共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bartha E Asmussen S Olah G Rehberg SW Yamamoto Y Traber DL Szabo C 《Shock (Augusta, Ga.)》2011,36(2):144-148
The nuclear enzyme poly(ADP-ribose)polymerase (PARP) plays a significant role in the pathogenesis of various forms of critical illness. DNA strand breaks induced by oxidative and nitrative stress trigger the activation of PARP, and PARP, in turn, mediates cell death and promotes proinflammatory responses. Until recently, most studies focused on the role of PARP in solid organs such as heart, liver, and kidney. We investigated the effect of burn and smoke inhalation on the levels of poly(ADP-ribosylated) proteins in circulating sheep leukocytes ex vivo. Adult female merino sheep were subjected to burn injury (2× 20% each flank, 3 degrees) and smoke inhalation injury (insufflated with a total of 48 breaths of cotton smoke) under deep anesthesia. Arterial and venous blood was collected at baseline, immediately after the injury and 1 to 24 h after the injury. Leukocytes were isolated with the Histopaque method. The levels of poly(ADP-ribosyl)ated proteins were determined by Western blotting. The amount of reactive oxygen species was quantified by the OxyBlot method. To examine whether PARP activation continues to increase ex vivo in the leukocytes, blood samples were incubated at room temperature or at 37°C for 3 h with or without the PARP inhibitor PJ34. To investigate whether the plasma of burn/smoke animals may trigger PARP activation, burn/smoke plasma was incubated with control leukocytes in vitro. The results show that burn and smoke injury induced a marked PARP activation in circulating leukocytes. The activity was the highest immediately after injury and at 1 h and decreased gradually over time. Incubation of whole blood at 37°C for 3 h significantly increased poly(ADP-ribose) levels, indicative of the presence of an ongoing cell activation process. In conclusion, PARP activity is elevated in leukocytes after burn and smoke inhalation injury, and the response parallels the time course of reactive oxygen species generation in these cells. 相似文献
3.
Inhibitors of poly(ADP-ribose) polymerase modulate signal transduction pathways and secondary damage in experimental spinal cord trauma 总被引:5,自引:0,他引:5
Genovese T Mazzon E Muià C Patel NS Threadgill MD Bramanti P De Sarro A Thiemermann C Cuzzocrea S 《The Journal of pharmacology and experimental therapeutics》2005,312(2):449-457
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the tissue injury associated with stroke and neurotrauma. The aim of our study was to evaluate the therapeutic efficacy of in vivo inhibition of PARP in an experimental model of spinal cord trauma, which was induced by the application of vascular clips (force of 24g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration (measured as an increase in myeloperoxidase activity), and apoptosis (measured by terminal deoxynucleotidyltransferase-mediated UTP end labeling coloration). Infiltration of spinal cord tissue with neutrophils was associated with a marked increase in immunoreactivity for poly(ADP-ribose) (PAR), index of PARP activation, in the spinal cord tissue. These inflammatory events were associated with the activation of nuclear factor-kappaB (NF-kappaB) at 4 h after spinal cord damage. Treatment of the mice with the PARP inhibitors 3-aminobenzamide (3-AB) or 5-aminoisoquinolinone (5-AIQ) significantly reduced the degree of 1) spinal cord inflammation and tissue injury (histological score), 2) PAR formation, 3) neutrophil infiltration, and 4) apoptosis. Treatment with these PARP inhibitors also reduced DNA binding of NF-kappaB and inhibitory kappaB degradation. In a separate set of experiments, we have also demonstrated that PARP inhibitors significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with PARP inhibitors reduces the development of inflammation and tissue injury events associated with spinal cord trauma. 相似文献
4.
Poly(ADP-ribose) polymerase (PARP) activation after free-radical-induced DNA damage depletes cellular energy stores and participates in ischemia-reflow injury. We studied the potential protective effect of the water-soluble PARP inhibitor 3-aminobenzamide (3-AB) in a rat model of acute renal failure (ARF) from combined administration of radiocontrast, indomethacin and N(omega)-nitro-L-arginine methyl ester. Kidney function at 24 h was better preserved in rats treated with 3-AB as compared to control animals. However, the extent of tubular hypoxic damage was not significantly mitigated. It is concluded that PARP inhibition may attenuate renal dysfunction in this model of ARF with medullary hypoxic tubular injury even while the extent of tubular necrosis is not significantly altered. Further studies of this dyssynchrony of structure and function may provide important insights into the sequence of events that promotes renal failure after medullary injury. 相似文献
5.
