首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Histone deacetylase (HDAC) inhibitors are currently approved for cutaneous T-cell lymphoma and are in mid-late stage trials for other cancers. The HDAC inhibitors LAQ824 and SAHA increase phosphocholine (PC) levels in human colon cancer cells and tumor xenografts as observed by magnetic resonance spectroscopy (MRS). In this study, we show that belinostat, an HDAC inhibitor with an alternative chemical scaffold, also caused a rise in cellular PC content that was detectable by (1)H and (31)P MRS in prostate and colon carcinoma cells. In addition, (1)H MRS showed an increase in branched chain amino acid and alanine concentrations. (13)C-choline labeling indicated that the rise in PC resulted from increased de novo synthesis and correlated with an induction of choline kinase α expression. Furthermore, metabolic labeling experiments with (13)C-glucose showed that differential glucose routing favored alanine formation at the expense of lactate production. Additional analysis revealed increases in the choline/water and phosphomonoester (including PC)/total phosphate ratios in vivo. Together, our findings provide mechanistic insights into the impact of HDAC inhibition on cancer cell metabolism and highlight PC as a candidate noninvasive imaging biomarker for monitoring the action of HDAC inhibitors.  相似文献   

3.
Advanced second generation inhibitors of histone deacetylases (HDAC) are currently used in clinical development. This study aimed at comparing the pharmacological properties of selected second generation HDAC inhibitors with the hydroxamate and benzamide head group, namely SAHA, LAQ824/LBH589, CI994, MS275 and MGCD0103. In biochemical assays using recombinant HDAC1, 3, 6 and 8 isoenzymes, SAHA and LAQ824/LBH589 behave as quite unselective HDAC inhibitors. In contrast, the benzamides CI994, MS275 and MGCD0103 are more selective, potent inhibitors of at least HDAC1 and HDAC3. All HDAC inhibitors induce histone H3 hyperacetylation, correlating with inhibition of proliferation, induction of cell differentiation and apoptosis. A broad cytotoxicity is seen across cell lines from different tumor entities with LAQ824/LBH589 being the most potent agents. The apoptosis inducing activity is evident in arrested and proliferating RKO colon cancer cells with inducible, heterologous p21(waf1) expression, indicative for a cell-cycle independent mode-of-action. Differentiation of MDA-MB468 breast cancer cells is induced by benzamide and hydroxamate analogs. The reversibility of drug action was evaluated by pulse treatment of A549 lung cancer cells. Whereas paclitaxel induced irreversible cell cycle alterations already after 6 hr treatment, HDAC inhibitor action was retarded and irreversible after >16 hr treatment. Interestingly, pulse treatment was equally effective as continous treatment. Finally, the efficacy of LAQ824, SAHA and MS275 in A549 nude mice xenografts was comparable to that of paclitaxel at well tolerated doses. We conclude that despite a different HDAC isoenzyme inhibition profile, hydroxamate and benzamide analogs as studied display similar cellular profiles.  相似文献   

4.
Treatment with LAQ824 (Novartis Pharmaceutical, Inc.), a cinnamyl hydroxamic acid analogue inhibitor of histone deacetylases, depleted the mRNA and protein expression of Bcr-Abl in human chronic myeloid leukemia blast crisis (CML-BC) cells. Exposure to LAQ824 induced the expression of the cell cycle-dependent kinase inhibitors p21 and p27 and caused cell cycle G(1)-phase accumulation and apoptosis of CML-BC cells. LAQ824 also induced acetylation of heat shock protein 90. This inhibited the chaperone association of Bcr-Abl with heat shock protein 90, thereby promoting the proteasomal degradation of Bcr-Abl. Cotreatment with LAQ824 increased imatinib mesylate-induced apoptosis of CML-BC cells. Additionally, LAQ824 down-regulated the levels of mutant Bcr-Abl possessing the T315I point mutation, as well as induced apoptosis of imatinib-refractory primary CML-BC cells. Therefore, LAQ824 may be a promising therapeutic agent in the treatment of imatinib-sensitive or -refractory human leukemia.  相似文献   

