首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the present experiment was to investigate whether and how using a light fingertip touch for postural control during quiet standing requires additional attentional demands. Nine young healthy university students were asked to respond as rapidly as possible to an unpredictable auditory stimulus while maintaining stable seated and upright postures in three sensory conditions: vision, no-vision and no-vision/touch. Touch condition involved a gentle light touch with the right index finger on a nearby surface at waist height. Center of foot pressure (CoP) displacements were recorded using a force platform. Reaction times (RTs) values were used as an index of the attentional demand necessary for calibrating the postural system. Results showed decreased CoP displacements in both the vision and no-vision/touch conditions relative to the no-vision condition. More interestingly, a longer RT in the no-vision/touch than in the vision and no-vision conditions was observed. The present findings suggest that the ability to use a light fingertip touch as a source of sensory information to improve postural control during quiet standing is attention demanding.  相似文献   

2.
Human postural sway during quiet standing is reduced when a fingertip lightly touches a stable surface. The tactile feedback information from the fingertip has been considered responsible for this effect of light touch. Studies have shown that a noise-like minute stimulation to the sensory system can improve the system's weak signal detection. In the present study, we investigated whether a noise-like unperceivable vibration on the fingertip enhances its tactile sensation and facilitates the effect of light touch during quiet standing. Thirteen volunteers maintained quiet standing while lightly touching a touch surface with the index fingertip. Based on each subject's vibrotactile threshold (VT), a noise-like vibration was applied to the touch surface at amplitudes under (0.5VT) or at VT (1.0VT), in addition to the normal light touch condition (no vibration, 0VT). The results showed that the mean velocities of the foot center of pressure (CoP) in both the anteroposterior (AP) and mediolateral (ML) directions were significantly reduced at 0.5VT compared to 0VT and 1.0VT (P < 0.05), while there was no significant difference between 1.0VT and 0VT (P > 0.05). Frequency analysis of CoP revealed that the power of high-frequency fluctuation (1-10 Hz) was significantly reduced at 0.5VT (P < 0.05), whereas no significant change was observed in that of low-frequency sway (below 1 Hz) (P > 0.05). These results indicate that an unperceivable noise-like vibration can facilitate the effect of light touch on postural stability, by further reducing fast postural sway.  相似文献   

3.
Light touch contact between the body and an environmental referent reduces fluctuations of center of pressure (CoP) in quiet standing although the contact forces are insufficient to provide significant forces to stabilize standing balance. Maintenance of upright standing posture (with light touch contact) may include both predictive and reactive components. Recently Dickstein et al. (2003) demonstrated that reaction to temporally unpredictable displacement of the support surface was affected by light touch raising the question whether light touch effects also occur with predictable disturbance to balance. We examined the effects of shoulder light touch on SD of CoP rate (dCoP) during balance perturbations associated with forward sway induced by pulling on (voluntary), or being pulled by (reactive), a hand-held horizontal load. Prior to perturbation, SD dCoP was lower with light touch, corresponding to previous findings. Immediately after perturbation, SD dCoP(AP) was greater with light touch in the case of voluntary pull, whereas no difference was found for reflex pull. However, in the following time course, light touch contact again resulted in a significantly lower SD dCoP and faster stabilization of SD dCoP. We conclude that shoulder light touch contact affects immediate postural responses to voluntary pull but also stabilization after voluntary and reflex perturbation. We suggest that in voluntary perturbation CoP fluctuations are differentially modulated in anterioposterior and mediolateral directions to maintain light touch, which not only provides augmented sensory feedback about body self-motion, but may act as a "constraint" to the postural control system when preparing postural adjustments.  相似文献   

4.
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.  相似文献   

5.
The present paper introduces an original biofeedback system for improving human balance control, whose underlying principle consists in providing additional sensory information related to foot sole pressure distribution to the user through a tongue-placed tactile output device. To assess the effect of this biofeedback system on postural control during quiet standing, ten young healthy adults were asked to stand as immobile as possible with their eyes closed in two conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP) displacements were recorded using a force platform. Results showed reduced CoP displacements in the Biofeedback relative to the No-biofeedback condition. The present findings evidenced the ability of the central nervous system to efficiently integrate an artificial plantar-based, tongue-placed tactile biofeedback for controlling control posture during quiet standing.  相似文献   

