首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yamane K  Chen J  Kinsella TJ 《Cancer research》2003,63(12):3049-3053
Cell cycle checkpoints play a central role in genomic stability. The human DNA topoisomerase II-binding protein 1 (TopBP1) protein contains eight BRCA1 COOH terminus motifs and shares similarities with Cut5, a yeast checkpoint Rad protein. TopBP1 also shares many features with BRCA1. We report that, when expression of TopBP1 protein is inhibited in BRCA1 mutant cells, mimicking a TopBP1, BRCA1 double-negative condition, the G(2)-M checkpoint is strongly abrogated and apoptosis is increased after ionizing radiation. However, a BRCA1-negative or a TopBP1-negative background resulted in only partial abrogation of the G(2)-M checkpoint. The BRCA1 mutant and TopBP1-reduced condition specifically destroys regulation of the Chk1 kinase but not the Chk2 kinase, suggesting involvement in the ataxia telangiectasia-related pathway. These results indicate that both TopBP1 and BRCA1 specifically regulate the G(2)-M checkpoint, partially compensating each function.  相似文献   

2.
DNA repair pathways enable tumour cells to survive DNA damage induced by external agents such as therapeutic treatments. Signalling cascades involved in these pathways comprise the DNA-dependent protein kinase (DNA-PK), Ataxia-telangiectasia mutated (ATM), ATM and Rad3 related (ATR) and checkpoint kinases I and 2 (Chk1/Chk2), among others. ATM and ATR phosphorylate, respectively, Chk2 and Chk1, leading to activation of checkpoints. Chk2 acts as a signal distributor, dispersing checkpoint signal to downstream targets such as p53, Cdc25A, Cdc25C, BRCA1 and E2F1. A role of Chk2 as a candidate tumour suppressor has been suggested based on both mouse genetics and somatic tumour studies. We will discuss here the possible role of this kinase in human carcinogenesis and the possibility to use it as a target to increment DNA damage in cancer cells in response to DNA-damaging therapies.  相似文献   

3.
Wang HC  Chou WC  Shieh SY  Shen CY 《Cancer research》2006,66(3):1391-1400
Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are the two mechanisms responsible for repairing DNA double-strand breaks (DSBs) and act in either a collaborative or competitive manner in mammalian cells. DSB repaired by NHEJ may be more complicated than the simple joining of the ends of DSB, because, if nucleotides were lost, it would result in error-prone repair. This has led to the proposal that a subpathway of precise NHEJ exists that can repair DSBs with higher fidelity; this is supported by recent findings that the expression of the HR gene, BRCA1, is causally linked to in vitro and in vivo precise NHEJ activity. To further delineate this mechanism, the present study explored the connection between NHEJ and the cell-cycle checkpoint proteins, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (Chk2), known to be involved in activating BRCA1, and tested the hypothesis that ATM and Chk2 promote precise end-joining by BRCA1. Support for this hypothesis came from the observations that (a) knockdown of ATM and Chk2 expression affected end-joining activity; (b) in BRCA1-defective cells, precise end-joining activity was not restored by a BRCA1 mutant lacking the site phosphorylated by Chk2 but was restored by wild-type BRCA1 or a mutant mimicking phosphorylation by Chk2; (c) Chk2 mutants lacking kinase activity or with a mutation at a site phosphorylated by ATM had a dominant negative effect on precise end-joining in BRCA1-expressing cells. These results suggest that the other two HR regulatory proteins, ATM and Chk2, act jointly to regulate the activity of BRCA1 in controlling the fidelity of DNA end-joining by precise NHEJ.  相似文献   

4.
Human DNA mismatch repair (MMR) is involved in the response to certain chemotherapy drugs, including 6-thioguanine (6-TG). Consistently, MMR-deficient human tumor cells show resistance to 6-TG damage as manifested by a reduced G(2)-M arrest and decreased apoptosis. In this study, we investigate the role of the BRCA1 protein in modulating a 6-TG-induced MMR damage response, using an isogenic human breast cancer cell line model, including a BRCA1 mutated cell line (HCC1937) and its transfectant with a wild-type BRCA1 cDNA. The MMR proteins MSH2, MSH6, MLH1, and PMS2 are similarly detected in both cell lines. BRCA1-mutant cells are more resistant to 6-TG than BRCA1-positive cells in a clonogenic survival assay and show reduced apoptosis. Additionally, the mutated BRCA1 results in an almost complete loss of a G(2)-M cell cycle checkpoint response induced by 6-TG. Transfection of single specific small interfering RNAs (siRNA) against MSH2, MLH1, ATR, and Chk1 in BRCA1-positive cells markedly reduces the BRCA1-dependent G(2)-M checkpoint response. Interestingly, ATR and Chk1 siRNA transfection in BRCA1-positive cells shows similar levels of 6-TG cytotoxicity as the control transfectant, whereas MSH2 and MLH1 siRNA transfectants show 6-TG resistance as expected. DNA MMR processing, as measured by the number of 6-TG-induced DNA strand breaks using an alkaline comet assay (+/-z-VAD-fmk cotreatment) and by levels of iododeoxyuridine-DNA incorporation, is independent of BRCA1, suggesting the involvement of BRCA1 in the G(2)-M checkpoint response to 6-TG but not in the subsequent excision processing of 6-TG mispairs by MMR.  相似文献   

