首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the fire-bellied toad Bombina orientalis, the connectivity and cytoarchitecture of telencephalic structures were studied by intracellular, anterograde and retrograde biocytin labelling in order to elucidate the neuronal basis of fear conditioning and context learning in amphibians. Our findings suggest the existence of a central amygdala-bed nucleus of the stria terminalis complex in the caudal mid-ventral telencephalon, a vomeronasal amygdala in the caudolateral ventral telencephalon, an olfactory amygdala in the caudal pole of the telencephalon lateral of the vomeronasal amygdala, and a ventromedially situated "medial" amygdala, which is assumed to be functionally equivalent to the basolateral amygdala of mammals. A ventromedial cellular column forms a nucleus accumbens rostrally and continues caudally into a shell-like ventral pallidum. A lateral column constitutes a dorsal striatum proper rostrally, a dorsal pallidum caudally, and a mixed striato-pallidum at intermediate levels. We conclude that the caudal mediolateral complex consisting of an extended central, vomeronasal and olfactory amygdala of anurans represents the ancestral equivalent of the amygdaloid complex of tetrapods. During the evolution of the mammalian telencephalon, this complex apparently was shifted medially and involuted.  相似文献   

2.
The amygdala of anurans is currently considered as a complex of nuclei that share many features with their counterparts in amniotes. In the present study, the subdivisions of the amygdala that are directly related to olfactory and vomeronasal information, were investigated in the anurans Rana perezi and Xenopus laevis. In particular, the connectivity of the main and accessory olfactory bulbs and their related amygdaloid nuclei was studied by means of in vivo and in vitro tract-tracing with dextran amines. The projections observed from the main olfactory bulb clearly innervate the newly redefined lateral amygdala within the ventral pallium and, to a lesser extent, the rostral portion of the medial amygdala. Injections into the accessory olfactory bulb exclusively revealed projections to the medial amygdala. Tracer applications into the lateral and medial nuclei revealed abundant intra-amygdaloid connections. The dual flow of olfactory and vomeronasal projections throughout the telencephalon was not strictly segregated since the lateral pallium and the lateral amygdala, both receiving olfactory information, were found to project to the medial amygdala (the only target of vomeronasal information), which in turn projects to the lateral amygdala. Additionally, both the lateral and the medial amygdala strongly project to the hypothalamus through the anuran equivalent of the stria terminalis. The main hodological features found in the present study suggest that forerunners of the olfactory and vomeronasal amygdaloid nuclei can be distinguished in anurans. This supports the notion that all tetrapods share a common pattern of organization of the amygdaloid complex, which links environmental (olfactory/vomeronasal) information and the behavioural response of the animal.  相似文献   

3.
The cytoarchitecture and axonal connection pattern of centers in the ventral telencephalon of the salamander Plethodon shermani were studied using biocytin for anterograde and retrograde labeling of cell groups, as well as by intracellular injections. Application of biocytin to the main and accessory olfactory bulbs identified the olfactory pallial regions and the vomeronasal portion of the amygdala, respectively. According to our results, the amygdala of Plethodon is divided into (1) a rostral part projecting to visceral and limbic centers and receiving afferents from the dorsal thalamus, and (2) a caudal part receiving accessory olfactory input. The striatopallial transition area (SPTA) lies rostrodorsally to the caudal (vomeronasal) amygdala and is similar in connections and possibly in function. The rostral striatum has few descending projections to the medulla, whereas the intermediate striatum sends strong projections to the tegmentum and medulla. The caudal striatum has strong ascending projections to the striatum and descending projections to the ventral hypothalamus. The dendritic trees of neurons labeled below the striatum and in the SPTA spread laterally from the soma, whereas dendrites of striatal neurons converge into the laterally situated striatal neuropil. In the caudal amygdala, three distinct types of neurons are found differing in dendritic arborization. It is concluded that, hodologically, the rostral part of the urodele amygdala corresponds to the central and basolateral amygdala and the caudal part to the cortical/medial amygdala of mammals. The urodele striatum is divided into a rostral striatum proper, an intermediate dorsal pallidum, and a caudal part, with distinct connections described here for the first time in a vertebrate.  相似文献   

