首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
侧向电子失衡对肺部肿瘤放射治疗计划设计的影响   总被引:6,自引:0,他引:6  
目的 :分析高能X射线通过低密度的肺组织时 ,侧向电子失衡对肺部肿瘤放射治疗计划的影响。方法 :用 6MV和 18MVX射线对一例肺癌进行三维适形治疗 (3D CRT)计划设计 ,并用Helax TMS计划系统提供的笔形束算法和筒串算法对两种能量下的布野方案相同的 3D CRT计划进行剂量计算 ,比较靶区及危及器官的剂量分布、DVH等指标。结果 :采用笔形束算法 6MV与 18MV计划的等剂量线和DVH相近 ,18MV计划的靶区剂量均匀性略优于 6MV计划 ;而当采用能进行电子侧向散射修正的筒串算法时 ,靶区的高剂量覆盖程度明显变差 ,18MV计划靶区剂量亏损更为显著 ,6MV计划高剂量覆盖靶区的程度优于 18MV计划 ;不同能量、算法下肺和脊髓的受量基本相同。结论 :对于肺部肿瘤 ,剂量计算应采用能够准确修正不均匀组织影响的算法 ,非调强放射治疗时最好使用 6MVX射线。  相似文献   

2.
本文基于点核叠加的剂量计算模型,提出了一种由点核叠加构建的笔形束核进行剂量计算的方法,这种方法可大大提高调强放射治疗(IMRT)优化迭代过程的剂量计算速度,使得基于点核叠加技术的计划系统得以集成直接孔隙的逆向调强技术。通过对模体及临床实际病例进行试验,结果表明此方法在提高剂量计算速度的同时,也保证了迭代过程剂量计算的精度,从而保证了与使用精确剂量计算模型得到的优化结果相一致,完全可用于调强优化过程中的剂量计算。在基于点核叠加剂量计算模型的计划系统中使用该方法,可以避免重新研发笔形束剂量计算模型以及产品维护造成的成本大量增加。  相似文献   

3.
目的:分析、比较笔形束卷积算法(PBC)和各向异性解析算法(AAA)在非小细胞肺癌(NSCLC)调强放疗计划设计中的剂量学差异。方法:随机选择7例NSCLC患者,采用Eclipse version 7.3.10计划系统提供的PBC算法和AAA算法对每例NSCLC进行IMRT的计划设计,比较靶区及危及器官的剂量分布、DVH等指标。结果:两种算法获得治疗计划的靶区剂量均匀性和适形度均无明显差别,食管、心脏、脊髓等危及器官的受量也基本相同。结论:对于NSCLC,剂量计算应采用受呼吸时相影响更小的AAA算法。  相似文献   

4.
目的:本文分析了CMS治疗计划系统XiO在制定调强放射治疗(IMRT)计划时,子野权重优化对治疗计划结果的影响。方法:本文选取10例宫颈癌全程放射治疗病例,制定影像引导下(IGRT)的调强放射治疗计划,首先直接用静态调强(Step&Shoot)方式进行优化一步生成调强放射治疗计划(S-IMRT),之后继续进行子野权重优化(Segment weight op-timization,SWO)并生成新的治疗计划(SWO-IMRT),比较子野权重优化前后总子野数、总跳数,同时分析比较正常组织受照剂量的变化。结果:结果显示,经过子野权重优化后,总的子野数显著减少,减少约26%~31%(p<0.0001);总的机器跳数有所降低,减少约5.1%~9.7%(p<0.0001),同时,直肠、膀胱和小肠的剂量也有所降低。结论:在使用CMS治疗计划系统XiO进行宫颈癌全程调强放射治疗计划设计过程中,充分利用子野权重优化方式,可以减少总的机器跳数,降低正常组织剂量,缩短治疗时间,这既降低正常组织的毒性反应,也为肿瘤剂量的提高提供了可能。在其他病种的调强放射治疗计划设计中,子野权重优化也可以发挥重要的作用。  相似文献   

5.
目的:研究调强放射治疗(IMRT)的具体实现与约束条件的表述。材料与方法:在每个射野方向上,利用真实的笔形束剂量分布数据,并加入机头散射、组织补偿等因素,计算得到单位剂量笔形束在特定位置形成的剂量分布。在优化过程中,以此笔形束剂量分布为依据进行剂量计算。用Visual C++6.0编写基于共轭梯度法的IMRT的算法实现,并考虑多种约束条件。最后求解优化的射野笔形束权重,并加以分析。结果:在TPS软件中集成IMRT功能,并进行模拟病例的优化,获得了高适形度的剂量分布,满足DVH约束。结论:结合特定的约束条件,共轭梯度法能有效的优化射野笔形束权重,并且有较快的计算速度,有广阔的应用前景。  相似文献   