Inhibition of poly(ADP-ribose) polymerase prevents allergen-induced asthma-like reaction in sensitized Guinea pigs 总被引:2,自引:0,他引:2
Suzuki Y Masini E Mazzocca C Cuzzocrea S Ciampa A Suzuki H Bani D 《The Journal of pharmacology and experimental therapeutics》2004,311(3):1241-1248
Poly(ADP-ribose) polymerase (PARP) plays an important role in tissue injury in conditions associated with oxidative stress and inflammation. Because asthma is a chronic inflammatory disorder of the airways, we designed the present experimental study to evaluate the effects of PARP inhibition on allergen-induced asthma-like reaction in ovalbumin-sensitized guinea pigs. Cough and dyspnea in response to ovalbumin aerosol were absent in naive guinea pigs, whereas they became severe in the sensitized animals. In the latter ones, ovalbumin aerosol also induced a rapid increase in PARP activity, bronchiolar constriction, pulmonary air space inflation, mast cell degranulation, poly(ADP-ribose) and nitrotyrosine immunostaining, myeloperoxidase activity, and malondialdehyde in lung tissue, as well as a rise in the amounts of nitrites and tumor necrosis factor-alpha in bronchoalveolar lavage fluid. Pretreatment with the PARP inhibitors 3-aminobenzamide (10 mg/kg b.wt.) or 5-aminoisoquinolinone (0.5 mg/kg b.wt.) given i.p. 3 h before ovalbumin challenge significantly reduced the severity of cough and the occurrence of dyspnea and delayed the onset of respiratory abnormalities. Both PARP inhibitors were also able to prevent the above morphological and biochemical changes of lung tissue or bronchoalveolar lavage fluid induced by ovalbumin challenge. Conversely, p-aminobenzoic acid, the inactive analog of 3-aminobenzamide, had no effects. 相似文献
6.
Inhibition of poly (ADP-ribose) polymerase attenuates acute lung injury in an ovine model of sepsis 总被引:2,自引:0,他引:2
Murakami K Enkhbaatar P Shimoda K Cox RA Burke AS Hawkins HK Traber LD Schmalstieg FC Salzman AL Mabley JG Komjáti K Pacher P Zsengellér Z Szabó C Traber DL 《Shock (Augusta, Ga.)》2004,21(2):126-133
It is known that in various pathophysiological conditions, reactive oxidants cause DNA strand breakage and subsequent activation of the nuclear enzyme poly(ADP ribose) polymerase (PARP). Activation of PARP results in cellular dysfunction. We hypothesized that pharmacological inhibition of PARP reduces the damage in the ovine model of acute lung injury (ALI). After smoke inhalation, Pseudomonas aeruginosa (5 x 109 cfu/kg) was instilled into both lungs. All of the animals were mechanically ventilated with 100% O2. The infusion of the PARP inhibitor (INO-1001, n = 6) began 1 h after the injury and thereafter through 24 h (3 mg bolus + 0.3 mg/kg/h, i.v.). Control animals (n = 6) were treated with saline. Sham injury animals (n = 8) received sham smoke and were mechanically ventilated in the same fashion. One-half of those sham animals (n = 4) were given the same dose of INO-1001. PaO2/FiO2 ratio at 24 h in saline and in the INO-1001-treated groups were 95 +/- 22 and 181 +/- 22, respectively (P < 0.05). Peak airway pressure at 24 h in the saline- and INO-1001-treated groups was 32.6 +/- 3.0 and 24.4 +/- 2.2, respectively (P < 0.05). Pulmonary shunt fraction was also significantly attenuated. INO-1001 treatment reduced pulmonary histological injury and attenuated poly (ADP-ribose) accumulation in the lung. In conclusion, inhibition of PARP improved the ALI after smoke inhalation and pneumonia. The results suggest that the activation of PARP plays a role in the pathophysiology of ALI in sheep. 相似文献
7.
