首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine potentiates mediator release from human lung mast cells   总被引:9,自引:0,他引:9  
Micromolar concentrations of adenosine were found to potentiate the release of histamine and leukotriene C4 (LTC4) from immunologically activated human lung mast cells (HLMC). Structurally modified congeners of adenosine including 5'-N-ethylcarboxamideadenosine (NECA) and R-phenylisopropyladenosine (R-PIA) also potentiated mediator release. A rank order of potency was established where NECA greater than R-PIA for the potentiation of both LTC4 production and histamine secretion. Mast cells isolated by either enzymatic or mechanical means from human lung parenchyma were both similarly responsive to the modulatory effects of adenosine and analogues, and the potency series of NECA greater than R-PIA also applied. Moreover, histamine release induced by the calcium ionophore A23187 was augmented by NECA, R-PIA, and adenosine and in that potency order. Dipyridamole, an agent thought to impede the intracellular uptake of adenosine, failed to reverse the nucleoside's enhancement of IgE-mediated secretion. The irreversible inhibitor of adenosine deaminase, deoxycoformycin, did not modify the adenosine enhancement of stimulated secretion. Low concentrations of methylxanthines, which antagonize responses mediated at cell surface adenosine receptors, were inconsistent in their effects. Theophylline modestly reversed the adenosine-induced potentiation of IgE-mediated LTC4 generation but not histamine release. Studies employing 8-phenyltheophylline were complicated by the methylxanthine possessing inhibitory properties of its own at concentrations expected to antagonize a nucleoside-mediated effect. In total, these results suggest that the response of HLMC to adenosine describes properties most consistent with an A2/Ra-like process, although an interaction via an, as yet, uncharacterized cell surface receptor cannot be excluded.  相似文献   

2.
Adenosine release has been documented in lung tissue exposed to hypoxic conditions or antigen challenge. Exogenous adenosine potentiates mediator release from stimulated rat serosal and mouse bone marrow-derived mast cells. To investigate the production and release of adenosine from stimulated mast cells, rat serosal mast cells were purified on metrizamide gradients, sensitized with anti-dinitrophenol IgE for 30 min at 37 degrees C, and challenged in the presence of 1 microM deoxycoformycin with either dinitrophenol-conjugated bovine serum albumin antigen, the calcium ionophore A23187, or compound 48/80. Reactions were terminated by centrifugation, and the supernatants and pellets were assayed for adenosine and ATP content, respectively, by high performance liquid chromatography. The adenosine concentration of the supernatants increased from 0.036 +/- 0.003 nmol per 10(6) cells to 0.049, 0.056, and 0.129 nmol per 10(6) cells 60 sec after challenge with antigen, 48/80, or A23187, respectively. After ionophore stimulation, increased extracellular adenosine was evident by 15 sec, peaked by 60 sec, and remained constant for at least 5 min. A significant decline in stimulated ATP levels was observed within 30 sec, suggesting that the enhanced adenosine concentrations may result from the breakdown of ATP. Cultured mouse bone marrow-derived mast cells under similar conditions also displayed augmented extracellular adenosine levels with A23187 challenge. This endogenous source of adenosine may act locally through a positive feedback mechanism to potentiate immediate hypersensitivity reactions.  相似文献   

3.
The ryanodine receptor-like Ca2+ channel (RyRLC) is responsible for Ca2+ wave propagation and Ca2+ oscillations in certain nonmuscle cells by a Ca(2+)-induced Ca2+ release (CICR) mechanism. Cyclic ADP-ribose (cADPR), an enzymatic product derived from NAD+, is the only known endogenous metabolite that acts as an agonist on the RyRLC. However, the mode of action of cADPR is not clear. We have identified calmodulin as a functional mediator of cADPR-triggered CICR through the RyRLC in sea urchin eggs. cADPR-induced Ca2+ release consisted of two phases, an initial rapid release phase and a subsequent slower release. The second phase was selectively potentiated by calmodulin which, in turn, was activated by Ca2+ released during the initial phase. Caffeine enhanced the action of calmodulin. Calmodulin did not play a role in inositol 1,4,5-trisphosphate-induced Ca2+ release. These findings offer insights into the multiple pathways that regulate intracellular Ca2+ signaling.  相似文献   