6.
目的:通过比较体模测量点算法计算值与实际测量值的辐射剂量差异,比较放射治疗计划系统(TPS)中蒙卡算法(MC)、光子笔形束卷积算法(PBC)和筒串卷积算法(CCC)在计算肺癌三维立体定向放疗计划的差异。方法:将个性化组织等效胸部体模的CT图像传输至TPS系统,勾勒靶区,并制定合适的投照计划。将肿瘤组织、肺内正常组织与脊髓3个测量点单独插入电离室,并用相对应的等效材料的仿真块填补剩余2个预留测量点位置,再进行CT扫描。通过影像融合匹配图层、统一靶区,根据投照计划进行实际投照,并分别用3种算法进行辐射剂量的计算(计算值)。结果:个性化仿真胸部体模的脂肪组织、肌肉组织、骨和肿瘤的CT值分别为(-100±30)、(40±20)、(210±90)和(33±16)HU,与患者的CT值范围相近,接近组织辐射等效。CCC、MC和PBC算法对肺部正常组织的计算误差分别为2.51%、-2.51%、1.02%,对肿瘤组织剂量计算误差分别为0.18%、0.66%、0.42%,对脊髓剂量的计算误差分别为7.32%、9.76%和-53.66%。结论:通过组织等效体模比较MC、PBC、CCC算法在三维适形放疗计划的剂量计算。MC算法与CCC算法计算值均高估肿瘤组织、肺部正常组织和脊髓的剂量。MC算法计算肿瘤组织比CCC算法略有优势,但计算肺部正常组织与脊髓的剂量明显差于CCC算法。PBC算法在计算脊髓组织剂量上误差较大,可能是因为PBC算法在非均匀组织计算中未考虑计算点周围散射线的影响,故不推荐使用PBC算法。  相似文献   

7.
电子束剂量计算的实现   总被引:1,自引:0,他引:1  
目的:研究了Hogstrom笔形束电子剂量计算算法的实现,验证了算法的可行性.方法:(1)从物理学的角度,论述了电子束剂量计算的基本原理;(2)论述了Hogstrom算法的实现过程;(3)使用实测数据对Hogstrom算法进行了验证.结果:Hogstrom算法的计算曲线与实验测量曲线有比较好的符合性.结论:Hogstrom笔形束算法是一种解决电子剂量计算问题的有效方法,具有一定的临床可行性.  相似文献   

8.
目的:评价调强放射治疗计划与三维适形计划对于儿童腹部神经母细胞瘤剂量学上的差异。方法:选取10例儿童腹部神经母细胞瘤图像,分别制定三维适形计划和调强放射治疗计划,处方剂量为21.6 Gy/12 Fx,比较正常组织肾脏和肝脏的剂量。同时比较靶区的剂量、均匀性指数(Homogeneity Index,HI)和适形指数(Conformity Index,CI)。结果:根据剂量体积直方图,评估两种治疗方式下覆盖靶区95%体积的剂量,靶区的HI以及近似最大剂量D_(2%),近似最小剂量D_(98%)无显著差异,调强放射治疗计划的靶区CI明显优于三维适形放射治疗。对于正常组织,使用三维适形放射治疗肝脏的V_8和V_(15)分别为40.3%±19.1%和25.7%±16.7%,使用调强放射治疗肝脏的V_8和V_(15)分别为45.5%±17.5%和16.9%±13.3%;三维适形放射治疗左肾脏的V_(15)和V_(18)分别为37.4%±20.4%和21.6%±12.2%,使用调强放射治疗左侧肾脏的V_(15)和V_(18)分别为15.3%±5.2%和5.7%±3.6%;三维适形放射治疗右肾脏的V_(15)和V_(18)分别为29.4%±16.4%和20.6%±14%,使用调强放射治疗右肾脏的V_(15)和V_(18)分别为13.3%±7.4%和5.9%±3.9%。两种治疗方式评估肝脏的剂量,无显著差异,评估肾脏的剂量,调强放射治疗明显更好保护了肾脏。结论:使用调强放射治疗技术靶区的剂量更加适形,并可以更好地保护肾脏,但是由于照射范围中低剂量区范围较大,在儿童患者中使用仍然需要谨慎。  相似文献   