4.
The functional organization of sensory activity in the amphibian telencephalon is poorly understood. We used an in vitro brain preparation to compare the anatomy of afferent pathways with the localization of electrically evoked sensory potentials and single neuron intracellular responses in the telencephalon of the toad Bombina orientalis. Anatomical tracing showed that the anterior thalamic nucleus innervates the anterior parts of the medial, dorsal, and lateral pallia and the rostralmost part of the pallium in addition to the subpallial amygdala/ventral pallidum region. Additional afferents to the medial telencephalon originate from the thalamic eminence. Electrical stimulation of diverse sensory nerves and brain regions generated evoked potentials with distinct characteristics in the pallium, subpallial amygdala/ventral pallidum, and dorsal striatopallidum. In the pallium, this sensory activity is generated in the anterior medial region. In the case of olfaction, evoked potentials were recorded at all sites, but displayed different characteristics across telencephalic regions. Stimulation of the anterior dorsal thalamus generated a pattern of activity comparable to olfactory evoked potentials, but it became similar to stimulation of the optic nerve or brainstem after bilateral lesion of the lateral olfactory tract, which interrupted the antidromic activation of the olfactohabenular tract. Intracellular bimodal sensory responses were obtained in the anterior pallium, medial amygdala, ventral pallidum, and dorsal striatopallidum. Our results demonstrate that the amphibian anterior pallium, medial amygdala/ventral pallidum, and dorsal striatopallidum are multimodal sensory centers. The organization of the amphibian telencephalon displays striking similarities with the brain pathways recently implicated in mammalian goal-directed behavior.  相似文献   

5.
The cytoarchitecture and axonal projection pattern of pallial areas was studied in the fire-bellied toad Bombina orientalis by intracellular injection of biocytin into a total of 326 neurons forming 204 clusters. Five pallial regions were identified, differing in morphology and projection pattern of neurons. The rostral pallium receiving the bulk of dorsal thalamic afferents has reciprocal connections with all other pallial areas and projects to the septum, nucleus accumbens, and anterior dorsal striatum. The medial pallium projects bilaterally to the medial pallium, septum, nucleus accumbens, mediocentral amygdala, and hypothalamus and ipsilaterally to the rostral, dorsal, and lateral pallium. The ventral part of the medial pallium is distinguished by efferents to the eminentia thalami and the absence of contralateral projections. The dorsal pallium has only ipsilateral projections running to the rostral, medial, and lateral pallium; septum; nucleus accumbens; and eminentia thalami. The lateral pallium has ipsilateral projections to the olfactory bulbs and to the rostral, medial, dorsal, and ventral pallium. The ventral pallium including the striatopallial transition area (SPTA) has ipsilateral projections to the olfactory bulbs, rostral and lateral pallium, dorsal striatopallidum, vomeronasal amygdala, and hypothalamus. The medial pallium can be tentatively homologized with the mammalian hippocampal formation, the dorsal pallium with allocortical areas, the lateral pallium rostrally with the piriform and caudally with the entorhinal cortex, the ventral pallium with the accessory olfactory amygdala. The rostral pallium, with its projections to the dorsal and ventral striatopallidum, resembles the mammalian frontal cortex.  相似文献   

6.
Olfactory nerve and olfactory bulb projections in lepidosirenid lungfishes were experimentally determined with neural tracers. Unilateral injections of DiI into the olfactory nerve labeled the accessory and main olfactory bulbs as well as fibers of the anterior root of the terminal nerve, which terminates extensively in cell groups of the medial hemispheric wall, the dorsal and lateral pallia, and the preoptic nuclei and posterior tubercle. Lepidosirenid lungfishes do not exhibit separate vomeronasal nerves, but previous data indicate that calbindin-positive receptors within basal crypts of the olfactory epithelium are homologous to the vomeronasal organ of tetrapods. Unilateral injections of DiI into the accessory olfactory bulb reveal an accessory olfactory tract which terminates primarily if not solely in the ipsilateral medial amygdalar nucleus as in amphibians. Unilateral injections of tracers into the main olfactory bulb reveal extensive projections to all cell groups in the ipsilateral telencephalic hemisphere, except for the medial amygdalar nucleus, as well as secondary olfactory projections (decussating in the habenular commissure) to the contralateral dorsal pallium and main olfactory bulb. Secondary olfactory projections also terminate bilaterally in diencephalic and midbrain centers after partial decussation in the anterior and postoptic commissures, as well as in the ventral hypothalamus and posterior tubercle. Cladistic analysis of the extensive secondary olfactory projections indicates that this pattern is primitive for all bony fishes whereas the reduction in secondary olfactory projections in amphibians, particularly anurans, is a derived, simplified pattern.  相似文献   