4.
To further define the role of mast cells in the idiopathic inflammatory bowel diseases, mediator release from intestinal mast cells derived from actively inflamed and relatively quiescent areas of ulcerative colitis was studied. It was hypothesized that mast cells in the actively diseased segments would indicate involvement in the disease process by releasing a different profile of mediators than cells in uninflammed tissue. Mast cell-containing suspensions derived from matched segments of 12 ulcerative colitis specimens were compared for responsiveness to the mast cell stimulus goat anti-human immunoglobulin E. Supernatants from challenged cells were analyzed for levels of three mast cell mediators, histamine, prostaglandin D2, and the sulfidopeptide leukotriene C. Mast cells from the actively involved areas released significantly greater amounts of histamine, prostaglandin D2, and sulfidopeptide leukotriene. The difference in histamine release was not a result of greater stores of histamine in the active tissue cells, because the total histamine content of the mast cells from the active areas was not significantly greater. The enhanced release of both preformed and newly generated mediators indicates activation of those cells in the course of the disease and points to the mast cell contribution to the inflammatory process in these disorders.  相似文献   

5.
The voltage dependence of the intracellular Ca2+ transients was measured in single rat ventricular myocytes with the fluorescent Ca2+ indicator dye fura-2. The whole-cell voltage clamp technique was used to measure the membrane current, and 0.9 mM fura-2 was loaded into the cell by including it in the dialyzing solution of the patch electrode. A mechanical light chopper operating at 1200 Hz was used to obtain simultaneous measurements of the intracellular Ca2+ activity with fluorescence excitation on either side of the isosbestic point (330 nm and 410 nm). The symmetry of the two optical Ca2+ signals was used as a criterion to guard against artifacts resulting, for instance, from motion. The voltage dependence of peak Ca2+ current and the Ca2+ transient measured 25 ms after depolarizing clamps from a holding potential of -40 mV were bell-shaped and virtually identical. The Ca2+ entry estimated from the integral of the Ca2+ current (0 mV, 25 ms) corresponds to a 5-10 microM increase in the total intracellular Ca2+ concentration, whereas the optical signal indicated a 100 microM increase in total intracellular Ca2+. Repolarization of clamp pulses from highly positive potentials were accompanied by a second Ca2+ transient, the magnitude of which, when summed with that measured during depolarization, was nearly constant. Ryanodine (10 microM) had little or no effect on the peak Ca2+ current but reduced the magnitude of the early Ca2+ transients by 70-90%. Epinephrine (1 microM) increased the Ca2+ current and the Ca2+ transients, accelerated the rate of decline of the Ca2+ transients at potentials between -30 and +70 mV, and reduced the intracellular [Ca2+] below baseline at potentials positive to +80 or negative to -40 mV, where clamp pulses did not elicit any Ca2+ release. Elevation of intracellular cAMP mimicked the relaxant effect of epinephrine at depolarizing potentials, whereas elevation of extracellular [Ca2+] did not. These results suggest that most of the activator Ca2+ in rat ventricular cells is released from the sarcoplasmic reticulum as a graded response to sarcolemmal Ca2+ influx. Consistent with a graded Ca2+-induced Ca2+ release we find that epinephrine increases the internal Ca2+ release by increasing the Ca2+ current. Epinephrine may also increase the Ca2+ content of the sarcoplasmic reticulum that may, in turn, increase the Ca2+-induced Ca2+ release. The relaxant effect of epinephrine appears to be caused by enhanced rate of Ca2+ resequestration and is mediated by adenylate cyclase system.  相似文献   