5.
6.
The cellular response to the introduction of double strand DNA breaks involves complexes of protein interactions that govern cell cycle checkpoint arrest and repair of the DNA lesions. The checkpoint kinases Chk1 and Chk2 phosphorylate the carboxy-terminal domain of hBRCA2, a protein involved in recombination-mediated DNA repair (HRR) and replication fork maintenance. Cells deficient in hBRCA2 are hypersensitive to DNA damaging agents. Phosphorylation of the residue in hBRCA2 targeted by the Chk1 and Chk2 kinases regulates its interaction with Rad51. Furthermore, the cell line lex1/lex2, which lacks the carboxy-terminal domain containing the phosphorylated residue, does not support localization of Rad51 to nuclear foci after exposure to UV or treatment with ionizing radiation (IR). The data show that either phosphorylation of Rad51 by Chk1 or phosphorylation of the carboxy-terminal domain of hBRCA2 by Chk1 or Chk2 plays a critical role in the binding of Rad51 to hBRCA2 and the subsequent recruitment of Rad51 to sites of DNA damage. While depletion of Chk1 from cells leads to loss of Rad51 localization to nuclear foci in response to replication arrest, cells lacking Chk2 also show a defect in Rad51 localization, but only in presence of double strand DNA breaks, indicating that each of these kinases may contribute somewhat differently to the formation of Rad51 nucleoprotein filaments depending on the type of DNA damage incurred by the cells.  相似文献   

7.
The tumor suppressor gene BRCA1 maintains genomic integrity by protecting cells from the deleterious effects of DNA double-strand breaks (DSBs). Through its interactions with the checkpoint kinase 2 (Chk2) kinase and Rad51, BRCA1 promotes homologous recombination, which is typically an error-free repair process. In addition, accumulating evidence implicates BRCA1 in the regulation of nonhomologous end-joining (NHEJ), which may involve precise religation of the DSB ends if they are compatible (i.e., error-free repair) or sequence alteration upon rejoining (i.e., error-prone or mutagenic repair). However, the precise role of BRCA1 in regulating these different subtypes of NHEJ is not clear. We provide here the genetic and biochemical evidence to show that BRCA1 promotes error-free rejoining of DSBs in human breast carcinoma cells while suppressing microhomology-mediated error-prone end-joining and restricting sequence deletion at the break junction during repair. The repair spectrum in BRCA1-deficient cells was characterized by an increase in the formation of >2 kb deletions and in the usage of long microhomologies distal to the break site, compared with wild-type (WT) cells. This error-prone repair phenotype could also be revealed by disruption of the Chk2 phosphorylation site of BRCA1, or by expression of a dominant-negative kinase-dead Chk2 mutant in cells with WT BRCA1. We suggest that the differential control of NHEJ subprocesses by BRCA1, in concert with Chk2, reduces the mutagenic potential of NHEJ, thereby contributing to the prevention of familial breast cancers.  相似文献   

8.
Ten years ago, a concerted effort from several labs resulted in the cloning of BRCA1, the first of two major hereditary breast/ovarian cancer predisposition genes. Since that time, BRCA1 has been linked to several key nuclear functions connected with the prevention of genomic instability. In particular, BRCA1 functions in concert with Rad51, BRCA2 and other genes to control double strand break repair (DSBR) and homologous recombination. Here, we reassess the role of BRCA1 and its associated proteins in this process.  相似文献   