9.
目的比较动态多叶光栅(DMLC)调强放射治疗与分步照射(SS)调强放射治疗的剂量学差异,为DMLC调强放射治疗在宫颈癌放射治疗中临床应用提供依据。方法选择20例经病理确诊的宫颈癌患者,年龄41~69岁,平均年龄53岁。分别使用DMLC调强技术和SS调强技术进行放射治疗计划设计,然后对两种放射治疗计划进行剂量学的对比,主要比较了剂量体积直方图、靶区剂量分布、危及器官受量、机器跳数和实际治疗时间。结果 DMLC调强放射治疗计划与SS调强放射治疗计划对靶区的覆盖程度是基本一致的,但最大剂量、均匀指数两者差异存在统计学意义(t=-11.686、-4.243,P 0.05),DMLC调强放射治疗计划的靶区剂量更均匀、最大剂量更低。对于危及器官的受量,膀胱、直肠4 500 cGy剂量的受照体积,两者差异有统计学意义(t=-4.469、-5.029,P 0.05),DMLC调强放射治疗计划的受照体积更少。对于膀胱、直肠、小肠、股骨头和乙状结肠的平均剂量,小肠的3 000 cGy、4 000 cGy剂量的受照体积,以及股骨头的最大剂量,虽然差异无统计学意义,但DMLC调强放射治疗计划均低于(少于)SS调强放射治疗计划。DMLC调强放射治疗计划的单次机器跳数高于SS调强放射治疗计划,但DMLC调强放射治疗计划的单次治疗时间更少。结论宫颈癌DMLC调强放射治疗计划和SS调强放射治疗计划都能满足临床要求,但DMLC调强放射治疗计划的靶区剂量均匀性更好,对危及器官的保护也更好,且大大缩短了单次治疗时间。  相似文献   

10.
目的:探讨不同计划系统胸部肿瘤患者的静态调强放疗计划的物理剂量参数,比较两种计划系统Oncentra和Raystation的剂量体积直方图,为临床治疗更优选择提供依据。方法:回顾129例胸部肿瘤患者静态调强治疗计划,比较和分析两个计划系统Oncentra4.3和Raystation 4.72在同一加速器(医科达Synergy)相同射野、子野和子野MU、相同计算网格条件下的靶区(D_(98)、D_(95)、D_(50)、D_2)、脊髓(D_2)、全肺(V_5、V_(20))、肺平均剂量的物理参数。结果:同一治疗计划(包括RT image、RT plan、RT structure)经过两个不同计划系统计算(保持相同的计算网格),剂量体积直方图有一定差异。Lung_V_5、Lung_V_(20)、Lung_D_(mean)误差较大,Cord_D_2、PTV_D_(98)、PTV_D_(95)、PTV_D_(50)、PTV_D_2误差较小。除Lung_V_5外,其他差异均符合正态分布,这个差异具有统计学意义。结论:不同的计划系统之间存在着一定的差异,在评估不同计划系统的计划时,要考虑计划系统之间因建模及算法等原因所造成的剂量分布差异,尤其是在考虑胸部肿瘤患者肺受量,应针对具体病例及计划系统进行分析。  相似文献   

11.
目的:探讨最新推出基于蒙特卡罗方法的DPM(dose planning method)程序在放疗剂量计算中的应用,研究DPM程序计算放疗剂量的准确性及其临床应用的可行性。方法:对DPM源文件编译形成四个可执行文件,使其能在Windows系统下运行。(1)通过借助蒙卡BEAMnrc程序模拟我院Varian Clinac 21EX直线加速器治疗头,得到其相空间文件,并计算出SSD=100cm处的相空间(Phase Space)数据。(2)使用BEAMDP程序对该相空间文件进行能谱分析,获取到6MV-X线能谱分布。(3)修改DPM源程序,使之能调用该能谱。(4)DPM计算出水模体内百分深度剂量并用MATLAB软件显示PDD曲线分布,与实际测量进行拟合。(5)DPM计算非均匀组织内方野剂量,相同条件下与实测量、TPS计算值进行了比较。结果:蒙卡DPM程序调用直线加速器能谱计算水模体内的PDD曲线与实测曲线的拟合完全吻合,证明了DPM程序调用能谱方法可行而且计算准确。DPM蒙卡程序在非均匀组织中的计算也是准确的。结论:DPM蒙卡方法可应用实现组织中放疗剂量计算的研究。  相似文献   

