, senktide and [MePhe(7)]NKB failed to induce bronchoconstriction. 5. It is concluded that tachykinin NK(3)-receptor stimulation can induce airway hyperresponsiveness and that this effect is not related to the ability of tachykinins to induce bronchoconstriction.  相似文献   

4.
1. The binding properties and pharmacological specificity of the selective NK3 tachykinin receptor agonist [3H))-senktide [( 3H]-succinyl[Asp6,MePhe8] substance P (6-11] have been examined in homogenates of guinea-pig ileum longitudinal muscle-myenteric plexus (LM/MP) and cerebral cortex. 2. Scatchard analysis of saturation binding studies in guinea-pig ileum LM/MP and cerebral cortex membranes indicated that [3H]-senktide bound to a single site with apparent high affinity, KD = 2.21 +/- 0.65 nM; Bmax = 13.49 +/- 0.04 fmol mg-1 protein in ileum and KD = 8.52 +/- 0.45 nM; Bmax = 76.3 +/- 1.6 fmol mg-1 protein in cortex (values are means +/- ranges; n = 2). 3. The pharmacological profile for tachykinins and analogues in displacing [3H]-senktide from ileum membranes was: [MePhe7] neurokinin B greater than neurokinin B (NKB) congruent to senktide greater than eledoisin greater than substance P (SP) greater than neurokinin A(NKA) greater than physalaemin greater than [Sar9,Met(O2)11]SP greater than [Nle10]NKA(4-10) = [Glp6,L-Pro9]-SP(6-11) greater than substance P methyl ester, consistent with [3H]-senktide binding to an NK3 subtype of tachykinin receptor. A similar rank order of affinity was obtained for these peptides in displacing [3H]-senktide from cortex membranes. 4. Several tachykinin receptor agonists were tested for their ability to displace [3H]-senktide from ileal and cortical NK3 binding sites and were found to be either weak displacers (pIC50 less than 5.00) or inactive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. Conscious, Long Evans rats (n = 10), chronically instrumented for the measurement of regional haemodynamics, were studied on 3 consecutive experimental days to assess responses to angiotensin II (AII) (125 pmol kg-1, i.v.) and noradrenaline (1 nmol kg-1, i.v.) in the absence and presence of the AT2-receptor antagonist, PD 123319 (10 mg kg-1, i.v.) (day 1), the AT1-receptor antagonist, EXP 3174 (1 mg kg-1, i.v.) (day 2), and PD 123319 (10 mg kg-1, i.v.) given 24 h after EXP 3174 (day 3). 2. In naive rats (day 1), PD 123319 did not antagonize the haemodynamic effects of AII or noradrenaline. EXP 3174 (day 2) caused a marked, prolonged blockade of the haemodynamic effects of AII but not those of noradrenaline. Twenty four h after administration of EXP 3174 (day 3) there was still significant attenuation of the haemodynamic effects of AII. However, administration of PD 123319 at this time caused a further inhibition (lasting 1 h) of the effects of AII but not those of noradrenaline. 3. An identical 3 day protocol was used in a separate group of rats (n = 6) in which the AT2-receptor antagonist, PD 123177, was given instead of PD 123319, and the results were essentially the same, i.e., PD 123177 significantly attenuated the haemodynamic effects of AII but only when given 24 h after EXP 3174.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. We have investigated the effects of the non-peptide NK1 tachykinin receptor antagonist, RP 67580, and its inactive enantiomer, RP 68651, on the cardiovascular and behavioural responses to substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) injected intracerebroventricularly (i.c.v.) in conscious rats. 2. The SP and NKA (25 pmol)-induced increases in blood pressure (BP) and heart rate (HR) were of the same magnitude. The cardiovascular responses to both peptides were associated with excessive grooming behaviour and wet dog shakes (WDS). Relative to SP, NKA was weaker in inducing hindquarter grooming (HG), but more effective in eliciting WDS. The cardiovascular response to NKB (50 pmol) comprised an increase in BP and HR, while the behavioural response was weak. 3. RP 67580 (100 pmol), injected 10 or 30 min prior to SP, effectively inhibited the cardiovascular and behavioural responses to the peptide whereas lower doses were ineffective. Pretreatment with 500 pmol of RP 67580, 10 or 30 min prior to SP, reduced the BP response. Of the behavioural manifestations, only face washing was attenuated when the antagonist was injected 10 min before SP. At 2500 pmol, the antagonist exaggerated the BP response to the peptide without affecting the behavioural response. RP 68651 (100 or 2500 pmol) did not modify the central responses to SP. 4. Neither RP 67580 nor RP 68651 (100 pmol), affected the cardiovascular and behavioural responses to NKA or NKB. 5. Our results indicate that RP 67580 is a selective and high affinity antagonist at central NK1 tachykinin receptors in the rat.  相似文献   

7.
1. Contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of oestrogen-treated mice. 2. In the presence of thiorphan (3 microM), captopril (10 microM), and bestatin (10 microM), substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) produced concentration-related contractions of uterine preparations. The order of potency was SP > or =NKA>NKB. 3. Neither atropine (0.1 microM) nor l-NOLA (100 microM), nor indomethacin (10 microM) alone or in combination with either ranitidine (10 microM) or mepyramine (10 microM), affected responses to SP. These findings indicate that SP actions are not mediated or modulated through the release of acetylcholine, nitric oxide, prostanoids or histamine. 4. In the presence of peptidase inhibitors, the tachykinin NK(1) receptor-selective agonist [Sar(9)Met(O(2))(11)]SP, produced a concentration-dependent contractile effect. The tachykinin NK(2) and NK(3) receptor-selective agonists [Lys(5)MeLeu(9)Nle(10)]NKA(4-10) and [MePhe(7)]NKB were relatively inactive. The potencies of SP analogues in which Glu replaced Gln(5) and/or Gln(6) were similar to that of SP. 5. The tachykinin NK(1) receptor-selective antagonist, SR140333 (10 nM), alone or combined with the tachykinin NK(2) receptor-selective antagonist, SR48968 (10 nM), shifted log concentration curves to SP, NKA and NKB to the right. SR140333 (10 nM) reduced the effect of [Sar(9)Met(O(2))(11)]SP. SR48968 did not affect responses to SP or [Sar(9)Met(O(2))(11)]SP, but reduced the effect of higher concentrations of NKA and shifted the log concentration-response curve to NKB to the right. The tachykinin NK(3) receptor-selective antagonist, SR 142801 (0.3 microM), had little effect on responses to SP and NKB. 6. We conclude that the tachykinin NK(1) receptor mediates contractile effects of SP, NKA and NKB and [Sar(9)Met(O(2))(11)]SP in myometrium from the oestrogen-primed mouse. The tachykinin NK(2) receptor may also participate in the responses to NKA and NKB.  相似文献   

8.
1. The effects of substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) were evaluated on superoxide anion (O2-.) production by guinea-pig alveolar macrophages (AM). 2. SP dose-dependently (ED50 = 0.7 nM) evoked O2-. production from guinea-pig AM; the N-terminal heptapeptide, SP(1-7), was ineffective. In the presence of thiorphan (10(-5) M), an enkephalinase inhibitor, the stimulating effects of SP were not significantly modified. NKA and NKB were both able to induce O2-. production from guinea-pig AM, ED50 values being 0.1 and 1.3 nM, respectively. Therefore, the rank order of activity of natural tachykinins was NKA greater than SP greater than NKB. Tachykinin-evoked effects were quantitatively similar to those elicited by the autacoid mediator PAF-acether and less than those induced by the synthetic peptide N-formylmethionyl-leucyl-phenylalanine (FMLP). 3. The NK2 receptor agonist [beta-Ala8]-NKA (4-10) dose-dependently evoked O2-. production from guinea-pig AM; the NK1 receptor agonist [Pro9]-SP sulphone acted only at high concentrations, while the NK3 receptor agonist [Me,Phe7]-NKB was ineffective. 4. These findings indicate that guinea-pig AM possess NK2 and possibly some NK1 tachykinin receptors and further suggest tachykinin involvement in lung pathophysiology.  相似文献   

9.