9.
Many cancer therapies cause DNA damage to effectively kill proliferating tumor cells; however, a major limitation of current therapies is the emergence of resistant tumors following initial treatment. Cell cycle checkpoints are involved in the response to DNA damage and specifically prevent cell cycle progression to allow DNA repair. Tumor cells can take advantage of the G2 checkpoint to arrest following DNA damage and avoid immediate cell death. This can contribute to acquisition of drug resistance. By abrogating the G2 checkpoint arrest, it may be possible to synergistically augment tumor cell death induced by DNA damage and circumvent resistance. This requires an understanding of the molecules involved in regulating the checkpoints. Human Chk1 is a recently identified homologue of the Schizosaccharomyces pombe checkpoint kinase gene, which is required for G2 arrest in response to DNA damage. Chk1 phosphorylates the dual specificity phosphatase cdc25C on Ser-216, and this may be involved in preventing cdc25 from activating cdc2/cyclinB and initiating mitosis. To further study the role of Chk1 in G2 checkpoint control, we identified a potent and selective indolocarbazole inhibitor (SB-218078) of Chk1 kinase activity and used this compound to assess cell cycle checkpoint responses. Limited DNA damage induced by gamma-irradiation or the topoisomerase I inhibitor topotecan was used to induce G2 arrest in HeLa cells. In the presence of the Chk1 inhibitor, the cells did not arrest following gamma-irradiation or treatment with topotecan, but continued into mitosis. Abrogation of the damage-arrest checkpoint also enhanced the cytotoxicity of topoisomerase I inhibitors. These studies suggest that Chk1 activity is required for G2 arrest following DNA damage.  相似文献   

10.
11.
Many current cancer treatments, including certain classes of chemotherapeutics and radiation, induce cytotoxicity by damaging DNA. However, many cancers are resistant to these therapies, which represents a significant challenge in the clinic. Thus, modulating DNA-damage responses to selectively enhance the sensitivity of cancer cells to these therapies is highly desirable. When DNA damage is detected, DNA checkpoint mechanisms are activated to halt cells at various phases of the cell cycle. Simultaneously, DNA-damage sensors transduce signals to activate DNA-repair mechanisms via de novo expression or post-translational modification of enzymes required for DNA repair. p53 is the major player in a checkpoint that arrests cells at the G1/S boundary, while checkpoint kinase (Chk)1 is critical for the G2/M checkpoint and also the S checkpoint that prevents cell cycle progression after replication defects (intra-S-phase checkpoint) or S/M uncoupling (S/M checkpoint). Poly(ADP-ribose) polymerase is involved in sensing DNA single-strand breaks and inducing DNA repair via poly(ADP-ribosyl)ating various DNA-binding and DNA-repair proteins. In this review, strategies for implementing small-molecule inhibitors of poly(ADP-ribose) polymerase and Chk1, which are emerging as potential adjuncts to current therapies, are discussed.  相似文献   

12.
When DNA synthesis is inhibited, DNA replication checkpoint is activated to prevent mitosis entry without fully replicated DNA. In Xenopus, caffeine-sensitive kinases [ataxia telangiectasia mutated (ATM) and ATM-related protein (ATR)] are essential in this checkpoint response, but in mammal cells an ATR/ATM-independent checkpoint response to DNA synthesis inhibition exists. Using HeLa cells, which have a caffeine-insensitive checkpoint response, we have analyzed here which molecules known to be involved in the DNA replication checkpoint participate in the caffeine-insensitive response. When DNA synthesis was inhibited in the presence of UCN01 or after knocking down Chk1 expression [Chk1 small interfering RNA (siRNA)], HeLa cells entered into aberrant mitosis. Consequently, Chk1 is essential for both the ATR/ATM-dependent and ATR/ATM-independent checkpoint response in HeLa cells. Neither wortmannin, Ly294002, nor SB202190 abrogated the caffeine-insensitive checkpoint response, indicating that DNA-PK and p38 alpha,beta are not involved in the ATR/ATM-independent Chk1 activation upon DNA synthesis inhibition. Using siRNA to knock down Rad17 and claspin, two molecules involved in sensing stalled replication forks, we also showed that claspin but not Rad17 is essential for the ATR/ATM-independent checkpoint response. Inhibition of DNA synthesis in HeLa cells led to a decrease in cyclin B1 protein accumulation that was abrogated when UCN01 was added or when claspin was knocked down. We conclude that upon DNA synthesis inhibition, Chk1 can be activated in a claspin-dependent manner independently of ATR and ATM, leading to cyclin B1 down-regulation and providing the cells of an additional mechanism to inhibit mitosis entry.  相似文献   