6.
Changes in extracellular zinc concentration participate in modulating fundamental cellular processes such as proliferation, secretion, and ion transport in a mechanism that is not well understood. Here, we show that a micromolar concentration of extracellular zinc triggers a massive release of calcium from thapsigargin-sensitive intracellular pools in the colonocytic cell line HT29. Calcium release was blocked by a phospholipase-C inhibitor, indicating that formation of inositol 1,4,5-triphosphate is required for zinc-dependent calcium release. Zinc influx was not observed, indicating that extracellular zinc triggered the release. The Ca(i)2+ release was zinc specific and could not be triggered by other heavy metals. Furthermore, zinc failed to activate the Ca(2+)-sensing receptor heterologously expressed in HEK293 cells. The zinc-induced Ca(i)2+ rise stimulated the activity of the Na(+)/H(+) exchanger in HT29 cells. Our results indicate that a previously uncharacterized extracellular, G protein-coupled, Zn(2+)-sensing receptor is functional in colonocytes. Because Ca(i)2+ rise is known to regulate key cellular and signal-transduction processes, the zinc-sensing receptor may provide the missing link between extracellular zinc concentration changes and the regulation of cellular processes.  相似文献   

7.
8.
In normal adult-ventricular myocardium, Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) is activated via Ca2+ entry through L-type Ca2+ channels. However, embryonic-ventricular myocytes have a prominent T-type Ca2+ current (ICa,T). In this study, the contribution of ICa,T to CICR was determined in chick-ventricular development. Electrically stimulated Ca2+ transients were examined in myocytes loaded with fura-2 and Ca2+ currents with perforated patch-clamp. The results show that the magnitudes of the Ca2+ transient, L-type Ca2+ current (ICa,L) and ICa,T, decline with development with the majority of the decline of transients and ICa,L occurring between embryonic day (ED) 5 and 11. Compared to controls, the magnitude of the Ca2+ transient in the presence of nifedipine was reduced by 41% at ED5, 77% at ED11, and 78% at ED15. These results demonstrated that the overall contribution of ICa,T to the transient was greatest at ED5, while ICa,L was predominate at ED11 and 15. This indicated a decline in the contribution of ICa,T to the Ca2+ transient with development. Nifedipine plus caffeine was added to deplete the SR of Ca2+ and eliminate the occurrence of CICR due to ICa,T. Under these conditions, the transients were further reduced at all three developmental ages, which indicated that a portion of the Ca2+ transients present after just nifedipine addition was due to CICR stimulated by ICa,T. These results indicate that Ca2+ entry via T-type channels plays a significant role in excitation-contraction coupling in the developing heart that includes stimulation of CICR.  相似文献   

9.
Despite extensive research, the mechanisms responsible for the graded nature and early termination of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) in cardiac muscle remain poorly understood. Suggested mechanisms include cytosolic Ca2+-dependent inactivation/adaptation and luminal Ca2+-dependent deactivation of the SR Ca2+ release channels/ryanodine receptors (RyRs). To explore the importance of cytosolic versus luminal Ca2+ regulatory mechanisms in controlling CICR, we assessed the impact of intra-SR Ca2+ buffering on global and local Ca2+ release properties of patch-clamped or permeabilized rat ventricular myocytes. Exogenous, low-affinity Ca2+ buffers (5 to 20 mmol/L ADA, citrate or maleate) were introduced into the SR by exposing the cells to "internal" solutions containing the buffers. Enhanced Ca2+ buffering in the SR was confirmed by an increase in the total SR Ca2+ content, as revealed by application of caffeine. At the whole-cell level, intra-SR [Ca2+] buffering dramatically increased the magnitude of Ca2+ transients induced by I(Ca) and deranged the smoothly graded I(Ca)-SR Ca2+ release relationship. The amplitude and time-to-peak of local Ca2+ release events, Ca2+ sparks, as well as the duration of local Ca2+ release fluxes underlying sparks were increased up to 2- to 3-fold. The exogenous Ca2+ buffers in the SR also reduced the frequency of repetitive activity observed at individual release sites in the presence of the RyR activator Imperatoxin A. We conclude that regulation of RyR openings by local intra-SR [Ca2+] is responsible for termination of CICR and for the subsequent restitution behavior of Ca2+ release sites in cardiac muscle.  相似文献   