1. This study compares the activity of BMS-180560 (2-butyl-1-chloro-1-[[1-[2-(2H-tetrazol-5-yl)phenyl]-1H-indol-4- yl]methyl]-1H-imidazole-5-carboxylic acid), an insurmountable angiotensin II (AII) receptor antagonist, with that of losartan and EXP3174 in functional and biochemical models of AII-receptor activation. 2. BMS-180560 selectively inhibited [125I]-Sar1Ile8AII ([125I]SI-AII) binding to rat aortic smooth muscle (RASM) cell and rat adrenal cortical AT1 receptors (Ki = 7.6 +/- 1.2 and 18.4 +/- 3.9 nM respectively) compared to adrenal cortical AT2 receptors (Ki = 37.6 +/- 1.3 microM). The Ki values of BMS-180560 and EXP3174, but not losartan, varied as a function of the BSA concentration used in the assays, indicating that the diacid drugs bound to albumin. 3. BMS-180560 (3-300 nM) increased the KD of SI-AII for RASM cell AT1 receptors. Only at high concentrations of BMS-180560 (300 nM) were Bmax values decreased. 4. BMS-180560 inhibited AII-stimulated contraction of rabbit aorta with a calculated KB = 0.068 +/- 0.048 nM and decreased maximal AII-stimulated contraction at 1 nM BMS-180560 by 75%. In the presence of 0.1% BSA, a higher KB value (5.2 +/- 0.92 nM) was obtained. Losartan behaved as a competitive antagonist with a KB = 2.6 +/- 0.13 nM. Contraction stimulated by endothelin-1, noradrenaline, KCl, or the TXA2 receptor agonist U-46619 were unaffected by BMS-180560 (1 nM). 5. AII stimulated the acidification rates of RASM cells as measured by a Cytosensor microphysiometer with an EC50 of 18 nM. Losartan (30 nM) shifted the AII concentration-effect curves in a competitive manner whereas BMS-180560 (0.01 and 0.1 nM) decreased the maximum responses by 60 and 75% respectively. Inhibition by losartan and BMS-180560 could be reversed following washout although recovery took longer for BMS-180560. 6. In [3H]-myoinositol-labelled RASM cells, losartan (30 and 200 nM), shifted the EC50 for AII-stimulated [3H]-inositol monophosphaste formation to higher values, with no change in the maximal response. By contrast, EXP3174 (0.1 to 1 nM) decreased the maximal response in a concentration-dependent manner (17-55%). BMS-180560 (3 and 10 nM) increased the EC50 for AII and decreased the maximum response by 30 and 80% respectively. The inhibition by EXP3174 and BMS-180560 could be reversed by inclusion of losartan (200 nM) indicating that the inhibition was not irreversible.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
1. In the present work, we have studied the microvascular reactivity of the arterial and venous mesenteric beds of the guinea-pig to bradykinin, neurokinins and other agents. 2. The vasoactive properties of three selective agonists for neurokinin receptors, namely [Sar9, Met (O2)11]SP (NK1), [beta-Ala8]NKA(4-10) (NK2) and [MePhe7]NKB (NK3), were evaluated on precontracted arterial and venous mesenteric vasculatures of the guinea-pig. The NK1-selective agonist, [Sar9,Met(O2)11]SP (1 to 1000 pmol), induced an endothelium-dependent and N omega-nitro-L-arginine methyl ester (L-NAME)-sensitive relaxation of the arterial vasculature precontracted with methoxamine, whereas the NK2 and NK3-selective agonists were virtually inactive at high doses (1000 pmol). 3. The three selective neurokinin receptor agonists were inactive in the non-precontracted arterial and venous mesenteric vasculatures as well as in the precontracted venous mesenteric vasculature. 