7.
Horseradish peroxidase or tritiated proline was unilaterally injected into the medial pallium in bullfrogs in order to determine the sources of afferent projections to the medial pallium and the targets of pallial efferent projections. Some cells in all telencephalic centers, except the corpus striatum and the pars lateralis of the amygdala, project to the ipsilateral medial pallium. The medial pallium receives projections from fewer centers in the contralateral hemisphere, which include the medial septal nucleus, the pars medialis of the amygdala, the bed nucleus of the pallial commissure and the medial pallium. The raphe nucleus and the anterior thalamic nuclei appear to be the only sources of afferents to the medial pallium from outside the telencephalon. Efferents of the medial pallium are far more extensive than reported in earlier studies. The medial pallium projects ipsilaterally to all telencephalic nuclei, with the exception of a large part of the corpus striatum, and contralaterally to the medial septal nucleus, the olfactory tubercle, amygdala, medial pallium and bed nucleus of the pallial commissure. Extensive efferent projections also terminate in preoptic and hypothalamic regions, as well as in most thalamic relay nuclei, the pretectum and, possibly, the optic tectum. Similarities to the medial pallium in other tetrapods and to that in mammals suggest that the medial pallium in anurans is homologous to the subicular and CA fields and, possibly, the dentate gyrus in mammals. However, the extensive projections of the medial pallium to the dorsal thalamus and pretectum in anurans may be primitive features of the medial pallium retained in anurans, or uniquely derived features in anurans.  相似文献   

8.
Previous studies suggest that the rostral corticomedial amygdala (CMA), particularly the medial nucleus, is an important site where vomeronasal and olfactory stimuli critical to male hamster copulatory behavior are processed. To test the possibility that mating deficits seen after lesions of the rostrally-placed medial nucleus may be due to the interruption of chemosensory afferents to more caudal areas, we injected tritiated amino acids into the accessory and main olfactory bulbs of male hamsters in which we had first produced bilateral electrolytic lesions or sham lesions in either the rostral CMA or basolateral amygdala, and then observed mating behavior. Autoradiographic analysis of ‘vomeronasal’ projections from the accessory olfactory bulb and ‘olfactory’ projections from the main bulb, revealed that rostral CMA lesions which damaged the medial nucleus and extended to the ventral surface of the brain (ventral lesions) interrupted vomeronasal input to the more caudally-placed posteromedial cortical nucleus, but spared olfactory inputs to adjacent caidal areas of the amygdala and piriform lobe. In contrast, lesions which damaged a major portion of the medial nucleus but left its ventral surface intact (dorsal lesions) spared both vomeronasal and olfactory inputs to more caudal areas. Animals with both dorsal and ventral lesions failed to mate posteperatively, whereas animals bearing sham lesions of basolateral amygdaloid lesions, which, like dorsal lesions, spared caudally-directed chemosensory afferents, continued to mate normally. We conclude that mating deficits seen after rostral CMA lesions are due primarily to destruction of the medial nucleus.  相似文献   