Inhibitors of poly(ADP-ribose) polymerase modulate signal transduction pathways and the development of bleomycin-induced lung injury 总被引:3,自引:0,他引:3
Genovese T Mazzon E Di Paola R Muià C Threadgill MD Caputi AP Thiemermann C Cuzzocrea S 《The Journal of pharmacology and experimental therapeutics》2005,313(2):529-538
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the tissue injury associated with inflammation. The aim of our study was to evaluate the therapeutic efficacy of in vivo inhibition of PARP in an experimental model of lung injury caused by bleomycin administration. Mice subjected to intratracheal administration of bleomycin developed significant lung injury and apoptosis (measured by Annexin V coloration). An increase of immunoreactivity to nitrotyrosine and PARP, as well as a significant loss of body weight and mortality, was observed in the lung of bleomycin-treated mice. Administration of the two PARP inhibitors 3-aminobenzamide (3-AB) or 5-aminoisoquinolinone (5-AIQ) significantly reduced the 1) loss of body weight, 2) mortality rate, 3) infiltration of the lung with polymorphonuclear neutrophils (myeloperoxidase activity), 4) edema formation, and 5) histological evidence of lung injury. Administration of 3-AB and 5-AIQ also markedly reduced nitrotyrosine formation and PARP activation. These results demonstrate that treatment with PARP inhibitors reduces the development of inflammation and tissue injury events induced by bleomycin administration in the mice. 相似文献
8.
9.
Myocardial ischemia-reperfusion can lead to increased oxidative stress both locally and in circulating leukocytes. Oxidant-mediated DNA single strand breaks are known to activate the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in various forms of shock, inflammation, and ischemia-reperfusion injury. The aim of the current study was to investigate whether a local insult such as myocardial ischemia-reperfusion is sufficient to lead to activation of PARP in circulating leukocytes. In anesthetized rats myocardial ischemia-reperfusion was induced by transient ligation of the left anterior descending coronary artery. There was a marked increase in poly(ADP-ribosyl)ation of proteins in homogenates of leukocytes isolated from rats at the end of the reperfusion period. Poly(ADP-ribosyl)ation was inhibited by administration of the pharmacologic PARP inhibitor INO-1001 (30 mg/kg) to the rats. We conclude that local insults, such as myocardial reperfusion injury, are sufficient to activate PARP in circulating leukocytes. PARP activation in circulating cells may mediate certain systemic effects of local ischemia-reperfusion injury such as inflammatory mediator production and remote organ injury. 相似文献
10.
AIM OF THE STUDY: The aim of our study was to compare poly(ADP-ribose) polymerase (PARP) activity levels in a porcine model of hemorrhagic shock and resuscitation. MATERIALS AND METHODS: We designed a prospective, comparative randomized survival study of hemorrhagic shock using 20 male Yorkshire-Landrace pigs (15-25 kg). In 16 pigs after splenectomy, we induced hemorrhagic shock to a mean arterial pressure of 50 mm Hg ( approximately 35% bleed). Pigs were randomized to receive normotensive resuscitation (SBP 90 mm Hg), mild hypotensive resuscitation (SBP 80 mm Hg), moderate hypotensive resuscitation (SBP 65 mm Hg), or no resuscitation (n=4 in each group). We also included a group of sham animals that were instrumented and had a splenectomy but not bled (n=4). Muscle and liver biopsies were taken prior to hemorrhage, after 45 min of shock, and 8, 24, and 48 h after resuscitation. PARP activity levels in biopsies were measured using chemical quantitation of NAD+. RESULTS: Irrespective of our resuscitation strategy or outcome, both muscle and liver PARP activity levels rose after 45 min of shock and then returned to baseline. Excluding our control animals, PARP activity levels were significantly higher during shock in non-survivors compared to survivors. CONCLUSIONS: In our model of porcine hemorrhagic shock, PARP activity levels increased during hemorrhagic shock. However, this increase in PARP activity levels was transient as they returned to baseline regardless of resuscitation strategy. Interestingly, PARP activity levels were significantly higher during hemorrhagic shock in non-survivors compared to survivors. These findings suggest that PARP activity may be a part of initial pathways leading from hemorrhagic shock to death. 相似文献
11.