6.
The purpose of the present experiment was to investigate whether the sensory weighting of a plantar pressure-based, tongue-placed tactile biofeedback for controlling posture could be subject to inter-individual variability. To achieve this goal, 60 young healthy adults were asked to stand as immobile as possible with their eyes closed in two conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP) displacements were recorded using a force platform. Overall, results showed reduced CoP displacements in the Biofeedback relative to the No-biofeedback condition, evidencing the ability of the central nervous system to efficiently integrate an artificial plantar-based, tongue-placed tactile biofeedback for controlling posture during quiet standing. Results further showed a significant positive correlation between the CoP displacements measured in the No-biofeedback condition and the decrease in the CoP displacements induced by the use of the biofeedback. In other words, the degree of postural stabilization appeared to depend on each subject's balance control capabilities, the biofeedback yielding a greater stabilizing effect in subjects exhibiting the largest CoP displacements when standing in the No-biofeedback condition. On the whole, by evidencing a significant inter-individual variability in sensory weighting of an additional tactile information related to foot sole pressure distribution for controlling posture, the present findings underscore the need and the necessity to address the issue of inter-individual variability in the field of neuroscience.  相似文献   

7.
The present study aimed to investigate whether stroke survivals are able to use the additional somatosensory information provided by the light touch to reduce their postural sway during the upright stance. Eight individuals, naturally right-handed pre-stroke, and eight healthy age-matched adults stood as quiet as possible on a force plate during 35 s. Participants performed two trials for each visual condition (eyes open and closed) and somatosensory condition (with and without the right or left index fingertip touching an instrumented rigid and fixed bar). When participants touched the bar, they were asked to apply less than 1 N of vertical force. The postural sway was assessed by the center of pressure (COP) displacement area, mean amplitude and velocity. In addition, the mean and standard deviation of the force vertically applied on the bar during the trials with touch were assessed. The averaged values of COP area, amplitude and velocity were greater for stroke individuals compared to healthy adults during all visual and somatosensory conditions. For both groups, the values of all variables increased when participants stood with eyes closed and reduced when they touched the bar regardless of the side of the touch. Overall, the results suggested that, as healthy individuals, persons with post-stroke hemiparesis are able to use the additional somatosensory information provided by the light touch to reduce the postural sway.  相似文献   

8.
Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (<0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.  相似文献   

9.
Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (< 0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.  相似文献   

10.
Aim: To examine the effect of unweighting as a possible contributory factor to a reduced calf muscle volume on postural sway during quiet standing, changes in postural sway following bed rest with or without strength training were investigated. Methods: Twelve young men participated in a 20‐day bed‐rest study. Subjects were divided into a non‐training group (BR‐Con) and a strength training group (BR‐Tr). For the BR‐Tr group, training was comprised of dynamic calf‐raise and leg‐press exercises to maintain the muscle volume of the plantar flexors. Before and after bed rest, subjects maintained quiet standing in a barefoot position on a force platform with their eyes open or closed. During the quiet stance, foot centre‐of‐pressure (CoP) and the mean velocity of CoP was calculated. Muscle volume of the plantar flexors was computed using axial magnetic resonance images of the leg. Results: After the bed‐rest period, the muscle volume decreased in the BR‐Con group but not in the BR‐Tr group. The mean velocity of CoP as an assessment of postural sway, however, increased in both groups. These results indicate that the strength training during bed rest cannot counteract the increase in postural sway. Conclusion: We concluded that postural sway increases following 20 days of bed rest despite maintenance of the muscle volume of plantar flexors as the main working muscles for the human postural standing.  相似文献   

11.
Availability of fingertip touch onto a stable surface reduces body sway for subjects standing with eyes closed. This is largely associated with sensory feedback from the fingertip when mechanical load is limited. Here, it is possible that the central nervous system facilitates cortical sensory processing to augment feedback to control upright stance. To test this, we compared cortical sensory excitability between tasks with and without light finger touch while standing. Subjects stood in tandem on a force plate with eyes closed while lightly touching a stable surface with the index finger. This was, in two different studies, compared to: (1) no haptic contact or (2) light touch on an object not referenced to balance. Throughout testing, the median nerve was stimulated and electroencephalography was used to measure somatosensory evoked potentials (SEPs). As expected, availability of stable light touch reduced medial–lateral COP sway. Peak amplitudes for SEP components revealed reduced P100 (48%), but increased P50 (31%), N140 (80%), and P200 (20%) during stable touch versus no touch. The modulation of P50 and N140 was no longer present when comparing stable to control (touch), which suggested that attending to touch on either surface, regardless of stability reference, accounted for these changes. Conversely, P200 was increased (19%) when touching the stable surface. Our data show SEP modulation during a standing balance task related to hand contact. Facilitation of P200 in particular may indicate task-specific regulation of the cortical representation of fingertip afferent input when it is relevant to providing stable cues for static balance control.  相似文献   

12.
Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface, long-loop reflexes involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.  相似文献   