13.
We previously demonstrated that type 2C protein phosphatases (PP2C) Ptc2 and Ptc3 are required for DNA checkpoint inactivation after DNA double-strand break repair or adaptation in Saccharomyces cerevisiae. Here, we show the conservation of this pathway in mammalian cells. In response to DNA damage, ataxia telangiectasia mutated (ATM) phosphorylates the Chk2 tumour suppressor kinase at threonine 68 (Thr68), allowing Chk2 kinase dimerization and activation by autophosphorylations in the T-loop. The oncogenic protein Wip1, a PP2C phosphatase, binds Chk2 and dephosphorylates phospho-Thr68. Consequently, Wip1 opposes Chk2 activation by ATM after ionizing irradiation of cells. In HCT15 colorectal cancer cells corrected for functional Chk2 activity, Wip1 overexpression suppressed the contribution of Chk2 to the G2/M DNA damage checkpoint. These results indicate that Wip1 is one of the phosphatases regulating the activity of Chk2 in response to DNA damage.  相似文献   

14.
Bogliolo M  Taylor RM  Caldecott KW  Frosina G 《Oncogene》2000,19(50):5781-5787
The breast cancer predisposing genes BRCA1 and BRCA2 appear to be involved in DNA repair. In particular, the sensitivity of BRCA2-deficient mouse embryonic fibroblasts to ionizing radiation and the demonstrated interaction of the BRCA2 protein with Rad51, a major factor in recombinational repair, indicate that BRCA2 is important for double strand break repair. The human BRCA2-deficient human cell line Capan-1, whilst being sensitive to ionizing radiation, is also sensitive to the alkylating agent methymethanesulfonate. The major lesions induced by this agent are methylated bases which are removed primarily by the base excision repair (BER) pathway. We have investigated the efficiency of BER in Capan-1 cells by an in vitro assay in which plasmid substrates containing a single lesion are repaired by mammalian cell extracts. In comparison to the control cell lines BxPC-3, T24 and MCF7, Capan-1 cells exhibited a reduced rate of DNA ligation during both the single-nucleotide insertion and PCNA-dependent pathways of BER. The reduced rate of DNA ligation exhibited by Capan-1 cell extracts was complemented by addition of bacteriophage T4 DNA ligase or human DNA ligase III. BRCA2-mutant Capan-1 cells may possess reduced DNA ligase activity during BER.  相似文献   

15.
Homologous repair of DNA damage and tumorigenesis: the BRCA connection   总被引:17,自引:0,他引:17  
Jasin M 《Oncogene》2002,21(58):8981-8993
Homologous recombination has been recognized in recent years to be an important DNA repair pathway in mammalian cells, for such damage as chromosomal double-strand breaks. Cells mutated for the genes involved in the hereditary breast and ovarian cancer susceptibility syndromes, i.e. BRCA1 and BRCA2, show defects in DNA repair by homologous recombination, implicating this repair pathway in protecting individuals against tumorigenesis. This review summarizes recent advances in our understanding of BRCA1 and BRCA2 in DNA repair, as well as insight into these proteins gleaned from structure determination of domains of these proteins and the broader evolutionary conservation than previously appreciated.  相似文献   

16.
Bao S  Lu T  Wang X  Zheng H  Wang LE  Wei Q  Hittelman WN  Li L 《Oncogene》2004,23(33):5586-5593
The checkpoint sliding-clamp complex, Rad9/Rad1/Hus1, plays a critical role during initiation of checkpoint signals in response to DNA damage and replication disruption. We investigated the impact of loss of Rad1 on checkpoint function and on DNA replication in mammalian cells. We show that RAD1 is an essential gene for sustained cell proliferation and that loss of Rad1 causes destabilization of Rad9 and Hus1 and consequently disintegration of the sliding-clamp complex. In Rad1-depleted cells, Atr-dependent Chk1 activation was impaired whereas Atm-mediated Chk2 activation was unaffected, suggesting that the sliding clamp is required primarily in Atr-dependent signal activation. Disruption of sliding-clamp function also caused a major defect in S-phase control. Rad1-depleted cells exhibited an RDS phenotype, indicating that damage-induced S-phase arrest was compromised by Rad1 loss. Furthermore, lack of Rad1 also affected the efficiency of replication recovery from DNA synthesis blockage, resulting in a prolonged S phase. These deficiencies may perpetually generate DNA strand breakage as we have found chromosomal abnormalities in Rad1-depleted cells. We conclude that the Rad9/Rad1/Hus1 complex is essential for Atr-dependent checkpoint signaling, which may play critical roles in the facilitation of DNA replication and in the maintenance of genomic integrity.  相似文献   