Miknyoczki SJ Jones-Bolin S Pritchard S Hunter K Zhao H Wan W Ator M Bihovsky R Hudkins R Chatterjee S Klein-Szanto A Dionne C Ruggeri B 《Molecular cancer therapeutics》2003,2(4):371-382
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear zinc finger DNA-binding protein that is implicated in the repair of DNA damage. Inhibition of PARP-1 through genetic knockouts causes cells to become hypersensitive to various chemotherapeutic agents. We tested the chemopotentiating ability of the PARP-1 inhibitor, CEP-6800, when used in combination with temozolomide (TMZ), irinotecan (camptothecin or SN38), and cisplatin against U251MG glioblastoma, HT29 colon carcinoma, and Calu-6 non-small cell lung carcinoma xenografts and cell lines, respectively. Exposure of tumor cells to TMZ, camptothecin (or SN38), and cisplatin before, or in the presence of, CEP-6800 significantly increased the onset and the magnitude of DNA damage, the duration for cells to effect repair, and the onset, duration, or fraction of cells arrested at the G(2)/M boundary. In addition, in vivo biochemical efficacy studies with CEP-6800 showed that it was able to attenuate irinotecan- and TMZ-induced poly(ADP-ribose) accumulation in LoVo and HT29 xenografts, respectively. Treatment of CEP 6800 (30 mg/kg) with TMZ (17 and 34 mg/kg) resulted in 100% complete regression of U251MG tumors by day 28 versus 60% complete regression caused by TMZ alone. CEP-6800 (30 mg/kg) in combination with irinotecan (10 mg/kg) resulted in a 60% inhibition of HT29 tumor growth versus irinotecan alone by day 33. The combination therapy of cisplatin (5 mg/kg) with CEP-6800 (30 mg/kg) caused a 35% reduction in Calu-6 tumor growth versus cisplatin alone by day 28. These data suggest that CEP-6800 could be used as a chemopotentiating agent with a variety of clinically effective chemotherapeutic agents. 相似文献
12.
目的:研究局灶性脑缺血再灌注后多聚(ADP-核糖)聚合酶(PARP)表达的时空变化及其作用。方法:采用改良线栓法建立大鼠大脑中动脉缺血再灌注模型(MCAO-R,)运用免疫组织化学方法检测PARPM116000),PARP(r(Mr24000)和caspasse-3表达的时空变化,苏木精-伊红染色观察组织病理变化。结果:脑缺血2h再灌注12h,PARP(M116000)及caspase-3表达增r多,且随再灌时间的延长而表达逐渐增多(P<0.05),并向四周动态扩展。缺血3h组PARP(M116000)蛋白阳性表达也增强,但表达程度与r缺血2h组相比略有下降,在再灌注3d时表达最少。缺血6h组PARP(M116000)蛋白表达减少,且不随再灌注时间的延长而有明显变化。r而PARP(M24000)蛋白在缺血2h再灌注12h阳性表达增加,但不r随缺血时间及再灌注时间的延长而明显变化,呈平稳的低水平表达,与caspase-3的变化趋势也无相关性。结论:在脑缺血再灌注损伤中PARP活化的主要损伤作用是坏死而非凋亡。 相似文献
13.
14.
Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure 总被引:9,自引:0,他引:9
Pacher P Liaudet L Bai P Virag L Mabley JG Haskó G Szabó C 《The Journal of pharmacology and experimental therapeutics》2002,300(3):862-867
Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) by oxidant-mediated DNA damage is an important pathway of cell dysfunction and tissue injury in conditions associated with oxidative stress. Increased oxidative stress is a major factor implicated in the cardiotoxicity of doxorubicin (DOX), a widely used antitumor anthracycline antibiotic. Thus, we hypothesized that the activation of PARP may contribute to the DOX-induced cardiotoxicity. Using a dual approach of PARP-1 suppression, by genetic deletion or pharmacological inhibition with the phenanthridinone PARP inhibitor PJ34, we now demonstrate the role of PARP in the development of cardiac dysfunction induced by DOX. PARP-1+/+ and PARP-1-/- mice received a single injection of DOX (25 mg/kg i.p). Five days after DOX administration, left ventricular performance was significantly depressed in PARP-1+/+ mice, but only to a smaller extent in PARP-1-/- ones. Similar experiments were conducted in BALB/c mice treated with PJ34 or vehicle. Treatment with a PJ34 significantly improved cardiac dysfunction and increased the survival of the animals. In addition PJ34 significantly reduced the DOX-induced increase in the serum lactate dehydrogenase and creatine kinase activities but not metalloproteinase activation in the heart. Thus, PARP activation contributes to the cardiotoxicity of DOX. PARP inhibitors may exert protective effects against the development of severe cardiac complications associated with the DOX treatment. 相似文献
15.