4. Bradykinin (0.1 to 100 pmol) induced a marked dose- and endothelium-dependent vasodilatation of the precontracted arterial and venous vasculatures. ED50 values were 5.5 pmol on the arterial side and 1.9 pmol on the venous side. In contrast, desArg9-bradykinin was inactive at doses up to 1000 pmol. Furthermore, on the arterial and venous sides, a higher dose of bradykinin (1000 pmol), induced a biphasic effect, a transient constriction followed by a marked and sustained vasodilatation. The vasodilator effects of bradykinin were abolished by Hoe 140 (0.1 microM) and CHAPS, markedly reduced by L-NAME and were unaffected by [Leu8]desArg9-bradykinin (0.1 microM) on both sides of the mesenteric vasculature. Hoe 140 also abolished the arterial vasoconstrictions induced by high doses of bradykinin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
1. CHO-K1 cells that were stably transfected with the gene for the human AT1 receptor (CHO-AT1 cells) were used for pharmacological studies of non-peptide AT1 receptor antagonists. 2. In the presence of 10 mM LiCl, angiotensin II caused a concentration-dependent and long-lasting increase of inositol phosphates accumulation with an EC50 of 3.4 nM. No angiotensin II responses are seen in wild-type CHO-K1 cells. 3. [3H]-Angiotensin II bound to cell surface AT1 receptors (dissociates under mild acidic conditions) and is subject to rapid internalization. 4. Non-peptide selective AT1 antagonists inhibited the angiotensin II (0.1 microM) induced IP accumulation and the binding of [3H]-angiotensin II (1 nM) with the potency order: candesartan > EXP3174 > irbesartan > losartan. Their potencies are lower in the presence of bovine serum albumin. 5. Preincubation with the insurmountable antagonist candesartan decreased the maximal angiotensin II induced inositol phosphate accumulation up to 94% and, concomitantly, decreased the maximal binding capacity of the cell surface receptors. These inhibitory effects were half-maximal for 0.6 nM candesartan and were attenuated by simultaneous preincubation with 1 microM losartan indicating a syntopic action of both antagonists. 6. Losartan caused a parallel rightward shift of the angiotensin II concentration-response curves and did not affect the maximal binding capacity. EXP3174 (the active metabolite of losartan) and irbesartan showed a mixed-type behavior in both functional and binding studies. 7. Reversal of the inhibitory effect was slower for candesartan as compared with EXP3174 and irbesartan and it was almost instantaneous for losartan, suggesting that the insurmountable nature of selective AT1 receptor antagonists in functional studies was related to their long-lasting inhibition.  相似文献   

12.
13.
Bilateral injection of endogenous tachykinins (substance P (SP), neurokinin A (NKA)) and selective neurokinin receptor ligands (senktide, [Sar9,Met(O2)11]SP, [MePhe7]NKB) into the substantia nigra reticulata increased striatal dopamine and serotonin metabolism. The increase in dopamine metabolism in the dorsal striatum at a low dose of the substances may be a direct effect on dopamine neurons in the substantia nigra reticulata via NK1 and NK3 receptors. The lack of effect at intermediate doses may be due to inhibitory mechanisms or desensitization. The changes after high doses in the dorsal and ventral striatum may be due to actions on dopaminergic neurons in the substantia nigra as well as in the ventral tegmental area, since there was considerable diffusion from the site of injection. An apparent rapid degradation of injected SP or NKA indicates that N-terminal SP fragments may participate in the SP response. The increased serotonin metabolism that occurs only at a high dose may involve all three neurokinin receptors.  相似文献   

14.
