首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Integrin alpha(v)beta(3) plays a critical role in tumor-induced angiogenesis and metastasis and has become a promising diagnostic indicator and therapeutic target for various solid tumors. Radiolabeled RGD peptides that are integrin specific can be used for noninvasive imaging of integrin expression level as well as for integrin-targeted radionuclide therapy. METHODS: In this study we developed a tetrameric RGD peptide tracer (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) (DOTA is 1,4,7,10-tetraazacyclododecane-N,N',N',N'-tetraacetic acid) for PET imaging of integrin alpha(v)beta(3) expression in female athymic nude mice bearing the subcutaneous UG87MG glioma xenografts. RESULTS: The RGD tetramer showed significantly higher integrin binding affinity than the corresponding monomeric and dimeric RGD analogs, most likely due to a polyvalency effect. The radiolabeled peptide showed rapid blood clearance (0.61 +/- 0.01 %ID/g at 30 min and 0.21 +/- 0.01 %ID/g at 4 h after injection, respectively [%ID/g is percentage injected dose per gram]) and predominantly renal excretion. Tumor uptake was rapid and high, and the tumor washout was slow (9.93 +/- 1.05 %ID/g at 30 min after injection and 4.56 +/- 0.51 %ID/g at 24 h after injection). The metabolic stability of (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) was determined in mouse blood, urine, and liver and kidney homogenates at different times after tracer injection. The average fractions of intact tracer in these organs at 1 h were approximately 70%, 58%, 51%, and 26%, respectively. Noninvasive microPET studies showed significant tumor uptake and good contrast in the subcutaneous tumor-bearing mice, which agreed well with the biodistribution results. Integrin alpha(v)beta(3) specificity was demonstrated by successful blocking of tumor uptake of (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) in the presence of excess c(RGDyK) at 1 h after injection. The highest absorbed radiation doses determined for the human reference adult were received by the urinary bladder wall (0.262 mGy/MBq), kidneys (0.0296 mGy/MBq), and liver (0.0242 mGy/MBq). The average effective dose resulting from a single (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) injection was estimated to be 0.0164 mSv/MBq. CONCLUSION: The high integrin and avidity and favorable biokinetics make (64)Cu-DOTA-E{E[c(RGDfK)](2)}(2) a promising agent for peptide receptor radionuclide imaging and therapy of integrin-positive tumors.  相似文献   

2.
In vivo imaging of alpha(v)beta(3) expression has important diagnostic and therapeutic applications. Multimeric cyclic RGD peptides are capable of improving the integrin alpha(v)beta(3)-binding affinity due to the polyvalency effect. Here we report an example of (18)F-labeled tetrameric RGD peptide for PET of alpha(v)beta(3) expression in both xenograft and spontaneous tumor models. METHODS: The tetrameric RGD peptide E{E[c(RGDyK)](2)}(2) was derived with amino-3,6,9-trioxaundecanoic acid (mini-PEG; PEG is poly(ethylene glycol)) linker through the glutamate alpha-amino group. NH(2)-mini-PEG-E{E[c(RGDyK)](2)}(2) (PRGD4) was labeled with (18)F via the N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) prosthetic group. The receptor-binding characteristics of the tetrameric RGD peptide tracer (18)F-FPRGD4 were evaluated in vitro by a cell-binding assay and in vivo by quantitative microPET imaging studies. RESULTS: The decay-corrected radiochemical yield for (18)F-FPRGD4 was about 15%, with a total reaction time of 180 min starting from (18)F-F(-). The PEGylation had minimal effect on integrin-binding affinity of the RGD peptide. (18)F-FPRGD4 has significantly higher tumor uptake compared with monomeric and dimeric RGD peptide tracer analogs. The receptor specificity of (18)F-FPRGD4 in vivo was confirmed by effective blocking of the uptake in both tumors and normal organs or tissues with excess c(RGDyK). CONCLUSION: The tetrameric RGD peptide tracer (18)F-FPRGD4 possessing high integrin-binding affinity and favorable biokinetics is a promising tracer for PET of integrin alpha(v)beta(3) expression in cancer and other angiogenesis related diseases.  相似文献   

