首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power >5 kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux.In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4 kW/cm2 and volumetric power density around 2 MW/cm3 at a lithium flow of ~4 m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2 mm) 1.91 MeV, 3 mA proton beam. A high-intensity proton beam irradiation (1.91–2.5 MeV, 2 mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator.In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91 MeV) 7Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.  相似文献   

2.
Clinical results of boron neutron capture therapy (BNCT) for glioblastoma   总被引:1,自引:0,他引:1  
The purpose of this study was to evaluate the clinical outcome of BSH-based intra-operative BNCT (IO-BNCT) and BSH and BPA-based non-operative BNCT (NO-BNCT). We have treated 23 glioblastoma patients with BNCT without any additional chemotherapy since 1998. The median survival time (MST) of BNCT was 19.5 months, and 2-year, 3-year and 5-year survival rates were 26.1%, 17.4% and 5.8%, respectively. This clinical result of BNCT in patients with GBM is superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment.  相似文献   

3.
Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a (7)Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.  相似文献   

4.
用于硼中子俘获治疗的超热中子束理论设计   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 设计用于硼中子俘获治疗(BNCT)的超热中子束理论方案。方法 基于清华大学试验核反应堆,以其1号孔道为材料布放孔道,设计了由慢化材料、热中子吸收材料、γ屏蔽材料组成,但材料布放位置具有差异的5种理论方案;利用蒙特卡罗(MC)模拟方法,分别计算5种方案束出口处的中子注量率、剂量率及γ剂量率值,通过与BNCT技术指标对比,从5种方案中选择一种合适的方案。结果 得到了一个符合BNCT各项技术指标的超热中子束理论方案,其慢化材料厚度为53.5 cm、热中子吸收材料厚度为2 mm、γ屏蔽材料厚度为9 cm。结论 本研究给出的超热中子束理论方案为基于反应堆实现BNCT提供一定的理论参考。  相似文献   

5.
6.
Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.  相似文献   

7.
The purpose of this study was to compare the radiation dose between long-survivors and non-long-survivors in patients with glioblatoma (GBM) treated with boron neutron capture therapy (BNCT). Among 23 GBM patients treated with BNCT, there were five patients who survived more than three years after diagnosis. The physical and weighted dose of the minimum gross tumor volume (GTV) of long-survivors was much higher than that of non-long survivors with significant statistical differences.  相似文献   

8.
The radiobiology of the dose components in a BNCT exposure is examined. The effect of exposure time in determining the biological effectiveness of γ-rays, due to the repair of sublethal damage, has been largely overlooked in the application of BNCT. Recoil protons from fast neutrons vary in their relative biological effectiveness (RBE) as a function of energy and tissue endpoint. Thus the energy spectrum of a beam will influence the RBE of this dose component. Protons from the neutron capture reaction in nitrogen have not been studied but in practice protons from nitrogen capture have been combined with the recoil proton contribution into a total proton dose. The relative biological effectiveness of the products of the neutron capture reaction in boron is derived from two factors, the RBE of the short range particles and the bio-distribution of boron, referred to collectively as the compound biological effectiveness factor. Caution is needed in the application of these factors for different normal tissues and tumors.  相似文献   

9.
Recent achievements in design and synthesis of boronated acids, amino acids, glycerols as well as conjugates of polyhedral boron hydrides (ortho-carborane, closo-dodecaborate and cobalt bis(dicarbollide)) with natural porphyrins, carbohydrates and nucleosides are described.  相似文献   

10.
The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.  相似文献   

11.
We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,l-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content.  相似文献   

12.
Abstract

Purpose: Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. BNCT has been proposed for the treatment of multiple, non-resectable, diffuse tumors in lung. The aim of the present study was to evaluate the therapeutic efficacy and toxicity of BNCT in an experimental model of lung metastases of colon carcinoma in BDIX rats and perform complementary survival studies.

Materials and methods: We evaluated tumor control and toxicity in lung 2?weeks post-BNCT at 2 dose levels, including 5 experimental groups per dose level: T0 (euthanized pre-treatment), Boronophenylalanine-BNCT (BPA-BNCT), BPA?+?Sodium decahydrodecaborate-BNCT ((BPA?+?GB-10)-BNCT), Beam only (BO) and Sham (no treatment, same manipulation). Tumor response was assessed employing macroscopic and microscopic end-points. An additional experiment was performed to evaluate survival and oxygen saturation in blood.