5.
PURPOSE: To use (31)P and (1)H magnetic resonance spectroscopy (MRS) to assess changes in tumor metabolic profile in vivo in response to 5,6-dimethylxanthenone-4-acetic acid (DMXAA) with a view to identifying biomarkers associated with tumor dose response.EXPERIMENTAL DESIGN: In vivo (31)P and (1)H MRS measurements of (a) tumor bioenergetics [beta-nucleoside triphosphate/inorganic phosphate (beta-NTP/Pi)], (b) the membrane-associated phosphodiesters and phosphomonoesters (PDE/PME), (c) choline (mmol/L), and (d) lactate/water ratio were made on murine HT29 colon carcinoma xenografts pretreatment and 6 or 24 hours posttreatment with increasing doses of DMXAA. Following in vivo MRS, the tumors were excised and used for high-resolution (31)P and (1)H MRS of extracts to provide validation of the in vivo MRS data, histologic analysis of necrosis, and high-performance liquid chromatography.RESULTS: Both beta-NTP/Pi and PDE/PME decreased in a dose-dependent manner 6 hours posttreatment with DMXAA, with significant decreases in beta-NTP/Pi with 15 mg/kg (P < 0.001) and 21 mg/kg (P < 0.01). A significant decrease in total choline in vivo was found 24 hours posttreatment with 21 mg/kg DMXAA (P < 0.05); this was associated with a significant reduction in the concentration of the membrane degradation products glycerophosphoethanolamine and glycerophosphocholine measured in tissue extracts (P < 0.05).CONCLUSIONS: The reduction in tumor energetics and membrane turnover is consistent with the vascular-disrupting activity of DMXAA. (31)P MRS revealed tumor response to DMXAA at doses below the maximum tolerated dose for mice. Both (31)P and (1)H MRS provide biomarkers of tumor response to DMXAA that could be used in clinical trials.  相似文献   

6.
MN58b is a novel anticancer drug that inhibits choline kinase, resulting in inhibition of phosphocholine synthesis. The aim of this work was to develop a noninvasive and robust pharmacodynamic biomarker for target inhibition and, potentially, tumor response following MN58b treatment. Human HT29 (colon) and MDA-MB-231 (breast) carcinoma cells were examined by proton (1H) and phosphorus (31P) magnetic resonance spectroscopy (MRS) before and after treatment with MN58b both in culture and in xenografts. An in vitro time course study of MN58b treatment was also carried out in MDA-MB-231 cells. In addition, enzymatic assays of choline kinase activity in cells were done. A decrease in phosphocholine and total choline levels (P < 0.05) was observed in vitro in both cell lines after MN58b treatment, whereas the inactive analogue ACG20b had no effect. In MDA-MB-231 cells, phosphocholine fell significantly as early as 4 hours following MN58b treatment, whereas a drop in cell number was observed at 48 hours. Significant correlation was also found between phosphocholine levels (measured by MRS) and choline kinase activities (r2 = 0.95, P = 0.0008) following MN58b treatment. Phosphomonoesters also decreased significantly (P < 0.05) in both HT29 and MDA-MB-231 xenografts with no significant changes in controls. 31P-MRS and 1H-MRS of tumor extracts showed a significant decrease in phosphocholine (P < or = 0.05). Inhibition of choline kinase by MN58b resulted in altered phospholipid metabolism both in cultured tumor cells and in vivo. Phosphocholine levels were found to correlate with choline kinase activities. The decrease in phosphocholine, total choline, and phosphomonoesters may have potential as noninvasive pharmacodynamic biomarkers for determining tumor response following treatment with choline kinase inhibitors.  相似文献   