10.
In cardiac muscle Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) is initiated by Ca2+ influx via L-type Ca2+ channels. At present, the mechanisms underlying termination of SR Ca2+ release, which are required to ensure stable excitation-contraction coupling cycles, are not precisely known. However, the same mechanism leading to refractoriness of SR Ca2+ release could also be responsible for the termination of CICR. To examine the refractoriness of SR Ca2+ release, we analyzed Na+-Ca2+ exchange currents reflecting cytosolic Ca2+ signals induced by UV-laser flash-photolysis of caged Ca2+. Pairs of UV flashes were applied at various intervals to examine the time course of recovery from CICR refractoriness. In cardiomyocytes isolated from guinea-pigs and mice, beta-adrenergic stimulation with isoproterenol-accelerated recovery from refractoriness by approximately 2-fold. Application of cyclopiazonic acid at moderate concentrations (<10 micromol/L) slowed down recovery from refractoriness in a dose-dependent manner. Compared with cells from wild-type littermates, those from phospholamban knockout (PLB-KO) mice exhibited almost 5-fold accelerated recovery from refractoriness. Our results suggest that SR Ca2+ refilling mediated by the SR Ca2+-pump corresponds to the rate-limiting step for recovery from CICR refractoriness. Thus, the Ca2+ sensitivity of CICR appears to be regulated by SR Ca2+ content, possibly resulting from a change in the steady-state Ca2+ sensitivity and in the gating kinetics of the SR Ca2+ release channels (ryanodine receptors). During Ca2+ release, the concomitant reduction in Ca2+ sensitivity of the ryanodine receptors might also underlie Ca2+ spark termination by deactivation.  相似文献   

11.
"Ca(2+)-current facilitation" describes several features of increase in current amplitude often associated with a reduction in inactivation rate. The aim of this study was to investigate the mechanism of frequency-dependent increase in L-type Ca2+ current, I(Ca) taking advantage of recent knowledge on the control of Ca2+ current inactivation in cardiac cells. The frequency-dependent increase in I(Ca) was studied in adult rat ventricular myocytes using the whole-cell patch-clamp technique. I(Ca) was elicited by a train of 200-ms depolarizing pulses to +20 mV applied at various frequencies (0.2 up to 1.3 Hz). The increase in frequency induced a rate-dependent enhancement of I(Ca), or facilitation phenomena. In most cells, that showed two inactivation phases of I(Ca), facilitation was mainly related to slowing of the fast I(Ca) inactivation phase that occurred besides increase in peak I(Ca) amplitude. Both the decrease and slowing of the fast component of inactivation phase were attenuated on beta -adrenergic-stimulated current. Frequency-dependent I(Ca) facilitation paralleled a reduction in Ca2+ transient measured with fluo-3. After blocking sarcoplasmic reticulum-Ca2+ release by thapsigargin, the fast I(Ca) inactivation phase was reduced and facilitation was eliminated. Facilitation could not then be restored by 1 microM isoprenaline. Thus in rat ventricular myocytes, frequency-dependent facilitation of I(Ca)reflects a reduced Ca(2+)-dependent inactivation consecutive, in most part, to reduced Ca2+ load and Ca2+ release by the sarcoplasmic reticulum rather than being an intrinsic characteristic of the L-type Ca2+ channel.  相似文献   