13.
Impaired postural control has been reported in patients with chronic neck pain of both traumatic and non-traumatic etiologies, but whether painful stimulation of neck muscle per se can affect balance control during quiet standing in humans remains unclear. The purpose of the present experiment was thus to investigate the effect of experimental neck muscle pain on standing balance in young healthy adults. To achieve this goal, 16 male university students were asked to stand upright as still as possible on a force platform with their eyes closed in two conditions of No pain and Pain of the neck muscles elicited by experimental painful electrical stimulation. Postural control and postural performance were assessed by the displacements of the center of foot pressure (CoP) and of the center of mass (CoM), respectively. The results showed increased CoP and CoM displacements variance, range, mean velocity, and mean and median frequencies in the Pain relative to the No pain condition. The present findings emphasize the destabilizing effect of experimental neck muscle pain per se, and more largely stress the importance of intact neck neuromuscular function on standing balance.  相似文献   

14.
In this study, we compared the ability of young (n=10, 19–32 years) and older subjects (n=35, 60–86 years) to use fingertip contact as a balance aid during quiet stance under various conditions to determine whether aging would influence contact strategies. Experimental trials (duration, 60 s) included two visual conditions (vision; no vision), three fingertip contact conditions (no touch; smooth touch; rough touch) and two support surface conditions (firm; foam). In trials with contact, participants were required to maintain a light contact with their right index fingertip on an instrumented touch-plate. Subjects were not constrained to exert minimal contact force, although they were aware that the touch-plate was not designed for physical support. From displacements of the centre of foot pressure (COP), mean sway amplitude (MSA) was computed in the anterior-posterior (COPAP) and medio-lateral (COPML) directions. Subjective estimates of stability were also obtained by asking participants to rate perceived stability on a visual analog scale in each condition. Mean normal force (F N ) and mean resultant tangential force (F TAN) were computed from contact force data applied on the touch plate. In both age groups, touch conditions had a substantial effect on MSA in the AP direction under both support surface conditions, with reductions averaging between 40–55% when touch was allowed. Reductions in the ML direction, though less important (8–12% on average), were nevertheless highly significant, especially in the older subjects when standing on the foam. In the two groups, vision and texture had only marginal impact on MSA computed on both support surfaces. Contrasting with sway measurements, stability ratings were highly influenced by visual conditions in both age groups. Only in conditions of deficient support (foam surface) and absent vision did the perceived effect of touch exceed that of vision. Age had a major impact, however, on contact forces deployed during trials with touch. While individuals in the young group typically produced forces of <1 N (mean F N , 0.32±0.15 N) to achieve postural stabilization, older subjects tended to use higher, though not too excessive, contact forces (mean F N , 1.21±0.75 N) under the same conditions. From these findings, we conclude that the ability to use contact cues from the fingertip as a source of sensory information to improve postural stability is largely preserved in healthy older adults. The increase in contact force deployed by older individuals to achieve postural stabilization is interpreted as a compensatory strategy to help overcome age-related loss in tactile sensation, an issue that will be further addressed in a companion paper.  相似文献   

15.
Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject’s body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.  相似文献   

16.
The purpose of this study was to investigate the effect of masticating chewing gum on postural stability during upright standing. To address this issue, 12 healthy subjects performed quiet standing on a force platform for the posturography study. The subjects were instructed to stand as stable as possible on the force platform in order to record the trajectory of the center-of-pressure (COP). After measuring the postural sway in the initial condition (pre-condition), the subjects were asked to stand while masticating chewing gum (gum-condition). Following the gum-condition, quiet standing without mastication was evaluated (post-condition) to ensure the effect of masticating chewing gum on postural stability. The trajectory and velocity of the COP were analyzed for each condition. We found that the postural stability tended to enhance during mastication of chewing gum. The rectangle area of the COP trajectory significantly diminished in the gum-condition and significantly enlarged in the post-condition. A similar effect was observed in the maximum velocity and standard deviation (SD) of the fore-aft amplitude of the COP trajectory. The values were significantly smaller in the gum-condition compared to those in the post-condition. These findings suggest that mastication of chewing gum affects the postural control by enhancing the postural stability during upright standing.  相似文献   