3.
PURPOSE: We and others have reported that (18)F- and (64)Cu-labeled arginine-glycine-aspartate (RGD) peptides allow positron emission tomography (PET) quantification of integrin alpha(v)beta(3) expression in vivo. However, clinical translation of these radiotracers is partially hindered by the necessity of cyclotron facility to produce the PET isotopes. Generator-based PET isotope (68)Ga, with a half-life of 68 min and 89% positron emission, deserves special attention because of its independence of an onsite cyclotron. The goal of this study was to investigate the feasibility of (68)Ga-labeled RGD peptides for tumor imaging. METHODS: Three cyclic RGD peptides, c(RGDyK) (RGD1), E[c(RGDyK)](2) (RGD2), and E{E[c(RGDyK)](2)}(2) (RGD4), were conjugated with macrocyclic chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and labeled with (68)Ga. Integrin affinity and specificity of the peptide conjugates were assessed by cell-based receptor binding assay, and the tumor targeting efficacy of (68)Ga-labeled RGD peptides was evaluated in a subcutaneous U87MG glioblastoma xenograft model. RESULTS: U87MG cell-based receptor binding assay using (125)I-echistatin as radioligand showed that integrin affinity followed the order of NOTA-RGD4 > NOTA-RGD2 > NOTA-RGD1. All three NOTA conjugates allowed nearly quantitative (68)Ga-labeling within 10 min (12-17 MBq/nmol). Quantitative microPET imaging studies showed that (68)Ga-NOTA-RGD4 had the highest tumor uptake but also prominent activity accumulation in the kidneys. (68)Ga-NOTA-RGD2 had higher tumor uptake (e.g., 2.8 +/- 0.1%ID/g at 1 h postinjection) and similar pharmacokinetics (4.4 +/- 0.4 tumor/muscle ratio, 2.0 +/- 0.1 tumor/liver ratio, and 1.1 +/- 0.1 tumor/kidney ratio) compared with (68)Ga-NOTA-RGD1. CONCLUSIONS: The dimeric RGD peptide tracer (68)Ga-NOTA-RGD2 with good tumor uptake and favorable pharmacokinetics warrants further investigation for potential clinical translation to image integrin alpha(v)beta(3).  相似文献   

4.
18F-labeled BBN-RGD heterodimer for prostate cancer imaging.   总被引:2,自引:0,他引:2  
Both bombesin (BBN) analogs and cyclic RGD peptides have been suitably radiolabeled for prostate cancer imaging. However, the limited expression of gastrin-releasing peptide receptor (GRPR) and integrin alpha(v)beta(3) as well as unfavorable in vivo kinetics limited further applications of these imaging agents. We hypothesize that a peptide ligand recognizing both GRPR and integrin will be advantageous because of its dual-receptor-targeting ability. METHODS: A BBN-RGD heterodimer was synthesized from bombesin(7-14) and c(RGDyK) through a glutamate linker and then labeled with (18)F via the N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) prosthetic group. The receptor-binding characteristics and tumor-targeting efficacy of (18)F-FB-BBN-RGD were tested in vitro and in vivo. RESULTS: FB-BBN-RGD had comparable integrin alpha(v)beta(3)-binding affinity with c(RGDyK) and comparable GRPR-binding affinity with BBN(7-14). (18)F-FB-BBN-RGD had significantly higher tumor uptake compared with monomeric RGD and monomeric BBN peptide tracer analogs at all time points examined. The PC-3 tumor uptake of (18)F-FB-BBN-RGD was inhibited only partially in the presence of an excess amount of unlabeled BBN(7-14) or c(RGDyK) but was blocked completely in the presence of both BBN(7-14) and c(RGDyK). Compared with (18)F-FB-BBN and (18)F-FB-RGD, (18)F-FB-BBN-RGD also had improved pharmacokinetics, resulting in a significantly higher imaging quality. CONCLUSION: Dual integrin alpha(v)beta(3) and GRPR recognition showed significantly improved tumor-targeting efficacy and pharmacokinetics compared with (18)F-labeled RGD and BBN analogs. The same heterodimeric ligand design may also be applicable to other receptor system combinations and other imaging modalities.  相似文献   

5.
Bone diseases are often a result of increased numbers of osteoclasts, or bone-resorbing cells. Bone metastases are a significant cause of morbidity in many types of cancer. An imaging agent targeting osteoclasts, which are upregulated in osteolytic lesions, may facilitate earlier follow-up in patients with osteolytic or mixed bone metastases. Osteoclasts express high levels of alpha(v)beta3 integrin, to which peptides containing the Arg-Gly-Asp (RGD) sequence are known to bind. We proposed that radiolabeled RGD peptides could be used to detect osteoclasts in lytic bone lesions. METHODS: The cross-bridged macrocyclic chelator 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-TE2A) was conjugated to c(RGDyK) for radiolabeling with 64Cu (t(1/2), 12.7 h; beta+, 17.4%; E(beta+ max), 656 keV; beta-, 39%; E(beta- max), 573 keV). The in vitro affinity of Cu(II)-CB-TE2A-c(RGDyK) for alpha(v)beta3 and alpha(v)beta5 was evaluated in a heterologous competitive binding assay. Ex vivo uptake was examined in osteoclasts prepared from bone marrow macrophages. As a proof of principle, biodistribution and imaging studies were performed on parathyroid hormone (PTH)-induced osteolysis in the calvarium. RESULTS: Cu-CB-TE2A-c(RGDyK) was shown to have a 30-fold higher affinity for alpha(v)beta3 than for alpha(v)beta5. Osteoclasts were shown to specifically take up (64)Cu-CB-TE2A-c(RGDyK). However, bone marrow macrophages showed only nonspecific uptake. PTH treatment increased calvarial uptake of 64Cu-CB-TE2A-c(RGDyK), compared with uptake in mice receiving a sham treatment. In addition, calvarial uptake correlated linearly with the number of osteoclasts on the bone surface. CONCLUSION: These results suggest that 64Cu-CB-TE2A-c(RGDyK) selectively binds alpha(v)beta3 on osteoclasts and may potentially be used to identify increased numbers of osteoclasts in osteolytic bone diseases such as osteolytic bone metastasis and inflammatory osteolysis.  相似文献   