12.
We investigated the effect of various excitatory amino acids on intracellular free Ca2+ concentration ( [Ca2+]i) in single mouse hippocampal neurons in vitro by using the Ca2+-sensitive dye fura-2. In normal physiological solution, glutamate, kainate, N-methyl-D-aspartate, and quisqualate all produced increases in [Ca2+]i. When all extracellular Ca2+ was removed, kainate and N-methyl-D-aspartate were completely ineffective, but quisqualate and glutamate were able to produce a spike-like Ca2+ transient, presumably reflecting the release of Ca2+ from intracellular stores. Ca2+ transients of similar shape could also be produced by the alpha 1-adrenergic agonist phenylephrine. After the production of a Ca2+ transient a second addition of quisqualate was ineffective unless intracellular stores were refilled by loading the cell with Ca2+ following depolarization in Ca2+-containing medium. None of the conventional excitatory amino acid receptor antagonists inhibited the Ca2+-mobilizing effects of quisqualate. Furthermore alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) was unable to produce Ca2+ mobilization in Ca2+-free medium, although it could produce Ca2+ influx in Ca2+-containing medium. Thus, glutamate can produce mobilization of Ca2+ from intracellular stores in hippocampal neurons by acting on a quisqualate-sensitive but AMPA-insensitive receptor. This receptor is therefore distinct from the quisqualate receptor that produces cell depolarization. The possibility that this Ca2+-mobilizing effect is mediated by inositol triphosphate production is discussed.  相似文献   

13.
目的 :心肌细胞膜上的 β-肾上腺素受体的激活对兴奋 -收缩耦联 (ECC)过程有重要的调节作用。本课题利用异丙肾上腺素 (ISO,1μmol/ L)激活 β-肾上腺素受体从而研究其对源自心肌细胞肌浆网的胞内钙释放 (ECC的重要环节 )和肌浆网内钙容量的影响 ,进而分析钙释放与钙容量之间的关系。方法 :局部场刺激作用于成年大鼠心肌细胞 ,促使后者产生动作电位 ,进而诱发胞内钙瞬变 (ACT) ,由 ACT可估测胞内钙释放。肌浆网内钙容量则由咖啡因 (2 0 m mol/ L)诱发的钙瞬变 (CCT)估测。实验结果均由 Zeiss L SM- 5 10激光共聚焦显微镜系统记录。结果 :ISO作用下的 ACT峰值为 10 .2 9± 0 .35 (n=13)比正常情况下的 5 .74± 0 .2 7(n=18)高 (P<0 .0 1)。 ISO作用下的CCT峰值为 11.2 3± 0 .2 9(n=13)比正常情况下的 7.6 2± 0 .2 4 (n=18)高 (P<0 .0 1)。结论 :ISO可明显地提高心肌细胞内钙释放量和肌浆网内的钙容量。不管有无 ISO存在 ,胞内钙释放量总是只占肌浆网内钙容量的一部分。在正常情况下 ,心肌的钙释放量有较大的储备能力 ,且此储备可因β-肾上腺素受体的激活而动员。  相似文献   

14.
Airway smooth muscle cell contraction is regulated by changes in intracellular Ca2+ concentration ([Ca2+]i) and the responsiveness of the airway smooth muscle cell to this Ca2+. The mechanism controlling [Ca2+]i primarily involves agonist-induced release of Ca2+ from internal stores to generate Ca2+ oscillations. The extent of contraction correlates with the persistence and frequency of these Ca2+ oscillations. The maintenance of the Ca2+ oscillations requires Ca2+ influx, but membrane depolarization appears to have a minor role in initiating or sustaining contraction. Contraction also requires agonist-induced Ca2+ sensitization, which is mediated mainly by decreases in myosin light-chain phosphatase activity. Although it is not clear if airway hyperresponsiveness associated with asthma results from the specific modulation of these Ca2+-based regulatory mechanisms, bronchodilators relax airways by both attenuating the Ca2+ oscillations and by decreasing the Ca2+ sensitivity.  相似文献   