17.
The purpose of this study was to investigate whether vestibular and neck somatosensory weighting could change in conditions of trunk extensor muscle fatigue during quiet standing. To achieve this goal, 20 young healthy adults were asked to stand as still as possible in two conditions of No fatigue and Fatigue of trunk extensor muscles. In Experiment 1 (n = 10), the postural task was executed in two head conditions: Neutral and Head tilted backwards, recognised to degrade vestibular and neck somatosensory information. In Experiment 2 (n = 10), the postural task was executed in two stimulation conditions: No tactile stimulation and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. The centre of foot pressure displacements (CoP) were recorded using a force platform. Results showed that (1) trunk extensor muscles fatigue increased CoP displacements under normal vestibular and neck somatosensatory conditions (Experiments 1 and 2), (2) this destabilizing effect of fatigue was exacerbated when vestibular and neck somatosensory information was altered (Experiment 1) and (3) this destabilizing effect of fatigue was suppressed when neck somatosensory information was neck was facilitated (Experiment 2). Taken together, results of Experiments 1 and 2 could be interpreted as an up-weighting of vestibular and neck somatosensory information for controlling posture during quiet standing following trunk extensor muscles fatigue.  相似文献   

18.
The purpose of the present study was to determine the effects of a plantar pressure-based, tongue-placed tactile biofeedback on postural control mechanisms during quiet standing. To this aim, 16 young healthy adults were asked to stand as immobile as possible with their eyes closed in two conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP) displacements, recorded using a force platform, were used to compute the horizontal displacements of the vertical projection of the centre of gravity (CoG v ) and those of the difference between the CoP and the vertical projection of the CoG (CoP-CoG v ). Analysis of the CoP-CoG v displacements showed larger root mean square (RMS) and mean power frequencies (MPF) in the Biofeedback than in the No-biofeedback condition. Stabilogram-diffusion analysis further showed a concomitant increased spatial and reduced temporal transition point co-ordinates at which the corrective processes were initiated and an increased persistent behaviour of the CoP-CoG v displacements over the short-term region. Analysis of the CoG v displacements showed decreased RMS and increased MPF in the Biofeedback relative to the No-biofeedback condition. Stabilogram-diffusion analysis further indicated that these effects mainly stem from reduced spatio-temporal transition point co-ordinates at which the corrective process involving CoG v displacements is initiated and an increased anti-persistent behaviour of the CoG v displacements over the long-term region. Altogether, the present findings suggest that the main way the plantar pressure-based, tongue-placed tactile biofeedback improves postural control during quiet standing is via both a reduction of the correction thresholds and an increased efficiency of the corrective mechanism involving the CoG v displacements.  相似文献   

19.
The purpose of this study was to investigate the effects of unilateral muscle fatigue induced on the hip flexors/extensors or the ankle plantar/dorsiflexors on unipedal postural stability under different visual conditions. Twenty-four healthy young women completed 2 testing sessions 1?week apart with a randomized order assigned according to the muscles tested. During each session, one set of muscle groups was fatigued using isokinetic contractions: ankle plantar/dorsi flexors or hip flexor/extensors. Postural stability was assessed during trials of unilateral stance on a force plate before and after the fatigue protocol. 10?s into the trial, subjects were asked to close their eyes. Mean velocity, the area of the 95% confidence ellipse, and standard deviation of velocity in anteroposterior and mediolateral directions of center of pressure displacements were calculated for two periods of 5?s, immediately before and 1?s after the eyes closure. The results of the repeated measures ANOVAs showed a significant fatigue-by-fatigue segment by visual condition interaction for the CoP parameters. When the vision was removed, the interaction between fatigue and fatigue segment was significant for the CoP parameters. In conclusion, fatigue in both proximal and distal musculature of the lower extremity yielded decreased postural stability during unipedal quiet standing in healthy young women. This effect was more accentuated when visual information was eliminated. Withdrawing vision following fatigue to the proximal musculature, led to a significantly greater impairment of postural stability compared to the fatigue of more distal muscles.  相似文献   

20.
Contact of the hand with a stationary surface attenuates postural sway in normal individuals even when the level of force applied is mechanically inadequate to dampen body motion. We studied whether subjects without vestibular function would be able to substitute contact cues from the hand for their lost labyrinthine function and be able to balance as well as normal subjects in the dark without finger contact. We also studied the relative contribution of sight of the test chamber to the two groups. Subjects attempted to maintain a tandem Romberg stance for 25 s under three levels of fingertip contact: no contact; light-touch contact, up to 1 N (approximately 100 g) force; and unrestricted contact force. Both eyes open and eyes closed conditions were evaluated. Without contact, none of the vestibular loss subjects could stand for more than a few seconds in the dark without falling; all the normals could. The vestibular loss subjects were significantly more stable in the dark with light touch of the index finger than the normal subjects in the dark without touch. They also swayed less in the dark with light touch than when permitted sight of the test chamber without touch, and less with sight and touch than just sight. The normal subjects swayed less in the dark with touch than without, and less with sight and touch than sight alone. These findings show that during quiet stance light touch of the index finger with a stationary surface can be as effective or even more so than vestibular function for minimizing postural sway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号