首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对文题内容研究表明,Na_2CO_3对生物质的湿式裂解是良好的催化剂。Ni-Mo催化剂有利于甲烷生成,Ni-Mo和Na_2CO_3混合催化剂效果最好。可使气体转化率达55%以上。生物质的湿式裂解气化可得气体、液体和焦三种产品。其中气体产品主要含CO_2、CO、H_2、CH_4和少量的C_mH_n。脱(?)CO_2后可得热值为12500~16700kJ/m~3左右的中热值煤气。对液体产品的组分用荧光光谱法进行了分析,发现有菲、(?)醌等几十种物质。湿式裂解气化的最佳反应时间为150min、反应温度380℃以上。若以液体产品为主,则反应时间为80min较佳,反应温度相对降低。讨论了不同催化剂及Na_2CO_3用量对甘蔗渣湿式裂解气化的影响。  相似文献   

2.
本文以水蒸汽为气化剂,在煤焦粒度40—60目;水蒸汽分压1.29MPa下,测定了Na_2CO_3催化剂浓度为12.5(wt)%,以及不加催化剂时阳泉煤的煤气组成、反应活化能,不同温度下,反应时间和碳转化率(x)的关系,以进行文题的比较。结果表明:加压催化气化,可改变气化反应机理;降低反应活化能;对甲烷生成不利;显著地改变了煤气组成并使其组成保持恒定。进而得到加压下气化和催化气化的本征动力学方程分别为: dx/dt=1.18×10~(10)exp(-295/RT) dx/dt=4.05×10~?(1-x)~(2/3) exp(-243/RT)  相似文献   

3.
以Clad芯材铝板(Al/Alloy/Al)为原材料,利用铝的阳极氧化技术制备出新型金属一体化阳极氧化-γAl2O3载体。并利用这种载体采用浸渍法制备了Pt/Al2O3/Alloy、Pd/Al2O3/Alloy及Pd-Pt/Al2O3/Alloy催化剂,考察了各催化剂在甲烷燃烧中的性能。结果表明:低温下(<500℃)Pt/Al2O3/Alloy催化剂活性较差,而在高温下(>700℃)Pd/Al2O3/Alloy催化剂容易失活。向Pd/Al2O3/Alloy催化剂中加入一定量的Pt后(Pd-Pt/Al2O3/Alloy),明显提高了PdO的分解温度,从而提高了催化剂的活性及稳定性。  相似文献   

4.
采用搅拌反应器研究了V_2O_5在热钾碱液中的催化机理。实验结果表明:当V_2O_5浓度≤0.15M时,CO_2在热钾碱液中的吸收机理为拟一级反应;V_2O_5为均相催化剂。对几种催化剂与CO_2发生拟一级平行反应的情况提出了计算吸收速率的简便近似方法。在50℃、0.1013 MPa时,采用滞流射流装置求出了催化热钾碱液吸收CO_2的拟一级反应速率常数k_1、CO_2的物理溶解度C及CO_2的液相扩散系数D_A。  相似文献   

5.
用两种间隙式小型高压釜,在不同条件下考察了究州煤的加氢液化性能,並与联邦德国加氢原料煤Wester holt煤和美国的Illinois 6号煤进行了对比。试验结果表明:兖州煤具有较高的加氢反应活性,它略高于后一种煤,明显高于前一种煤。以循环油为溶剂,拜尔赤泥为催化剂,在氢初压9MPa,435℃和60min条件下,兖州煤的转化率达84%:油产率为46%。  相似文献   

6.
目的:探讨Ru-Co/Ac催化剂对2-甲基吡啶的催化加氢性能.方法:采用自制的Ru/Ac、Co/Ac、Ru-Co/Ac(Ac为活性炭)等单金属和双金属负载催化剂,研究了2-甲基吡啶的加氢活性,考察了反应条件对2-甲基吡啶加氢的影响.结果:双金属Ru-Co/Ac催化剂对2-甲基吡啶有较高的加氢活性,在n(Ru Co)/n底物=3/1000,120℃,3MPa条件下,加氢转化率可达75%,生成2-甲基哌啶的选择性为100%.结论:①Ru与Co之间存在协同效应,Ru-Co/Ac双金属催化剂具有比Ru/Ac和Co/Ac单金属催化剂高的催化活性;②Ru-Co/Ac双金属催化剂对2-甲基吡啶的催化加氢具有很高的活性和选择性.  相似文献   