15.
OBJECTIVES: During cardiac excitation-contraction coupling, Ca2+ release from the sarcoplasmic reticulum (SR) occurs at the junctional complex with the T-tubules, containing the L-type Ca2+ channels. A partial loss of T-tubules has been described in myocytes from failing canine and human hearts. We examined how graded reduction of T-tubule density would affect the synchrony of Ca2+ release. METHODS: Adult pig ventricular myocytes were isolated and cultured for 24 and 72 h. T-tubules, visualized with di-8-ANEPPS, and [Ca2+]i transients (Fluo-3) were recorded during confocal line scan imaging. RESULTS: Cultured cardiomyocytes exhibited a progressive reduction in T-tubule density. [Ca2+]i transients showed small areas of delayed Ca2+ release which gradually increased in number and size with loss of T-tubules. Local [Ca2+]i transients in the delayed regions were reduced. Due to these changes, loss of T-tubules resulted in an overall slowing of the rise of [Ca2+] along the entire line scan and transient magnitude tended to be reduced, but there was no change in SR Ca2+ content. Human myocytes isolated from failing hearts had a T-tubule density comparable to that of freshly isolated pig myocytes. The size, but not the number, of delayed release areas tended to be larger. The overall rate of rise of [Ca2+]i was significantly faster than in pig myocytes with low T-tubule density. CONCLUSIONS: Loss of T-tubules reduces the synchrony of SR Ca2+ release. This could contribute to reduced efficiency of excitation-contraction coupling in heart failure, though dyssynchrony in human failing cells appears to be modest.  相似文献   

16.
OBJECTIVE: Conditions of ischemia-reperfusion disturb the homoeostasis of cytosolic Ca2+ in cardiac microvascular endothelial cells (CMEC), leading to numerous malfunctions of the endothelium. Reperfusion specifically aggravates the Ca2+ overload developed during sustained ischemia. The aim of this study was to identify the origin of the reperfusion-induced part of the Ca2+ overload. Our hypotheses were that this is either due to a Na+-dependent process, e.g. involving the Na+/H+ exchanger (NHE) and/or the Na+/Ca2+ exchanger (NCX), or a process involving the endoplasmic reticulum (ER) and store-operated channels (SOC). METHODS AND RESULTS: Cultured CMEC from rats were exposed to conditions of simulated ischemia (hypoxia, pH 6.4) and reperfusion (reoxygenation, pH 7.4). Cytosolic Ca2+ ([Ca2+]i) and cytosolic Na+ ([Na+]i) concentrations and cytosolic pH (pHi) were measured with the use of fluorescent indicators. Removal of Ca2+ from the extracellular media during reoxygenation prevented the [Ca2+]i rise. Neither the activation of the NHE nor of the NCX in reoxygenated CMEC caused a change in this [Ca2+]i rise. Complete or partial removal of Na+ from the external media also had no effect on the [Ca2+]i rise. In contrast, specific inhibition of the inositol trisphosphate (InsP3) receptor by xestospongin C (3 micromol/l), of phospholipase (PLC) by U73122 (1 micromol/l), or of SOC by the inhibitors gadolinium (10 micromol/l) or 2-APB (50 micromol/l) lowered or abolished the reoxygenation-induced [Ca2+]i rise. CONCLUSION: In CMEC exposed to reperfusion conditions, the enhanced Ca2+ overload is due to Ca2+ influx. The influx is not mediated by a Na+-dependent mechanism, but rather is due to activation of the InsP3 receptor of the ER and activation of SOC.  相似文献   