7.
Hsi LC  Xi X  Lotan R  Shureiqi I  Lippman SM 《Cancer research》2004,64(23):8778-8781
Histone deacetylases (HDACs) mediate changes in nucleosome conformation and are important in the regulation of gene expression. HDACs are involved in cell cycle progression and differentiation, and their deregulation is associated with several cancers. HDAC inhibitors have emerged recently as promising chemotherapeutic agents. One such agent, suberoylanilide hydroxamic acid, is a potent inhibitor of HDACs that causes growth arrest, differentiation, and/or apoptosis of many tumor types in vitro and in vivo. Because of its low toxicity, suberoylanilide hydroxamic acid is currently in clinical trials for the treatment of cancer. HDAC inhibitors induce the expression of <2% of genes in cultured cells. In this study, we show that low micromolar concentrations of suberoylanilide hydroxamic acid induce the expression of 15-lipoxygenase-1 in human colorectal cancer cells. The expression of 15-lipoxygenase-1 correlates with suberoylanilide hydroxamic acid-induced increase in 13-S-hydroxyoctadecadienoic acid levels, growth inhibition, differentiation, and apoptosis observed with these cells. Furthermore, specific inhibition of 15-lipoxygenase-1 significantly reduced the suberoylanilide hydroxamic acid-induced effects. These novel findings are the first demonstration of a mechanistic link between the induction of 15-lipoxygenase-1 by a HDAC inhibitor and apoptosis in cancer cells. This result has important implications for the study of suberoylanilide hydroxamic acid and other HDAC inhibitors in the prevention and therapy of colorectal cancer and supports future investigations of the mechanisms by which HDAC inhibitors up-regulate 15-lipoxygenase-1.  相似文献   

8.
The responses of two experimental murine tumors and two human tumor xenografts to the vasodilator hydralazine were compared using two magnetic resonance spectroscopy endpoints. Changes in tumor metabolism were determined using 31P MRS where inorganic phosphate levels relative to total phosphate (Pi/total) were measured, and alteration in tumor blood volume was examined using 19F MRS with perfluorooctylbromide (PFOB) as tracer. The integrated 19F signal from PFOB is dose dependent and stable for at least 2 hr after injection. The murine tumors SCCVII/Ha and KHT both showed changes in tumor metabolism after hydralazine, as an increase in Pi/total. However, hydralazine reduced vascular volume in the KHT tumor, demonstrated by reduced 19F signal from PFOB, but no such reduction was seen in the SCCVII/Ha tumor. In contrast, hydralazine had no effect on phosphorus metabolism in the HT29 and HX118 human tumor xenografts, but reduced vascular volume in both tumors. These results demonstrate that the effects of vasoactive agents such as hydralazine on tumor phosphorus metabolism are only partially consistent with changes in vascular volume, measured by the 19F MRS technique.  相似文献   

9.
10.
Rapid alteration of microRNA levels by histone deacetylase inhibition   总被引:16,自引:0,他引:16  
  相似文献   

11.
12.

Purpose

Histone deacetylase inhibitors (HDACIs), such as PXD101 and suberoylanilide hydroxamic acid, inhibit proliferation and stimulate apoptosis of tumor cells. The enhanced effectiveness of chemotherapy or radiotherapy when combined with HDACIs has been observed in several cancers. In this study, we investigated the antitumor effect of PXD101 combined with irinotecan in colon cancer.

Methods

HCT116 and HT29 colon cancer cells for cell viability assay were treated with PXD101 and/or SN-38, the active form of irinotecan. Antitumor effects of HCT116 and HT29 xenografts treated with these combinations were evaluated. [18F]FLT-PET was used to detect early responses to PXD101 and irinotecan in colon cancer.

Results

PXD101 and SN38 possessed dose-dependent antiproliferative activity against HCT116 and HT29 cells and exerted a synergistic effect when used in combination. In xenografted mice, PXD101 in combination with irinotecan dramatically inhibited tumor growth without causing additive toxicity. Apoptotic effects on xenograft tumors were greater with combined treatment than with irinotecan alone. [18F]FLT-PET imaging revealed a 64% decrease in [18F]FLT uptake in tumors of HCT116 xenograft-bearing mice treated with a combination of PXD101 and irinotecan, indicating a decrease in thymidine kinase 1 (TK1) activity. These results were supported by Western blot analyses showing a decrease in tumor thymidine kinase 1 protein levels, suggesting that [18F]FLT-PET can be used to non-invasively detect early responses to these agents.