6.
目的 制备99Tcm标记的含有精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp,RGD)序列的环肽四聚体99Tcm-联肼尼克酰胺(HYNIC)-E{E[c(RGDfK)]2}2,评价其在整合素αvβ3表达阳性的荷人神经胶质瘤裸鼠模型的生物分布和显像.方法 以HYNIC为双功能螫合剂,以三羟甲基甘氨酸(tricine)和三苯基膦三磺酸钠(TPfffS)为协同配体,采用两步法制备99Tcm-HYNIC-E{E[c(RGDfK)2}2.通过体外受体竞争结合实验比较e(RGDyK)单体、HYNIC-E[c(RGDfK)2二聚体和HYNIC-E{E[c(RGDfK)]2}2四聚体与整合素αvβ3亲和力.生物分布实验数据显示,99Tcm-HYNIC-E{E[c(RGDtK)]2}2主要经肾排泄;注射后1h,肿瘤对99Tcm-HYNIC-E{E[c(RGDfK)]2}2的摄取为99Tcm-HYNIC-E[c(RG-DfK)]2的2倍,分别为(10.32±0.07)%ID/g和(5.15±O.52)%ID/g,与体外受体竞争结合实验数据相一致;注射后4h,肿瘤对99Tcm-HYNIC-E{E[c(RGDfK)]2}2的摄取仍达(9.35.4±1.35)%ID/g,表明标记物在肿瘤中的滞留时间足够长.r显像结果显示,注射后1h肿瘤清晰可见.注射后4h显像效果更佳.结论 99Tcm-HYNIC-E{E[c(RGDfK)]2}2具有较高的肿瘤摄取和较长的肿瘤滞留时间,可以用于整合素αvβ3表达阳性肿瘤的显像;放射性核素(如90Y)标记的RGD环肽四聚体可用于整合素(αvβ3表达阳性肿瘤的治疗.  相似文献   

7.
INTRODUCTION: alpha(v)beta(3) Integrin is expressed in sprouting endothelial cells in growing tumors, whereas it is absent in quiescent blood vessels. In addition, various tumor cell types express alpha(v)beta(3) integrin. alpha(v)beta(3) Integrin, a transmembrane heterodimeric protein, binds to the arginine-glycine-aspartic acid (RGD) amino acid sequence of extracellular matrix proteins such as vitronectin and plays a pivotal role in invasion, proliferation and metastasis. Due to the selective expression of alpha(v)beta(3) integrin in tumors, radiolabeled RGD peptides and peptidomimetics are attractive candidates for tumor targeting. METHODS: A cyclic RGD peptide, a peptoid-peptide hybrid, an all-peptoid and a peptidomimetic compound were synthesized, conjugated with 1,4,7,10-tetraazadodecane-N,N',N',N'-tetraacetic acid (DOTA) and radiolabeled with (111)In. Their in vitro and in vivo alpha(v)beta(3)-binding characteristics were determined. RESULTS: IC(50) values were 236 nM for DOTA-E-c(RGDfK), 219 nM for DOTA-peptidomimetic, >10 mM for DOTA-all-peptoid and 9.25 mM for the peptoid-peptide hybrid DOTA-E-c(nRGDfK). (111)In-labeled compounds, except for [(111)In]DOTA-all-peptoid, showed specific uptake in human alpha(v)beta(3)-expressing tumors xenografted in athymic mice. Tumor uptake for [(111)In]DOTA-E-c(RGDfK) was 1.73+/-0.4% ID/g (2 h postinjection) and that of [(111)In]DOTA-peptidomimetic was 2.04+/-0.3% ID/g. Tumor uptake for the peptoid-peptide hybrid [(111)In]DOTA-E-c(nRGDfK) was markedly lower (0.45+/-0.07% ID/g). The all-peptoid [(111)In]DOTA-E-c(nRGnDnFnK) did not show specific uptake in tumors (0.11+/-0.04% ID/g). CONCLUSIONS: The peptidomimetic compound and the cyclic RGD peptide have a high affinity for alpha(v)beta(3) integrin, and these compounds have better tumor-targeting characteristics than the peptoid-peptide hybrid and the all-peptoid.  相似文献   