12.
目的:评估分别采用AAA(Analytic Anisotropic Algorithm)算法和PBC(Pencil Beam Convolution)算法所制订的IMRT计划在质量学验证方面的差异。方法:选取20例肺部肿瘤患者,对每个病例分别用AAA和PBC两种算法进行剂量计算得到2个IMRT计划,将病人的IMRT计划移植至模体生成QA(quality assurance)计划,使用Mapcheck工具对QA计划分别进行剂量学验证,并对结果进行比较和分析。结果:采用AAA算法进行肺部肿痛的剂量运算时,其所得到的治疗计划在剂量验证的结果方面要明显优于PBC算法所得到的治疗计划,值得注意的是,在其中进一步选取7例靶区位置和形态较为复杂的病例,出现以上结果的现象会更加明显。结论:从剂量学验证的角度来看,对于类似于肺部肿瘤这种靶区周围存在明显密度差异的肿瘤,在选取IMRT计划中剂量运算法则时,AAA算法剂量学验证的γ通过率更高,运算更加准确,尤其是如果靶区较为复杂时,这种表现更加显著。  相似文献   

13.
An extensive set of benchmark measurement of PDDs and beam profiles was performed in a heterogeneous layer phantom, including a lung equivalent heterogeneity, by means of several detectors and compared against the predicted dose values by different calculation algorithms in two treatment planning systems. PDDs were measured with TLDs, plane parallel and cylindrical ionization chambers and beam profiles with films. Additionally, Monte Carlo simulations by means of the PENELOPE code were performed. Four different field sizes (10 x 10, 5 x 5, 2 x 2, and 1 x 1 cm2) and two lung equivalent materials (CIRS, p(w)e=0.195 and St. Bartholomew Hospital, London, p(w)e=0.244-0.322) were studied. The performance of four correction-based algorithms and one based on convolution-superposition was analyzed. The correction-based algorithms were the Batho, the Modified Batho, and the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system and the TMS Pencil Beam from the Helax-TMS (Nucletron) treatment planning system. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. The only studied calculation methods that correlated successfully with the measured values with a 2% average inside all media were the Collapsed Cone and the Monte Carlo simulation. The biggest difference between the predicted and the delivered dose in the beam axis was found for the EqTAR algorithm inside the CIRS lung equivalent material in a 2 x 2 cm2 18 MV x-ray beam. In these conditions, average and maximum difference against the TLD measurements were 32% and 39%, respectively. In the water equivalent part of the phantom every algorithm correctly predicted the dose (within 2%) everywhere except very close to the interfaces where differences up to 24% were found for 2 x 2 cm2 18 MV photon beams. Consistent values were found between the reference detector (ionization chamber in water and TLD in lung) and Monte Carlo simulations, yielding minimal differences (0.4%+/-1.2%). The penumbra broadening effect in low density media was not predicted by any of the correction-based algorithms, and the only one that matched the experimental values and the Monte Carlo simulations within the estimated uncertainties was the Collapsed Cone Algorithm.  相似文献   

14.
The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (D(min)), the dose received by 98% of the target volume (D98), dose at the isocentre (D(iso)), mean target dose (D(mean)) and the maximum critical structure dose (D(max)) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.  相似文献   

15.
目的:比较Varian治疗计划系统Eclipse中AAA算法和PBC算法在食管癌调强放疗中的剂量学差异。方法:选择22例中段食管癌患者,分别采用AAA算法与PBC算法设计两种调强计划,比较靶区的剂量分布,肺、脊髓和心脏等危及器官受照剂量的差异。结果:PGTV最大剂量、PTV平均剂量和左肺的平均剂量两种算法无显著性差异(P〉0.05),PGTV和PTV最小剂量、PTV最大剂量、参考剂量所包靶区的体积(V95)和其他危及器官的受量,两种算法均有显著性差异(P〈0.05)。结论:与PBC算法相比,AAA算法对不均匀组织的修正更加精确,对于食管癌这种与肺相关的剂量计算采用AAA算法更准确一些。  相似文献   