Conclusions

These data show that PXD101 increases the cytotoxic activity of irinotecan in in vitro and in vivo colon cancer models and suggest these agent combinations should be explored in the treatment of colon cancer.  相似文献   

13.
PURPOSE: To assess the antitumor effects of a novel phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, (S)-HDAC-42, vis-à-vis suberoylanilide hydroxamic acid (SAHA) in in vitro and in vivo models of human prostate cancer. EXPERIMENTAL DESIGN: The in vitro effects of (S)-HDAC-42 and SAHA were evaluated in PC-3, DU-145, or LNCaP human prostate cancer cell lines. Cell viability, apoptosis, and indicators of HDAC inhibition were assessed. Effects on Akt and members of the Bcl-2 and inhibitor of apoptosis protein families were determined by immunoblotting. Immunocompromised mice bearing established s.c. PC-3 xenograft tumors were treated orally with (S)-HDAC-42 (50 mg/kg q.o.d. or 25 mg/kg q.d.) or SAHA (50 mg/kg q.d.) for 28 days. In vivo end points included tumor volumes and intratumoral changes in histone acetylation, phospho-Akt status, and protein levels of Bcl-xL and survivin. RESULTS: (S)-HDAC-42 was more potent than SAHA in suppressing the viability of all cell lines evaluated with submicromolar IC50 values. Relative to SAHA, (S)-HDAC-42 exhibited distinctly superior apoptogenic potency, and caused markedly greater decreases in phospho-Akt, Bcl-xL, and survivin in PC-3 cells. The growth of PC-3 tumor xenografts was suppressed by 52% and 67% after treatment with (S)-HDAC-42 at 25 and 50 mg/kg, respectively, whereas SAHA at 50 mg/kg suppressed growth by 31%. Intratumoral levels of phospho-Akt and Bcl-xL were markedly reduced in (S)-HDAC-42-treated mice, in contrast to mice treated with SAHA. CONCLUSIONS: (S)-HDAC-42 is a potent orally bioavailable inhibitor of HDAC, as well as targets regulating multiple aspects of cancer cell survival, which might have clinical value in prostate cancer chemotherapy and warrants further investigation in this regard.  相似文献   

14.
Reversible acetylation is mediated by histone deacetylase (HDAC), which is involved in regulating a broad repertoire of physiological processes, many of which are under aberrant control in tumor cells. Inhibition of HDAC activity prompts tumor cells to enter apoptosis; therefore, the utility of HDAC inhibitors for the treatment of cancer has been investigated and several HDAC inhibitors have now entered clinical trials. Although the clinical picture is evolving and the precise clinical utility of HDAC inhibitors remains to be determined, it is noteworthy that certain tumor types have a favorable response to such agents. Hematological malignancies seem to be particularly sensitive, and vorinostat (also called suberoylanilide hydroxamic acid) has recently been approved for the treatment of cutaneous manifestations of cutaneous T-cell lymphoma in patients with progressive, persistent or recurrent disease. There are considerable gaps in our understanding of how HDAC inhibitors exert their antitumor activity. In the absence of mechanistic insights into the apoptotic process or biomarkers that inform on responsive tumors, it is a challenge to predict tumor response to HDAC-inhibitor-based therapies with any degree of certainty. In this Review, we discuss recent developments in the understanding of the molecular events that underlie the anticancer effects of HDAC inhibitors, and relate this information to the emerging clinical picture for the treatment of cutaneous T-cell lymphoma and related malignancies.  相似文献   