17.
Role of cell cycle in mediating sensitivity to radiotherapy   总被引:25,自引:0,他引:25  
Multiple pathways are involved in maintaining the genetic integrity of a cell after its exposure to ionizing radiation. Although repair mechanisms such as homologous recombination and nonhomologous end-joining are important mammalian responses to double-strand DNA damage, cell cycle regulation is perhaps the most important determinant of ionizing radiation sensitivity. A common cellular response to DNA-damaging agents is the activation of cell cycle checkpoints. The DNA damage induced by ionizing radiation initiates signals that can ultimately activate either temporary checkpoints that permit time for genetic repair or irreversible growth arrest that results in cell death (necrosis or apoptosis). Such checkpoint activation constitutes an integrated response that involves sensor (RAD, BRCA, NBS1), transducer (ATM, CHK), and effector (p53, p21, CDK) genes. One of the key proteins in the checkpoint pathways is the tumor suppressor gene p53, which coordinates DNA repair with cell cycle progression and apoptosis. Specifically, in addition to other mediators of the checkpoint response (CHK kinases, p21), p53 mediates the two major DNA damage-dependent cellular checkpoints, one at the G(1)-S transition and the other at the G(2)-M transition, although the influence on the former process is more direct and significant. The cell cycle phase also determines a cell's relative radiosensitivity, with cells being most radiosensitive in the G(2)-M phase, less sensitive in the G(1) phase, and least sensitive during the latter part of the S phase. This understanding has, therefore, led to the realization that one way in which chemotherapy and fractionated radiotherapy may work better is by partial synchronization of cells in the most radiosensitive phase of the cell cycle. We describe how cell cycle and DNA damage checkpoint control relates to exposure to ionizing radiation.  相似文献   

18.
19.
Abnormal regulation of progression from G(1) to S phase of the cell cycle by altered activity of cyclin-dependent kinases (CDKs) is a hallmark of cancer. However, inhibition of CDKs, particularly CDK2, has not shown selective activity against most cancer cells because the kinase seems to be redundant in control of cell cycle progression. Here, we show a novel role in the DNA damage response and application of CDK inhibitors in checkpoint-deficient cells. CDK2(-/-) mouse fibroblasts and small interfering RNA--mediated or small-molecule--mediated CDK2 inhibition in MCF7 or U2OS cells lead to delayed damage signaling through Chk1, p53, and Rad51. This coincided with reduced DNA repair using the single-cell comet assay and defects observed in both homologous recombination and nonhomologous end-joining in cell-based assays. Furthermore, tumor cells lacking cancer predisposition genes BRCA1 or ATM are 2- to 4-fold more sensitive to CDK inhibitors. These data suggest that inhibitors of CDK2 can be applied to selectively enhance responses of cancer cells to DNA-damaging agents, such as cytotoxic chemotherapy and radiotherapy. Moreover, inhibitors of CDKs may be useful therapeutics in cancers with defects in DNA repair, such as mutations in the familial breast cancer gene BRCA1.  相似文献   

20.
Together with cell cycle checkpoint control, DNA repair plays a pivotal role in protecting the genome from endogenous and exogenous DNA damage. Although increased genetic instability has been associated with prostate cancer progression, the relative role of DNA double-strand break repair in malignant versus normal prostate epithelial cells is not known. In this study, we determined the RNA and protein expression of a series of DNA double-strand break repair genes in both normal (PrEC-epithelial and PrSC-stromal) and malignant (LNCaP, DU-145, and PC-3) prostate cultures. Expression of genes downstream of ATM after ionizing radiation-induced DNA damage reflected the p53 status of the cell lines. In the malignant prostate cell lines, mRNA and protein levels of the Rad51, Xrcc3, Rad52, and Rad54 genes involved in homologous recombination were elevated approximately 2- to 5-fold in comparison to normal PrEC cells. The XRCC1, DNA polymerase-beta and -delta proteins were also elevated. There were no consistent differences in gene expression relating to the nonhomologous end-joining pathway. Despite increased expression of DNA repair genes, malignant prostate cancer cells had defective repair of DNA breaks, alkali-labile sites, and oxidative base damage. Furthermore, after ionizing radiation and mitomycin C treatment, chromosomal aberration assays confirmed that malignant prostate cells had defective DNA repair. This discordance between expression and function of DNA repair genes in malignant prostate cancer cells supports the hypothesis that prostate tumor progression may reflect aberrant DNA repair. Our findings support the development of novel treatment strategies designed to reinstate normal DNA repair in prostate cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号