16.
17.
目的:分析、比较用于治疗非小细胞肺癌(NSCLC)的基于Helical TomoTherapy(HT)和常规加速器的调强放疗(IMRT)计划靶区剂量均匀性、适形度以及危及器官受照体积和剂量分布方面的差异,为HT技术进一步深入运用于临床工作提供了参考数据。方法:回顾性随机选择10例NSCLC患者,分别采用HT加速器和常规加速器对每例NSCLC患者行IMRT计划设计,然后比较靶区及危及器官(OARs)的剂量体积参数的差异。结果:在靶区方面,HT IMRT计划的靶区剂量均匀性指数(HI)和适形度指数(CI)均优于常规加速器IMRT(P=0.035、P=0.000)。在OARs方面,对于正常肺组织、V50、V30、V10、V5、平均剂量Dmean的差异有显著性意义(P=0.019、P=0.001、P=0.000、P=0.004、P=0.010)。就V5、V10、Dmean而言,HT计划高于常规加速器计划,就V20、V30、V50而言,HT计划低于后者。食管V35、Dmean的差异有显著性意义(P=0.006、P=0.015),而食管V55、心脏、脊髓等危及器官的受量基本相同。结论:对于NSCLC,基于HT的调强放疗能够提高更好的靶区适形度和均匀性,正常肺组织低剂量区受照体积增大,在临床应用中应予以注意。  相似文献   

18.
Luo W  Li J  Price RA  Chen L  Yang J  Fan J  Chen Z  McNeeley S  Xu X  Ma CM 《Medical physics》2006,33(7):2557-2564
Conventional IMRT dose verification using film and ion chamber measurements is useful but limited with respect to the actual dose distribution received by the patient. The Monte Carlo simulation has been introduced as an independent dose verification tool for IMRT using the patient CT data and MLC leaf sequence files, which validates the dose calculation accuracy but not the plan delivery accuracy. In this work, we propose a Monte Carlo based IMRT dose verification method that reconstructs the patient dose distribution using the patient CT, actual beam data based on the information from the record and verify system (R/V), and the MLC log files obtained during dose delivery that record the MLC leaf positions and MUs delivered. Comparing the Monte Carlo dose calculation with the original IMRT plan using these data simultaneously validates the accuracy of both the IMRT dose calculation and beam delivery. Such log file based Monte Carlo simulations are expected to be employed as a useful and efficient IMRT QA modality to validate the dose delivered to the patient. We have run Monte Carlo simulations for eight IMRT prostate plans using this method and the results for the target dose were consistent with the original CORVUS treatment plans to within 3.0% and 2.0% with and without heterogeneity corrections in the dose calculation. However, significant dose deviations in nearby critical structures have been observed. The results showed that up to 9.0% of the bladder dose and up to 38.0% of the rectum dose, to which leaf position errors were found to contribute <2%, were underestimated by the CORVUS treatment planning system. The concept of average leaf position error has been defined to analyze MLC leaf position errors for an IMRT plan. A linear correlation between the target dose error and the average position error has been found based on log file based Monte Carlo simulations, showing that an average position error of 0.2 mm can result in a target dose error of about 1.0%.  相似文献   

19.
This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5 X 5.0 mm2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is approximately 33% compared to fluence-based optimization methods.  相似文献   

20.
目的:用蒙特卡罗模拟评估放射治疗剂量计算使用的各向异性分析算法(Anisotropic Analytical Algorithm,AAA)在小野条件下肺介质中的计算精度。材料与方法:建立一包含肺介质的水模体,分别用AAA算法、笔形束卷积算法(Pencil Beam Convolution,PBC算法)(作为对比)和蒙特卡罗(Monte Carlo,MC)模拟计算2cm×2cm到8cm×8cm射野条件下该模体中的深度剂量和离轴比,并以MC模拟为标准比较深度剂量。用一维伽马分析对离轴比进行分析。结果:AAA算法在2cmx2cm射野肺介质区域高估了深度剂量,其它情况均低估了深度剂量,剂量偏差范围为-0.24%-2.66%.PBC算法在肺介质区域高估了深度剂量,剂量偏差的范围为1.18%~14.55%。AAA算法计算的离轴比和MC模拟,在射野剂量平坦区相对内收,在剂量跌落区向两侧发散,但AAA算法略高估了射野边缘的剂量,一维伽马分析(与MC相比)通过率为100%(3mm/3%)。PBC算法在射野剂量平坦区相对发散,而在剂量跌落区向两侧内收。一维伽马分析通过率范围为51%~88%。结论:在肺介质中,AAA剂量计算的结果与MC模拟的一致性较好,与PBC算法相比,剂量计算的精度较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号