7.
本文研究了煤的加氢液化反应,考察了从中试装置得到的循环油催化预加氢和含硫化氢的反应气体对煤液化的影响,得到如下结果: 1.循环油预加氢后能使煤的液化转化率提高约10%。最佳条件为435℃,H_2冷压90巴和30分钟,煤的转化率可达80%,其中沥青烯产率50%,油产率28%,气体产率2%。若在此条件下再添加钴-铝催化剂,油产率可增加到42%。2.H_2S与H_2、CO和Ar混合对煤液化有促进作用,煤的转化率比单独用H_2、CO和Ar高5—10%。3.讨论了煤加氧液化机理。对煤→沥青烯→油这一简化的反应方程式计算了反应速度常数K_1,K_2和活化能E_1,E_2。E_1 16大卡/摩尔,E_3 24大卡/摩尔,与文献符合。  相似文献   

8.
在加压下,采用压力釜测定了含K_2CO_3 26.5(重量)%和二乙醇胺(DEA)3%的DEA催化热碱溶液吸收CO_2的速率。测定的温度为70—100℃,压力1—9 kgf/cm~2(表压),溶液的转化度为0.1—0.7。结果表明,吸收速率系数随压力的提高而下降,压力达7kgf/cm~2(表压)以上时,DEA催化热碱溶液的吸收速率系数与纯热碱溶液的吸收速率系数相近。即使在1kgf/cm~2(表压)下,此吸收过程已不符合假一级反应模型。本文用近似解整理吸收速率数据,其模型平均相对误差小于10%。此模型包括了液相离子扩散的影响和表面扰动等对传质的影响。  相似文献   

9.
对硝基氯苯(ArCl)在相转移催化剂作用下,常压生成对硝基苯甲醚。考察了反应温度,氢氧化钠用量,催化剂的浓度和结构与对硝基苯甲醚生成速度的定量关系。在一定的催化剂和氢氧化钠浓度下,生成对硝基苯甲醚的假一级速度方程为:V=k[ArCl],以三乙基苄基氯化铵为催化剂,80°±0.5℃,催化剂与对硝基氯苯的摩尔比为0.01,氢氧化钠浓度为36.5%时,k=1.20×10~(-2)分~(-1),活化能E=73.69kJ/mole。  相似文献   

10.
本文用试制成的加压热天平,测定了八种中国煤在900℃时制成的煤焦在1.2-31 at.和800-1050℃与CO_2反应的活性。结果表明活性同煤品位有很好的相关性,年轻煤的活性大于年老煤。研究了活性随热处理温度(800—1100℃)的变化。在同一气化温度,活性有规则地随制备温度的降低而增加,在同一热处理温度时,活性随气化温度的增加而增加。计算了表观活化能和制备活化能。由1.2—31 at.850—900℃一种褐煤焦在CO—CO_2混合物中气化得到的结果,关联成下列模型: W=K_1Pco_2/1 K_2Pco K_3Pco_2也讨论了比气化速率和炭转化率的关系。  相似文献   

11.
在固定床加压反应器和加压热天平上,对五种中国气化用煤及其煤焦进行了加氢气化的动力学研究。发现在升温过程中各类产品气体的生成速率都随温度而变化,甲烷和乙烷的生成速率在600℃左右可达到最大值。沈北、蔚县煤焦在850~1000℃,2.1 MPa下加氢反应的表观活化能分别为108和95kJ/mol。随着煤焦制备温度的提高,煤焦加氢反应的平均比气化速率和最终转化率都下降。  相似文献   

12.
用低变质程度,高挥发分煤,于高压釜内在煤挥发分本身的压力下焦化。焦炭的机械强度与该煤种所受压力的1/3次方成正比。配合煤以其最大反射率等于1为好,焦化时压力的作用使配合煤生成光学各向异性的焦。炭化条件为升温10℃/min,500~600℃维持2h,然后5℃/min升温到950℃维持1h,能生成高强度的焦炭。  相似文献   

13.
以连续流动进气系统和Pyrex玻璃管反应器,在450~600℃的温度下,研究了H_2S催化热解为H_2和S的反应。采用浸渍法和干混法制备了V_2O_5/Al_2O_3、MoO_3/Al_2O_3、V_2O_5/TiO_2、V_2O_5/SiO_2以及Cu/Al_2O_3等一系列催化剂,研究了各种催化剂在反应中的产氢率随反应时间,反应温度及H_2S流速变化的规律。用冰水冷阱回收硫磺,并用二乙醇胺溶液吸收尾气中未反应的H_2S,可以得到高纯度的氢气。结果表明,浸渍法制备的催化剂亦可用于H_2S催化热解为H_2和S的反应。最佳催化剂的组成为:20%V_2O_5+12%MoO_3/Al_2O_3,在600℃下所得产氢率为4.05%。  相似文献   