15.
Present studies demonstrate that treatment with the histone deacetylases inhibitor LAQ824, a cinnamic acid hydroxamate, increased the acetylation of histones H3 and H4, as well as induced p21(WAF1) in the human T-cell acute leukemia Jurkat, B lymphoblast SKW 6.4, and acute myelogenous leukemia HL-60 cells. This was associated with increased accumulation of the cells in the G(1) phase of the cell cycle, as well as accompanied by the processing and activity of caspase-9 and -3, and apoptosis. Exposure to LAQ824 increased the mRNA and protein expressions of the death receptors DR5 and/or DR4, but reduced the mRNA and protein levels of cellular FLICE-inhibitory protein (c-FLIP). As compared with treatment with Apo-2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or LAQ824 alone, pretreatment with LAQ824 increased the assembly of Fas-associated death domain and caspase-8, but not of c-FLIP, into the Apo-2L/TRAIL-induced death-inducing signaling complex. This increased the processing of caspase-8 and Bcl-2 interacting domain (BID), augmented cytosolic accumulation of the prodeath molecules cytochrome-c, Smac and Omi, as well as led to increased activity of caspase-3 and apoptosis. Treatment with LAQ824 also down-regulated the levels of Bcl-2, Bcl-x(L), XIAP, and survivin. Partial inhibition of apoptosis due to LAQ824 or Apo-2L/TRAIL exerted by Bcl-2 overexpression was reversed by cotreatment with LAQ824 and Apo-2L/TRAIL. Significantly, cotreatment with LAQ824 increased Apo-2L/TRAIL-induced apoptosis of primary acute myelogenous leukemia blast samples isolated from 10 patients with acute myelogenous leukemia. Taken together, these findings indicate that LAQ824 may have promising activity in augmenting Apo-2L/TRAIL-induced death-inducing signaling complex and apoptosis of human acute leukemia cells.  相似文献   

16.
BACKGROUND AND PURPOSE: To examine whether in vivo proton magnetic resonance spectroscopy ((1)H MRS) and diffusion-weighted magnetic resonance imaging (DW-MRI) can monitor radiation-induced changes in HT29 xenografts in mice. MATERIALS AND METHODS: HT29 xenografts in mice received a dose of 15Gy. In vivo(1)H MRS and DW-MRI were acquired pretreatment and 1, 3, 6 and 10 days post-irradiation. After imaging, tumors were excised for histological analysis. The amounts of necrosis, fibrosis and viable cells in the cross sections were scored and compared to changes in apparent diffusion coefficient (ADC) and choline/water ratio. RESULTS: Radiation-induced necrosis in the xenografts was observed as increased tumor ADC. In-growth of fibrosis three days post-irradiation restricting water mobility was accompanied by decreased tumor ADC. Choline/water ratio correlated with metabolic activity and tumor growth. CONCLUSIONS: ADC and choline/water ratio assessed by in vivo DW-MRI and (1)H MRS depicts radiation-induced changes in HT29 xenografts following irradiation.  相似文献   

17.
Histone deacetylase (HDAC) is an attractive target for cancer therapy because it plays a key role in gene expression and carcinogenesis. N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA) is a novel synthetic HDAC inhibitor (HDACI) that shows better pharmacological properties than a known HDACI present in the human fibrosarcoma cell: suberoylanilide hydroxamic acid (SAHA). Here, we investigate the anti-cancer activity of HNHA against breast cancer both in vitro and in vivo. HNHA arrested the cell cycle at the G(1) /S phase via p21 induction, which led to profound inhibition of cancer cell growth in vitro. In addition, HNHA-treated cells showed markedly decreased levels of VEGF and HIF-1α than SAHA and fumagillin (FUMA) when accompanied by increased histone acetylation. HNHA significantly inhibited tumor growth in an in vivo mouse xenograft model. HNHA-treated mice survived significantly longer than SAHA- and FUMA-treated mice. Dynamic MRI showed significantly decreased blood flow in the HNHA-treated mice, implying that HNHA inhibits tumor neovascularization. This finding was accompanied by marked reductions of proangiogenic factors and significant induction of angiogenesis inhibitors in tumor tissues. We have shown that HNHA is an effective anti-tumor agent in breast cancer cells in vitro and in breast cancer xenografts in vivo. Collectively, these findings indicate that HNHA may be a potent anti-cancer agent against breast cancer due to its multi-faceted inhibition of HDAC activity, as well as anti-angiogenesis activity.  相似文献   

18.