Results and conclusions: No dose-limiting signs of short/medium-term toxicity were observed in lung. All end-points revealed statistically significant BNCT-induced tumor control vs Sham at both dose levels. The survival experiment showed a statistically significant 45% increase in post-treatment survival time in the BNCT group (48?days) versus Sham (33?days). These data consistently revealed growth suppression of lung metastases by BNCT with no manifest lung toxicity.
  • Highlights
  • Boron Neutron Capture Therapy suppresses growth of experimental lung metastases

  • No BNCT-induced short/medium-term toxicity in lung is associated with tumor control

  • Boron Neutron Capture Therapy increased post-treatment survival time by 45%

  相似文献   

13.
Boron neutron capture therapy (BNCT) with Na2B12H11SH (BSH) or p-dihydroxyborylphenylalanine (BPA), and with a combination of both, was compared to radiotherapy with temozolomide, and the number of patients required to show statistically significant differences between the treatments was calculated. Whereas arms using BPA require excessive number of patients in each arm, a two-armed clinical trial with BSH and radiotherapy plus temozolomide is feasible.  相似文献   

14.
A modeling investigation was performed to choose moderator material and size for creating optimal epithermal neutron beams for BNCT based on a proton accelerator and the (7)Li(p,n)(7)Be reaction as a neutrons source. An optimal configuration is suggested for the beam shaping assembly made from polytetrafluoroethylene and magnesium fluorine to be placed on high current IPPE proton accelerator KG-2.5. Results of calculation were experimentally tested and are in good agreement with measurements.  相似文献   

15.
The purpose of this study was to clarify the correlation between the radiation dose and histopathological findings in patients with glioblastoma multiforme (GBM) treated with boron neutron capture therapy (BNCT). Histopathological studies were performed on specimens from 8 patients, 3 had undergone salvage surgery and 5 were autopsied. For histopathological cure of GBM at the primary site, the optimal minimal dose to the gross tumor volume (GTV) and the clinical target volume (CTV) were 68 Gy(w) and 44 Gy(w), respectively.  相似文献   

16.
In the frame of accelerator-based BNCT, the 9Be(d,n)10B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40 Gy-Eq, with a maximum value of 51 Gy-Eq at a depth of about 2.7 cm, in a 60 min treatment.The optimal configuration was considered for the treatment planning assessment of a real Glioblastoma Multiforme case. From this, the resulted dose performances were comparable to those obtained with an optimized 7Li(p,n)-based neutron source, under identical conditions and subjected to the same clinical protocol.  相似文献   

17.
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.  相似文献   

18.
19.
Pilot innovative accelerator-based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. One of the main elements of the facility is lithium target, that produces neutrons via threshold (7)Li(p,n)(7)Be reaction at 25 kW proton beam with energies 1.915 or 2.5 MeV. In the present report, the results of experiments on neutron producing target prototype are presented, the results of calculations of hydraulic resistance for heat carrier flow and lithium layer temperature are shown. Calculation showed that the lithium target could run up to 10 mA proton beam before melting. Choice of target variant is substantiated. Program of immediate necessary experiments is described. Target design for neutron source constructed at BINP is presented. Manufacturing the neutron producing target up to the end of 2004 and obtaining a neutron beam on BINP accelerator-based neutron source are planned during 2005.  相似文献   

20.
In this report we have summarized our studies to optimize the delivery of boronophenylalanine (BPA) and sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) of F98 glioma bearing rats. These results have been compared to a chemoradiotherapeutic approach using the same tumor model. The best survival data from our BNCT studies were obtained using a combination of BPA and sodium borocaptate BSH administered via the internal carotid artery, in combination with blood–brain barrier disruption (BBB-D). This treatment resulted in a mean survival time (MST) of 140 d with a 25% cure rate. The other approach combined intracerebral administration of carboplatin by either convection enhanced delivery (CED) or Alzet pump infusion, followed by external beam photon irradiation. This resulted in MSTs of 83 d and 112 d, respectively, with a cure rate of 40% for the latter. However, a significant problem that must be solved for both BNCT and this new chemoradiotherapeutic approach is how to improve drug uptake and microdistribution within the tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号