14.
在973~1123K的温度下进行了泥炭的常压水蒸汽气化,证明其在较短时间内即可实现高的转化率和大的产气量。以碱金属盐为催化剂可提高产气率,其中以碳酸钾最有效。升高温度和延长反应时间也有利于提高气体产率,但生成气热值稍有下降。生成气中氢含量在50%以上,适于作化工合成的原料。  相似文献   

15.
研制了蜂窝状氧化铝载体浸涂Cu、Mn过渡金属及稀土(La、Ce)氧化物的催化燃烧催化剂。以乙醛-空气为模拟气,研究了各种反应条件对乙醛净化率的影响。结果表明;在210℃,乙醛浓度1.6—2.0g/m~3,空速13000h~(-1)条件下,该催化剂对乙醛完全氧化有良好的活性;对废气的浓度有较宽的适用范围。经酸性气体(含醋酸2%)反应近100小时,催化活性仍保持不变,且水蒸汽的存在有利于催化剂的使用寿命。工厂测试表明,在进口温度150—200℃,废气即可起燃,出口气体中几乎检测不到乙醛、丙烯醛等含氧化合物,使用近2000小时,催化剂仍保持良好的活性。  相似文献   

16.
本文用十种煤,比较了用CO_2和N_2测定的煤比表面积。认为用CO_2测定的比表面积更好地反映了煤的内表面积。探讨了煤和煤焦的孔隙结构与煤种、比气化速率和废水中除C_r~(6 )率的关系。  相似文献   

17.
以神华煤为原料,四氢萘为溶剂,在微型反应釜中进行了神华煤加氢液化动力学研究,并建立了动力学模型。研究结果表明:在反应起始阶段,煤主要转化为前沥青烯和沥青烯,有少量油气存在。随反应时间的延长,前沥青烯和沥青烯产率出现最大值,油气产率逐渐增加。所建立的动力学模型能合理拟合350~440 ℃范围内神华煤液化动力学过程,其反应速率常数为0.001 8~0.041 6 min-1,表观活化能为29.11~46.45 kJ/mol。  相似文献   

18.
在温度25~300℃和压力0.1~3.0 MPa范围内,利用原位漫反射红外光谱法研究了CO和CO2在Rh-Mn-Li/SiO2催化剂上的化学吸附。在0.1 MPa和25℃时CO在该催化剂上存在线式、孪生和桥式吸附,以桥式吸附为主,3种吸附均能快速达到吸附平衡。压力保持0.1 MPa,温度由25℃升至300℃时,线式比桥式先脱附,至265℃时,3种吸附基本脱附完全;当温度维持205℃不变而压力逐步由0.1升至3.0 MPa时,线式吸附增量较少,桥式吸附增量较多;CO2在0.1 MPa,25℃时就能发生快速的解离吸附,即CO2→CO O,其吸附行为表现为CO的线式吸附,但吸附峰与纯CO吸附时不同;当温度稳定在25℃而压力逐步升至2.5 MPa时,不仅CO2吸附量增大,而且其2052 cm-1吸附峰有向高波数移动的趋势。  相似文献   

19.
一、前言目前,我厂以及全国各有关厂家制备CO_2,均采用经典的制造方法,即石灰窑造气含CO_2 20%,经水洗,碱洗后,用Na_2CO_3水溶液吸收,再经解吸,压缩装气包待用。此法吸收率为20%(最好结果),吸收用的贫碱液其温度于夏季条件恶劣时,可达68℃(非常之高,对吸收相当不利),来自石灰窑的CO_2气降温后,温度为  相似文献   

20.
研完了在2MPa压力下,CuO-ZnO-ZrO_2催化剂对CO_2/H_2合成甲醇反应的催化活性。用BET、XRD、SEM、TPR等测试方法对催化剂表面性质、晶相组成、活性规律及ZrO_2的作用进行了探讨。加入ZrO_2有助于提高活性组分的分散度和催化剂的表面积;可以大大提高催化剂的活性和CH_3OH的选择性。活性组分CuO存在表面和体相两种分散形式,且ZrO_2的含量和焙烧温度直接影响着CuO的分散量及催化剂活性以及孔容的分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号