9.
The telencephalon of the African lungfish, Protopterus annectens, was studied by immunohistochemical techniques in order to identify the major subdivisions of the telencephalon and determine the possible homologues of these subdivisions, if any, in other vertebrates. The distributions of four different neuropeptides (substance P, leucine-enkephalin, avian pancreatic polypeptide, and LANT6), a neurotransmitter (serotonin), and a neurotransmitter-related enzyme that is involved in catecholamine synthesis (tyrosine hydroxylase) were examined. The resultant labeling patterns indicated that the telencephalon of lungfish consists of three major subdivisions--a rostrally and dorsally situated olfactory bulb, a dorsally situated pallial region located caudal to the olfactory bulbs, and a ventrally situated subpallial regions. The dorsal and lateral pallial regions, which both receive secondary olfactory input, are somewhat distinct from one another cytoarchitectonically, but their immunohistochemical labeling characteristics did not differ. Thus, the lateral pallium and the dorsal pallium together appear to constitute an olfactory pallium in lungfishes. The medial pallium was found to consist of three immunohistochemically distinct subdivisions--a dorsal cell group, an intermediate cell group, and a ventral cell group. These medial pallial fields extend throughout the entire rostrocaudal extent of the medial wall of the telencephalon. Although one or more of these medial pallial cell groups may be homologous to specific portions of the medial pallium in land vertebrates, no specific similarities were observed to support any proposed one-to-one correspondences. The possibility that one or more of the medial pallial cell groups of lungfishes correspond to cell groups located in the dorsal pallium of land vertebrates could not be excluded. The subpallium is divided into lateral, medial, and caudal subdivisions. The lateral subdivision appears to be homologous to the basal ganglia of land vertebrates since it contains neuropeptide/neurotransmitter-specific neuronal populations that are characteristic of the striatal and pallidal portions of the basal ganglia of amniotes. The medial subdivision of the subpallium shows the topographic and immunohistochemical characteristics of the septal region and the nucleus accumbens region of the amniote telencephalon. The caudal subpallium does not show any distinctive immunohistochemical labeling characteristics and its possible homologue in land vertebrates is unclear.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Rink E  Wullimann MF 《Brain research》2004,1011(2):206-220
Connections of the medial precommissural subpallial ventral telencephalon, i.e., dorsal (Vd, interpreted as part of striatum) and ventral (Vv, interpreted as part of septum) nuclei of area ventralis telencephali, were studied in the zebrafish (Danio rerio) using two tracer substances (DiI or biocytin). The following major afferent nuclei to Vd/Vv were identified: medial and posterior pallial zones of dorsal telencephalic area, and the subpallial supracommissural and postcommissural nuclei of the ventral telencephalic area, the olfactory bulb, dorsal entopeduncular, anterior and posterior parvocellular preoptic and suprachiasmatic nuclei, anterior, dorsal and central posterior dorsal thalamic, as well as rostrolateral nuclei, periventricular nucleus of the posterior tuberculum, posterior tuberal nucleus, various tuberal hypothalamic nuclei, dorsal tegmental nucleus, superior reticular nucleus, locus coeruleus, and superior raphe nucleus. Efferent projections of the ventral telencephalon terminate in the supracommissural nucleus of area ventralis telencephali, the posterior zone of area dorsalis telencephali, habenula, periventricular pretectum, paracommissural nucleus, posterior dorsal thalamus, preoptic region, midline posterior tuberculum (especially the area dorsal to the posterior tuberal nucleus), tuberal (midline) hypothalamus and interpeduncular nucleus. Strong reciprocal interconnections likely exist between septum and preoptic region/midline hypothalamus and between striatum and dorsal thalamus (dopaminergic) posterior tuberculum. Regarding ascending activating/modulatory systems, the pallium shares with the subpallium inputs from the (noradrenergic) locus coeruleus, and the (serotoninergic) superior raphe, while the subpallium additionally receives such inputs from the (dopaminergic) posterior tuberculum, the (putative cholinergic) superior reticular nucleus, and the (putative histaminergic) caudal hypothamalic zone.  相似文献   

11.
Intracellular recording and biocytin labeling were carried out in the fire-bellied toad Bombina orientalis to study the morphology and axonal projections of thalamic (TH) neurons and their responses to electrical optic nerve stimulation. Labeled neurons (n = 142) were divided into the following groups: TH1 neurons projecting to the dorsal striatum; TH2 neurons projecting to the amygdala, nucleus accumbens, and septal nuclei; TH3 neurons projecting to the medial or dorsal pallium; TH4 neurons with projections ascending to the dorsal striatum or ventral striatum/amygdala and descending to the optic tectum, tegmentum, and rostral medulla oblongata; TH5 neurons with projections to the tegmentum, rostral medulla oblongata, prectectum, or tectum; and TH6 neurons projecting to the hypothalamus. TH1 neurons are found in the central, TH2 neurons in the anterior and central, TH3 neurons in the anterior dorsal nucleus, and TH4 and TH5 neurons in the posterior dorsal or ventral nucleus. Neurons with descending projections arborize in restricted parts of retinal afferents; neurons with ascending projections do not substantially arborize within retinal afferents. At electrical optic nerve stimulation, neurons in the ventral thalamus respond with excitation at latencies of 10.8 msec; one-third of them follow repetitive stimulation and possibly are monosynaptically driven. Neurons in the dorsal thalamus respond mostly with inhibition at latencies of 42.3 msec and are polysynaptically driven. This corroborates the view that neurons in the dorsal thalamus projecting to the telencephalon receive no substantial direct retinal input and that the thalamopallial pathway of amphibians is not homologous to the mammalian retinogeniculocortical pathway.  相似文献   