BACKGROUND:

Epigenetic therapy has had a significant impact on the management of hematologic malignancies, but its role in the treatment of ovarian cancer remains to be defined. The authors previously demonstrated that treatment of ovarian and breast cancer cells with DNA methyltransferase and histone deacetylase (HDAC) inhibitors can up‐regulate the expression of imprinted tumor suppressors. In this study, demethylating agents and HDAC inhibitors were tested for their ability to induce re‐expression of tumor suppressor genes, inhibiting growth of ovarian cancer cells in culture and in xenografts.

METHODS:

Ovarian cancer cells (Hey and SKOv3) were treated with demethylating agents (5‐aza‐2′‐deoxycytidine [DAC] or 5‐azacitidine [AZA]) or with HDAC inhibitors (suberoylanilide hydroxamic acid [SAHA] or trichostatin A [TSA]) to determine their impact on cellular proliferation, cell cycle regulation, apoptosis, autophagy, and re‐expression of 2 growth inhibitory imprinted tumor suppressor genes: guanosine triphosphate‐binding Di‐RAS‐like 3 (ARHI) and paternally expressed 3 (PEG3). The in vivo activities of DAC and SAHA were assessed in a Hey xenograft model.

RESULTS:

The combination of DAC and SAHA produced synergistic inhibition of Hey and SKOv3 cell growth by apoptosis and cell cycle arrest. DAC induced autophagy in Hey cells that was enhanced by SAHA. Treatment with both agents induced re‐expression of ARHI and PEG3 in cultured cells and in xenografts, correlating with growth inhibition. Knockdown of ARHI decreased DAC‐induced autophagy. DAC and SAHA inhibited the growth of Hey xenografts and induced autophagy in vivo.

CONCLUSIONS:

A combination of DAC and SAHA inhibited ovarian cancer growth while inducing apoptosis, G2/M arrest, autophagy, and re‐expression of imprinted tumor suppressor genes. Cancer 2011;. © 2011 American Cancer Society.  相似文献   

19.
20.
PURPOSE: To determine the safety, maximum tolerated dose, and pharmacokinetic-pharmacodynamic profile of a histone deacetylase inhibitor, LAQ824, in patients with advanced malignancy. Patients and Methods: LAQ824 was administered i.v. as a 3-h infusion on days 1, 2, and 3 every 21 days. Western blot assays of peripheral blood mononuclear cell lysates and tumor biopsies pretherapy and posttherapy evaluated target inhibition and effects on heat shock protein-90 (HSP90) client proteins and HSP72. RESULTS: Thirty-nine patients (22 male; median age, 53 years; median Eastern Cooperative Oncology Group performance status 1) were treated at seven dose levels (mg/m(2)): 6 (3 patients), 12 (4 patients), 24 (4 patients), 36 (4 patients), 48 (4 patients), 72 (19 patients), and 100 (1 patient). Dose-escalation used a modified continual reassessment method. Dose-limiting toxicities were transaminitis, fatigue, atrial fibrillation, raised serum creatinine, and hyperbilirubinemia. A patient with pancreatic cancer treated at 100 mg/m(2) died on course one at day 18 with grade 3 hyperbilirubinemia and neutropenia, fever, and acute renal failure. The area under the plasma concentration curve increased proportionally with increasing dose; median terminal half-life ranged from 8 to 14 hours. Peripheral blood mononuclear cell lysates showed consistent accumulation of acetylated histones posttherapy from 24 mg/m(2); higher doses resulted in increased and longer duration of pharmacodynamic effect. Changes in HSP90 client protein and HSP72 levels consistent with HSP90 inhibition were observed at higher doses. No objective response was documented; 3 patients had stable disease lasting up to 14 months. Based on these data, future efficacy trials should evaluate doses ranging from 24 to 72 mg/m(2). CONCLUSIONS: LAQ824 was well tolerated at doses that induced accumulation of histone acetylation, with higher doses inducing changes consistent with HSP90 inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号