The effect of mammalian tachykinins on plasma protein extravasation was assessed in the rat dorsal skin. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) increased vascular permeability in a dose-related manner with a threshold dose of about 0.07 pmol in sodium pentobarbitone-anaesthetized animals. Plasma protein extravasation induced by the tachykinins was 100-500 times less in magnitude in animals anaesthetized with urethane. Plasma protein extravasation induced by SP (66 pmol) was significantly reduced (63%; P less than 0.001) by atropine (a muscarinic inhibitor) while that induced by NKA or NKB was unaffected by the inhibitor suggesting that a cholinergic component might only be involved in the vascular permeability elicited by SP. The rank order of potency for the tachykinins on plasma protein extravasation was: NKB greater than SP greater than NKA (in absence of atropine) and NKB greater than NKA greater than SP (in presence of atropine), suggesting that this vascular response is mediated by a SP-E receptor type. The amplitudes of the plasma protein extravasation induced by NKB and its hydrophilic analogue [Arg degrees]NKB were similar, indicating that the lipophilic features of the native peptide cannot account for its potent biological activity. Plasma protein extravasation was enhanced by the SP analogue [D-Pro4,Lys6,D-Trp7,9,10,Phe11]SP (4-11), thus showing the limitation of such SP analogues (antagonists) for characterizing the tachykinin receptors involved in vascular permeability.  相似文献   

15.
1. This study investigated the possibility that tachykinins relax the guinea-pig isolated trachea by releasing nitric oxide (NO) from the epithelium. The types of tachykinin receptor mediating both relaxation and contraction of the trachea were also studied. Isometric tension was recorded in isolated tracheal tube preparations precontracted with acetylcholine (10 microM) in which compounds were administered intraluminally in the presence of phosphoramidon and indomethacin (both 1 microM) and the tachykinin NK2 receptor antagonist, SR 48,968 ((S)-N-methyl-N[4-(4-acetyl amino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide), 0.1 microM). 2. In the presence of the inactive enantiomer of an NO-synthase inhibitor, NG-monomethyl-D-arginine (D-NMMA, 100 microM), substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and the selective NK1 receptor agonist, [Sar9, Met(O2)11]-SP, (0.1-10 nM) relaxed tracheal tube preparations. This relaxation was changed into a contraction by pretreatment with the NO-synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 100 microM). The effect of L-NMMA on SP- and [Sar9, Met(O2)11]-SP-induced responses was reversed by L-arginine (L-Arg, 1 mM), but not by D-Arg (1 mM). After removal of the epithelium SP, NKA and NKB and [Sar9, Met(O2)11]-SP (0.1-10 nM) evoked contractile responses in the presence of either L-NMMA (100 microM) or D-NMMA (100 microM). The effects of SP and [Sar9, Met(O2)11]-SP obtained in the presence of another NO-synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) or its inactive enantiomer, NG-nitro-D-arginine methyl ester (D-NAME, 100 microM) were similar to those observed with L-NMMA or D-NMMA, respectively. 3. The selective NK1 receptor agonist, [pGlu6, Pro9]-SP(6-11) (septide, 0.1-10 nM) evoked contractile responses of tracheal tube preparations in the presence of either D-NMMA (100 microM) or L-NMMA (100 microM). The log concentration-response curve to septide obtained in the presence of L-NMMA was similar to that obtained in the presence of D-NMMA. [Sar9, Met(O2)11]-SP (0.1-10 nM) relaxed tracheal tube preparations precontracted with septide (1 microM), whereas septide (0.1 nM-1 microM) further contracted tracheal tube preparations precontracted with [Sar9, Met(O2)11]-SP (1 microM). 4. Relaxant and contractile responses evoked by SP, NKA, NKB and by [Sar9, Met(O2)11]-SP (0.1-10 nM) were not affected by a combination of the histamine H1 (pyrilamine, 1 microM) and H2 (cimetidine, 1 microM) receptor antagonists, but were abolished by the tachykinin NK1 receptor antagonist, CP-99,994 ((2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine, 1 microM), though not by its inactive enantiomer CP-100,263 (1 microM). Contractile responses evoked by septide (10 nM and 1 microM) were also abolished by CP-99,994 (1 microM) but not by CP-100,263 (1 microM). 5. These results demonstrate that tachykinins relax guinea-pig tracheal tube preparations by releasing NO via the stimulation of epithelial NK1 receptors by a mechanism independent of histamine release. The NK1 receptor type involved is sensitive to SP, NKA, NKB and [Sar9, Met(O2)11]-SP but not to septide, and is pharmacologically distinct from the NK1 receptor that mediates contraction, which is stimulated by all the agonists, including septide.  相似文献   

16.