12.
The connections of the olfactory bulb were traced using horseradish peroxidase. A homologue of the medial olfactory tract in gnathostomes projects to the ipsilateral septal nucleus, preoptic area and, possibly, the rostral striatum. A homologue of the lateral olfactory tract projects to the ipsilateral lateral pallium, dorsal pallium and, possibly, the medial pallium, as well as to the posterior diencephalon. A component of the lateral olfactory tract decussates in the habenular and posterior commissures and distributes to the contralateral hemisphere and caudal diencephalon. A dorsal component of secondary olfactory fibers terminates, ipsilaterally, in a dorsomedially situated neuropil that has previously been interpreted as a single glomerulus of the olfactory bulb or as an accessory olfactory bulb, as well as in the contralateral olfactory bulb after decussation in the dorsal commissure. Afferents to the olfactory bulb arise from the ipsilateral dorsal pallium, lateral pallium, a cell-poor region adjacent to the preoptic area, and the midbrain tegmentum. The extent of the secondary olfactory projections in silver lampreys could be interpreted to support the phylogenetic hypothesis that all regions of the telencephalon received secondary olfactory projections in the earliest vertebrates, but this interpretation is not unequivocal, due to questions concerning the pallial homologues in lampreys and gnathostomes. Application of horseradish peroxidase to the olfactory epithelium revealed projections to the striatum, preoptic area, hypothalamus and posterior tuberculum that are comparable to projections of the nervus terminalis in other vertebrates.  相似文献   

13.
Hodological characterization of the medial amygdala in anuran amphibians   总被引:1,自引:0,他引:1  
Early studies in anuran amphibians defined the amygdala as a single unit that only later could be subdivided into medial and lateral parts with the achievement of sensitive immunohistochemical and tracing techniques. However, the terminology used was often misleading when comparing with "homologous" amygdaloid nuclei in amniotes. Recently, the basal telencephalon of anurans has been demonstrated to be more complex than previously thought, and distinct amygdaloid nuclei were proposed on the basis of immunohistochemistry. Moreover, developmental data are increasing that support this notion. In the present study, we analyzed the patterns of afferent and efferent connections of the medial amygdala (MeA; formerly amygdala pars lateralis), considered as the main target of the vomeronasal information from the accessory olfactory bulb, as in other vertebrates. By means of axonal transport of dextran amines, the afferent and efferent connections of the MeA were traced in Rana perezi and Xenopus laevis under in vivo and in vitro conditions. Largely similar results were found in both species. The results showed abundant intratelencephalic and extratelencephalic connections that were readily comparable to those of other tetrapods. Most of these connections were reciprocal and, in particular, the strong relation of the MeA with the hypothalamus, via the stria terminalis, was demonstrated. Immunohistochemical techniques showed staining patterns that revealed abundant peptidergic afferents to the MeA, as well as minor inputs containing other neurotransmitters such as catecholamines. Double-labeling experiments demonstrated that the peptidergic fibers that reach the MeA originate in the ventral hypothalamus, whereas the catecholaminergic innervation of the MeA arises in the caudal extent of the posterior tubercle. Taken together, the results about connectivity in our study support the comparison of the MeA in anurans with its counterparts (and similarly named) amygdaloid nuclei in amniotes. Most of the hodological features of the medial amygdala seem to be shared by those tetrapods with well-developed vomeronasal systems.  相似文献   