Thomas HD Calabrese CR Batey MA Canan S Hostomsky Z Kyle S Maegley KA Newell DR Skalitzky D Wang LZ Webber SE Curtin NJ 《Molecular cancer therapeutics》2007,6(3):945-956
Poly(ADP-ribose) polymerase (PARP)-1 (EC 2.4.2.30) is a nuclear enzyme that promotes the base excision repair of DNA breaks. Inhibition of PARP-1 enhances the efficacy of DNA alkylating agents, topoisomerase I poisons, and ionizing radiation. Our aim was to identify a PARP inhibitor for clinical trial from a panel of 42 potent PARP inhibitors (K(i), 1.4-15.1 nmol/L) based on the quinazolinone, benzimidazole, tricyclic benzimidazole, tricyclic indole, and tricyclic indole-1-one core structures. We evaluated chemosensitization of temozolomide and topotecan using LoVo and SW620 human colorectal cells; in vitro radiosensitization was measured using LoVo cells, and the enhancement of antitumor activity of temozolomide was evaluated in mice bearing SW620 xenografts. Excellent chemopotentiation and radiopotentiation were observed in vitro, with 17 of the compounds causing a greater temozolomide and topotecan sensitization than the benchmark inhibitor AG14361 and 10 compounds were more potent radiosensitizers than AG14361. In tumor-bearing mice, none of the compounds were toxic when given alone, and the antitumor activity of the PARP inhibitor-temozolomide combinations was unrelated to toxicity. Compounds that were more potent chemosensitizers in vivo than AG14361 were also more potent in vitro, validating in vitro assays as a prescreen. These studies have identified a compound, AG14447, as a PARP inhibitor with outstanding in vivo chemosensitization potency at tolerable doses, which is at least 10 times more potent than the initial lead, AG14361. The phosphate salt of AG14447 (AG014699), which has improved aqueous solubility, has been selected for clinical trial. 相似文献
16.
17.
Inhibition of poly (ADP-ribose) Synthetase Attenuates Neutrophil Recruitment and Exerts Antiinflammatory Effects 总被引:14,自引:0,他引:14 下载免费PDF全文
Csaba Szab Lina H.K. Lim Salvatore Cuzzocrea Stephen J. Getting Basilia Zingarelli Roderick J. Flower Andrew L. Salzman Mauro Perretti 《The Journal of experimental medicine》1997,186(7):1041-1049
A cytotoxic cycle triggered by DNA single-strand breakage and poly (ADP-ribose) synthetase activation has been shown to contribute to the cellular injury during various forms of oxidant stress in vitro. The aim of this study was to investigate the role of poly (ADP-ribose) synthetase (PARS) in the process of neutrophil recruitment and in development of local and systemic inflammation. In pharmacological studies, PARS was inhibited by 3-aminobenzamide (10–20 mg/kg) in rats and mice. In other sets of studies, inflammatory responses in PARS−/− mice were compared with the responses in corresponding wild-type controls. Inhibition of PARS reduced neutrophil recruitment and reduced the extent of edema in zymosan- and carrageenan-triggered models of local inflammation. Moreover, inhibition of PARS prevented neutrophil recruitment, and reduced organ injury in rodent models of inflammation and multiple organ failure elicited by intraperitoneal injection of zymosan. Inhibition of PARS also reduced the extent of neutrophil emigration across murine mesenteric postcapillary venules. This reduction was due to an increased rate of adherent neutrophil detachment from the endothelium, promoting their reentry into the circulation. Taken together, our results demonstrate that PARS inhibition reduces local and systemic inflammation. Part of the antiinflammatory effects of PARS inhibition is due to reduced neutrophil recruitment, which may be related to maintained endothelial integrity. 相似文献
18.
Cuvelier SL Paul S Shariat N Colarusso P Patel KD 《The Journal of experimental medicine》2005,202(6):865-876
Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4-stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule-1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechano-sensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking. 相似文献
19.