The interaction between non-peptide antagonists and the human angiotensin II type 1 (AT1) receptor in CHO-K1 cells was investigated by incubating the cells with antagonist, followed by a brief exposure to angiotensin II and measurement of the resulting inositol phosphate accumulation. The experimental data, expressed either as angiotensin II concentration-response curves or as antagonist concentration-inhibition curves, were in good agreement with computer-generated data according to a single-state model for the surmountable antagonist losartan and according to a two-step, two-state receptor model for the insurmountable antagonists candesartan, EXP3174, and irbesartan. Experimental and computer-generated data concerning the simultaneous exposure of the receptors to EXP3174 and losartan indicated that losartan produced a concentration-dependent restoration of the maximal response (angiotensin II concentration-response curves) as well as a rightward shift of the insurmountable portion of the EXP3174 inhibition curves, thus counteracting the higher-affinity EXP3174 binding. In conclusion, these findings provide further support for the concept that insurmountable and surmountable AT1 antagonists are mutually competitive and that insurmountable antagonist-receptor complexes may adopt different states.  相似文献   

17.
DuP 753 (or EXP3174) and PD123177 are nonpeptide angiotensin (AII)-specific ligands, which show high affinities for two AII receptor subtypes, i.e. AT1 and AT2 sites, respectively. In furosemide-treated conscious dogs with high renin, DuP 753 and EXP3714, but not PD123177, were as effective as captopril in lowering blood pressure. Both DuP 753 and EXP3174 exhibited selective vascular antagonism of AII. In conscious dogs with normal renin, DuP 753, but not captopril or EXP3174, caused a dose-dependent but transient decrease in blood pressure. In anesthetized dogs, DuP 753 and captopril caused similar renal vasodilatation and natriuresis. The renal hemodynamic effects of DuP 753 and captopril were more pronounced in dogs with sodium depletion. These results suggest that the AT1 receptor mediates the pressor and renal effects of AII in dogs. The acute transient hypotensive effect of DuP 753 in normal-renin conscious dogs is probably unrelated to AII antagonism.  相似文献   

18.
1. The respiratory response to microinjection of tachykinins and analogues into the commissural nucleus of the solitary tract (cNTS) of urethane-anaesthetized rats was investigated in the presence and absence of selective tachykinin NK(1), NK(2) and NK(3) antagonists (RP 67580, SR 48968 and SR 142801, respectively). 2. All tachykinins, except for the selective NK(2) agonist, [Nle(10)]-NKA(4-10), increased tidal volume (VT). The rank potency order of naturally-occurring tachykinins was neurokinin A (NKA)> or =substance P (SP)>NKB, whereas the rank order for selective analogues was senktide> or = septide> [Sar(9),Met(O(2))(11)]-SP>[Nle(10)]-NKA(4-10). Septide (NK(1)-selective) and senktide (NK(3)-selective) were 22 fold more potent (pD(2) approximately 12) at stimulating VT than SP (pD(2) approximately 10.5). 3. Tachykinin agonists produced varying degrees of respiratory slowing, independent of changes in VT. At doses producing maximum stimulation of VT, agonists induced either a mild (<10 breaths min(-1) decrease; SP and septide), moderate (10 - 25 breaths min(-1) decrease; NKA, NKB and [Sar(9),Met(O(2)]-SP) or severe ( approximately 40 breaths min(-1) decrease; senktide) bradypnoea. [Nle(10)]-NKA(4-10) produced a dose-dependent bradypnoea without affecting VT. 4. RP 67580 significantly attenuated the VT response to SP (33 pmol) and NKA (10 pmol) but not NKB (100 pmol). In the presence of RP 67580, the mild bradypnoeic response to NKB was significantly enhanced whereas SP and NKA induced a bradyapnea which was not observed in the absence of RP 67580. SR 48968 had no effect on the VT response to SP or NKB, markedly enhanced the VT response to NKA and completely blocked the bradypnoeic response to [Nle(10)]-NKA(4-10). Only SR142801 attenuated the VT response to NKB. 5. The present data suggest that all three tachykinin receptors (NK(1), NK(2) and NK(3)) are present in the cNTS and are involved in the central control of respiration.  相似文献   

19.