14.
This paper is an account of the afferent and efferent projections of the nucleus sphericus (NS), which is the major secondary vomeronasal structure in the brain of the snake Thamnophis sirtalis. There are four major efferent pathways from the NS: 1) a bilateral projection that courses, surrounding the accessory olfactory tract, and innervates several amygdaloid nuclei (nucleus of the accessory olfactory tract, dorsolateral amygdala, external amygdala, and ventral anterior amygdala), the rostral parts of the dorsal and lateral cortices, and the accessory olfactory bulb; 2) a bilateral projection that courses through the medial forebrain bundle and innervates the olfactostriatum (rostral and ventral striatum); 3) a commissural projection that courses through the anterior commissure and innervates mainly the contralateral NS; and 4) a meager bilateral projection to the lateral hypothalamus. On the other hand, important afferent projections to the NS arise solely in the accessory olfactory bulb, the nucleus of the accessory olfactory tract, and the contralateral NS. This pattern of connections has three important implications: first, the lateral cortex probably integrates olfactory and vomeronasal information. Second, because the NS projection to the hypothalamus is meager and does not reach the ventromedial hypothalamic nucleus, vomeronasal information from the NS is not relayed directly to that nucleus, as previously reported. Finally, a structure located in the rostral and ventral telencephalon, the olfactostriatum, stands as the major tertiary vomeronasal center in the snake brain. These three conclusions change to an important extent our previous picture of how vomeronasal information is processed in the brain of reptiles. J. Comp. Neurol. 385:627–640, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Embryological studies indicate that the amygdala includes pallial structures, namely the cortical amygdala (olfactory and vomeronasal) and the basolateral complex deep to it. In squamate reptiles, the cortical amygdala includes secondary olfactory (the ventral anterior amygdala) and vomeronasal centres (the nucleus sphericus). In birds, the situation is far less clear, due to the relative underdevelopment of the chemosensory systems. The basolateral amygdala of squamate reptiles includes two ventropallial structures: the posterior dorsal ventricular ridge and the lateral amygdala. Like their mammalian counterparts, these centres give rise to glutamatergic projections to the striatal (centromedial) amygdala and the ventromedial hypothalamus. Using the same criteria, the caudal neostriatum and the ventral intermediate archistriatum may represent the ventral pallial amygdala of birds. The basal nucleus of the mammalian amygdala is a lateropallial territory. In reptiles, the lateral pallium includes the dorsolateral amygdala, which, like the mammalian basal nucleus, projects bilaterally to the striatum/accumbens and receives distinct cholinergic and dopaminergic innervations. In the avian brain, the same embryological, hodological, and histochemical criteria are met by the area temporo-parieto-occipitalis, the caudolateral neostriatum and the dorsal intermediate archistriatum. Therefore, the projections from these structures to the paleostriatum and the lobus paraolfactorius are amygdalostriatal, rather than corticostriatal connections.  相似文献   

16.
In the frog Discoglossus pictus and the salamander Plethodon jordani, the morphology and axonal projection pattern of neurons in the medial and dorsal pallium were determined by intracellular biocytin labeling. A total of 77 pallial neurons were labeled in the frog and 58 pallial neurons in the salamander. Within the medial pallium (MP) of the frog, four types of neurons were identified on the basis of differences in their axonal projection pattern. Type I neurons have bilateral projections into telencephalic and diencephalic areas; type II neurons have bilateral projections to telencephalic areas and ipsilaterally descending projections to diencephalic regions; type III neurons have only intratelencephalic connections, and a single type IV neuron has ipsilaterally descending projections. The somata of the four types occupy four nonoverlapping zones. Neurons of the dorsal pallium (DP) project exclusively to the ipsilateral MP and to the dorsal edge of the lateral pallium. In the ventral MP of the salamander, neurons have mostly intratelencephalic projections. Neurons in the dorsal MP project bilaterally to diencephalic and telencephalic regions. Neurons in the medial DP project ipsilaterally to the MP, lateral septum, nucleus accumbens, medial amygdala, and the internal granule layer of the olfactory bulb. In five cases, fibers were found in the commissura hippocampi, but in only two cases could these fibers be followed toward the contralateral MP and septum. Neurons in the lateral DP had no contralateral projections; they projected to the ipsilateral MP and in eight cases to the ipsilateral septum as well. Based on similarities of cytoarchitecture and projection pattern in neurons of the MP and DP, it is proposed that both frogs and salamanders have an MP subdivided into a ventral and dorsal portion, and a DP subdivided into a medial and a lateral portion.  相似文献   

17.
Central olfactory and vomeronasal pathways were studied in salamanders of the families Salamandridae and Plethodontidae by means of the HRP method. HRP was injected into the olfactory and accessory olfactory bulb as well as into the lateral/dorsal pallium, the main termination areas of secondary olfactory projections. Fibers leaving the olfactory bulb constitute two main tracts, the lateral olfactory tract (LOT), which is mostly restricted to the ipsilateral telencephalon, and the anterior olfactory habenular tract (AOHT), which represents the main contralateral connection. Fibers of the LOT project to the lateral pallium, dorsal striatum and the habenula. Efferent connections of the accessory olfactory bulb (AOT) terminate within the amygdala pars lateralis. No interspecific differences concerning the targets of central olfactory and vomeronasal projections were observed, but the number of olfactory tracts and their separation from each other varies.  相似文献   