17.
Whole-cell patch-clamp recordings of membrane currents and Fura-2 measurements of free intracellular calcium concentration ([Ca2+]i) were used to study calcium influx through receptor-activated cation channels in rat peritoneal mast cells. Cation channels were activated by the secretagogue compound 48/80, whereas a possible concomitant Ca2+ entry through pathways activated by depletion of calcium stores was blocked by dialyzing cells with heparin. Heparin effectively suppressed the transient Ca2+ release induced by 48/80 and abrogated inositol 1,4,5-trisphosphate-induced calcium influx without affecting activation of 50-pS cation channels. There was a clear correlation between changes in [Ca2+]i and the activity of 50-pS channels. The changes in [Ca2+]i increased with elevation of extracellular Ca2+. At the same time, inward currents through 50-pS channels were diminished as more Ca2+ permeated. This effect was due to a decrease in slope conductance and a reduction in the open probability of the cation channels. In physiological solutions, 3.6% of the total current was carried by Ca2+. The cation channels were not only permeable to Ca2+ but also to Mn2+, as evidenced by the quench of Fura-2 fluorescence. Mn2+ current through 50-pS channels could not be resolved at the single-channel level. Our results suggest that 50-pS cation channels partially contribute to sustained increases of [Ca2+]i in mast cells following receptor activation.  相似文献   

18.
Effects of glucagon and vasopressin on hepatic Ca2+ release.   总被引:1,自引:0,他引:1       下载免费PDF全文
The effects of physiological levels of glucagon on Ca2+ efflux were examined in the perfused rat liver. Two methods were used to estimate Ca2+ efflux: prior labeling of the calcium pools with 45Ca2+ and measurement of perfusate Ca2+ with atomic absorption. According to both methods, glucagon administration at the physiological level evoked Ca2+ release. The released Ca2+ originated mostly from a carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-depletable pool and also from an FCCP-insensitive pool from which Ca2+ could be released with A23187. Maximally effective doses of glucagon and vasopressin had no additive effect on Ca2+ release. Prior administration of vasopressin resulted in markedly reduced Ca2+ release by glucagon. These results indicate that glucagon releases Ca2+ from the same pool that vasopressin does.  相似文献   

19.
Quercetin inhibited Ca2+-dependent ATP hydrolysis, ATP-dependent Ca2+ uptake, chelator-induced [ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] Ca2+ release, and ATP synthesis coupled to Ca2+ release in isolated vesicles of sarcoplasmic reticulum. Use of this inhibitor permitted evaluation of whether Ca2+ release from sarcoplasmic reticulum in situ occurs through a reversal of the uptake pathway. Release of Ca2+ from the sarcoplasmic reticulum of skinned muscle fibers can be detected by the measurement of tension in the fiber. If the sarcoplasmic reticulum of these preparations is first allowed to accumulate Ca2+, tension development may be induced by the addition of Ca2+ itself or of caffeine to the bathing medium or by depolarization with Cl-. The presence of quercetin during the loading phase inhibited Ca2+ uptake by sarcoplasmic reticulum in situ. When quercetin was added together with initiators of tension development, however, the rate of tension development was enhanced 4- to 7-fold and the relaxation rate of the fibers was greatly inhibited. These results suggest that quercetin had no effect on Ca2+ release in skinned fiber; its effect on Ca2+ reuptake could account for the apparent enhancement of the release rate and for the prolonged relaxation time. These observations rule out reversal of the Ca2+ pump as the mechanism of Ca2+ release in situ.  相似文献   

20.
The release of inflammatory mediators (histamine, PGD2, TxB2, and LTC4) from purified human lung mast cells was characterized by kinetic and anti-IgE dose-response parameters. The relative rate of mediator release was histamine greater than PGD2 = TxB2 greater than LTC4, with one half maximal release occurring at approximately 2, 5, and 10 min, respectively. In 2 experiments, stimulation with anti-IgE caused significant quantities of platelet-activating factor (PAF) to appear rapidly (2 min) in the cell pellet; cell-associated PAF declined to low levels by 45 min. The optimal concentration of anti-IgE for the release of the arachidonate cyclooxygenase metabolites PGD2 and TxB2 (0.3 microgram/ml) was 10- to 30-fold less than that required for the release of histamine and LTC4 (3 to 10 micrograms/ml), suggesting that these release processes may have differential IgE Fc receptor cross-linking requirements. At optimal histamine release, the magnitude of the release of each arachidonate metabolite was found to correspond to the magnitude of histamine release, however, suggesting that the 2 processes are linked either in series or in parallel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号