1. Changes of blood flow in the rat knee joint, measured by laser Doppler flowmetry, were produced by topical application of naturally-occurring neuropeptides to the joint capsule. 2. Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) all produced dose-dependent transient vasodilatation of the rat knee joint microvasculature. NKB showed significantly smaller vasodilator responses compared to SP and NKA which were similar in their potencies. 3. Calcitonin gene-related peptide (CGRP) produced dose-dependent vasodilatation which was more pronounced than that produced by the neurokinins. The rank order of potency was: CGRP > SP = NKA > NKB. The vasodilator effect of CGRP was also more prolonged and this extended phase was abolished by co-administration of SP. 4. Cross-tachyphylaxis was not observed with the different neurokinins, but SP and NKA showed novel antagonistic effects on NKB-induced vasodilatation. 5. Co-administration of 1 nmol of the specific NK1 receptor antagonist, CP-96345, with 1 nmol of each of the neurokinins produced significant inhibition of the vasodilator response to SP but did not affect vasodilator responses to NKA and NKB. Co-administration of CP-96345 with the neurokinins plus superfusion of the rat knee joint with a solution containing 0.1 mM CP-96345 further reduced the vasodilator responses to SP but again the vasodilator responses to NKA and NKB were not significantly altered. 6. The results suggest that multiple neurokinin receptor types may be present in the rat knee joint which could mediate the vasodilator responses of the different neurokinins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. The distribution and characteristics of tachykinin NK1 binding sites have been compared in human and guinea pig lung using quantitative in vitro receptor autoradiography with [125I]-Bolton Hunter-labelled substance P ([125I]-BH-SP). In addition, the effects on these sites of ovalbumin sensitization and challenge have been determined in guinea pig lung. 2. [125I]-BH-SP bound specifically and with high affinity to microvascular endothelium in both human and guinea pig lung, but to bronchial smooth muscle and pulmonary artery media in only guinea pig lung. 3. Specific binding of [125I]-BH-SP to guinea pig bronchial smooth muscle was positively correlated with airway diameter in the range 150-800 microns and was less dense in trachea than in main bronchi. 4. [125I]-BH-SP binding was inhibited by tachykinins with rank orders of affinity of SP > NKA > NKB (human microvessels) and SP > NKA = NKB (guinea pig bronchi and pulmonary arteries). NKA displayed a higher affinity for [125I]-BH-SP binding sites in human microvessels than in guinea pig tissues (P < 0.0001), indicating differences in selectivity for tachykinins between human and guinea pig NK1 receptors. 5. In both human and guinea pig lung, [125I]-BH-SP binding was inhibited by the specific tachykinin receptor antagonists FK888 (NK1 selective antagonist) and FK224 (mixed NK1/NK2 antagonist), with FK888 displaying equal affinity to SP and > 500 times higher affinity than FK224. SP, NKA, NKB and FK888 exhibited similar affinities for [125I]-BH-SP binding sites in both guinea pig arteries and bronchi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号