18.
In order to provide cues about the evolution of the telencephalon in tetrapods, the connections of the anterior pallium were studied in two adult Urodeles, Pleurodeles waltl and Triturus carnifex, by means of the HRP-tracing method. The staining of HRP-immunopositive cell bodies indicates that the pallial regions studied receive afferent projections from the main olfactory bulb and are reciprocally interconnected by intrapallial associative fiber systems. In the ventral hemispheric wall, HRP-immunoreactive perikarya are observed in the pars medialis of the amygdala and in the rostral and caudal striatum. Triturus exhibits a more complex pattern of pallial afferents, including interhemispheric connections and thalamic ascending projections that were not discovered in Pleurodeles. HRP-immunopositive fibers are observed in the dorsal and medial walls of the telencephalon, from the rostral part to the foraminal level. In Triturus, the dorsal fibers extend to the caudal part of the hemisphere. Another group of labelled fibers extends, throughout the lateral and ventral walls, to the most caudal part of the telencephalon, and, through the stria medullaris and the habenular commissure, crosses over to the controlateral hemisphere. These results allow us to specify the basic pattern of the pallial connections in Urodeles and to compare them with data previously obtained in other Amphibians.  相似文献   

19.
Biotinylated dextran amine and fluorescent carbocyanine dye (DiI) were used to examine connections of the lateral (Dl) and medial (Dm) divisions of the goldfish pallium. Besides numerous intrinsic telencephalic connections to Dl and Dm, major ascending projections to these pallial divisions arise in the preglomerular complex of the posterior tuberculum, rather than in the dorsal thalamus. The rostral subnucleus of the lateral preglomerular nucleus receives auditory input via the medial pretoral nucleus, lateral line input via the ventrolateral toral nucleus, and visual input via the optic tectum, and it projects to both Dl and Dm. The anterior preglomerular nucleus and caudal subnucleus of the lateral preglomerular nucleus receive auditory input via the central toral nucleus and project to Dm. This pallial division also receives chemosensory information via the medial preglomerular nucleus. The central posterior (CP) nucleus, which receives both auditory and visual inputs, also projects to Dm and is the only dorsal thalamic nucleus projecting to the pallium. Thus, both Dl and Dm clearly receive multisensory inputs. Major projections of CP and projections of all other dorsal thalamic nuclei are to the subpallium, however. Descending projections of Dl are primarily to the preoptic area and the caudal hypothalamus, whereas descending projections of Dm are more extensive and particularly heavy to the anterior tuber and nucleus diffusus of the hypothalamus. The topography and connections of Dl are remarkably similar to those of the hippocampus of tetrapods, whereas the topography and connections of Dm are similar to those of the amygdala.  相似文献   

20.
The paucity of experimental data and the differences in telencephalic organization between sharks and other jawed vertebrates have complicated telencephalic comparisons. The distribution of neuropeptides has been extremely useful in recognizing and comparing major subdivisions of the telencephalon among vertebrates. Immunohistochemical techniques were therefore used to study the distribution of substance P (SP), leucin-enkephalin (LENK), and serotonin (5HT), as well as tyrosine hydroxylase (TH), an indicator of catecholamines, in the telencephalon of the spiny dogfish. The distribution of SP and LENK provides a clear distinction between pallial and subpallial portions of the telencephalon. Two regions of the ventrolateral telencephalon, area superficialis basalis and area periventricularis ventrolateralis, exhibit histochemical similarities to the pallidal and striatal subdivisions, respectively, of the basal ganglia in amniotes. Lower densities of LENK+ and SP+ perikarya and fibers occur in the medial pallium and the pars centralis of the dorsal pallium. Similar histochemical traits characterize the sensory thalamorecipient telencephalic structures in amniotes. The lateral pallium in dogfishes is distinguished by the presence of large numbers of TH+ neurons with radially oriented processes. The presence of these distinctive cells also in the medial wall of the rostral telencephalon suggests that the lateral pallium has a medial extension that is situated ventral to the medial pallium. Neurons containing TH were widely distributed in the telencephalon of spiny dogfish and were particularly abundant in the dorsal pallium, olfactory pallium, and area superficialis basalis. It is currently unclear whether these TH+ telencephalic neurons are, in fact, catecholaminergic or merely contain a TH-like substance unrelated to catecholamine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号