8.
To date, the in vivo imaging of quantum dots (QDs) has been mostly qualitative or semiquantitative. The development of a dual-function PET/near-infrared fluorescence (NIRF) probe can allow for accurate assessment of the pharmacokinetics and tumor-targeting efficacy of QDs. METHODS: A QD with an amine-functionalized surface was modified with RGD peptides and 1,4,7,10-tetraazacyclodocecane-N,N',N',N'-tetraacetic acid (DOTA) chelators for integrin alpha(v)beta(3)-targeted PET/NIRF imaging. A cell-binding assay and fluorescence cell staining were performed with U87MG human glioblastoma cells (integrin alpha(v)beta(3)-positive). PET/NIRF imaging, tissue homogenate fluorescence measurement, and immunofluorescence staining were performed with U87MG tumor-bearing mice to quantify the probe uptake in the tumor and major organs. RESULTS: There are about 90 RGD peptides per QD particle, and DOTA-QD-RGD exhibited integrin alpha(v)beta(3)-specific binding in cell cultures. The U87MG tumor uptake of (64)Cu-labeled DOTA-QD was less than 1 percentage injected dose per gram (%ID/g), significantly lower than that of (64)Cu-labeled DOTA-QD-RGD (2.2 +/- 0.3 [mean +/- SD] and 4.0 +/- 1.0 %ID/g at 5 and 18 h after injection, respectively; n = 3). Taking into account all measurements, the liver-, spleen-, and kidney-to-muscle ratios for (64)Cu-labeled DOTA-QD-RGD were about 100:1, 40:1, and 1:1, respectively. On the basis of the PET results, the U87MG tumor-to-muscle ratios for DOTA-QD-RGD and DOTA-QD were about 4:1 and 1:1, respectively. Excellent linear correlation was obtained between the results measured by in vivo PET imaging and those measured by ex vivo NIRF imaging and tissue homogenate fluorescence (r(2) = 0.93). Histologic examination revealed that DOTA-QD-RGD targets primarily the tumor vasculature through an RGD-integrin alpha(v)beta(3) interaction, with little extravasation. CONCLUSION: We quantitatively evaluated the tumor-targeting efficacy of a dual-function QD-based probe with PET and NIRF imaging. This dual-function probe has significantly reduced potential toxicity and overcomes the tissue penetration limitation of optical imaging, allowing for quantitative targeted imaging in deep tissue.  相似文献   

9.
Integrin αvβ3 plays a critical role in tumor-induced angiogenesis and metastasis. Previously, a 64Cu-AmBaSar- RGD monomer with high in vivo stability compared with 64Cu-DOTA-RGD was developed for integrin αvβ3 PET imaging. It has been established that dimeric RGD peptides have higher receptor-binding affinity and superior in vivo kinetics compared with monomeric RGD peptides due to the polyvalency effect. In this context, we synthesized and evaluated 64Cu-labeled AmBaSar dimeric RGD conjugates (64Cu-AmBaSar-RGD2) for PET imaging of integrin αvβ3 expression. The dimeric RGD peptide was conjugated with a cage-like chelator AmBaSar and labeled with 64Cu. Cell binding, microPET imaging, receptor blocking, and biodistribution studies of 64Cu-AmBaSar-RGD2 were conducted in the U87MG human glioblastoma xenograft model. AmBaSar-RGD2 conjugate was obtained in reasonable yield (45.0 ± 2.5%, n= 4) and the identity was confirmed by HPLC and MS (found 1779.8, calculated m/z for [M+H]+ M: C81H125N27O19 1779.9). 64Cu-AmBaSar-RGD2 was obtained with high radiochemical yield (92.0 ± 1.3%) and purity (≥ 98.0%) under mild conditions (pH 5.0~5.5, 23~37 °C) in 30 min. The specific activity of 64Cu-AmBaSar-RGD2 was estimated to be 15-22 GBq/μmol at the end of synthesis. Based on microPET imaging and biodistribution studies, 64Cu-AmBaSar-RGD2 has demonstrated higher tumor uptake at selected time points than 64Cu-AmBaSar-RGD. At 20 h p.i., the tumor uptake reached 0.65 ± 0.05 %ID/g for 64Cu-AmBaSar-RGD and 1.76 ± 0.38 %ID/g for 64Cu-AmBaSar-RGD2, respectively. The integrin αvβ3 targeting specificity was confirmed by blocking experiments. Therefore, the new tracer 64Cu-AmBaSar- RGD2 exhibited better tumor-targeting efficacy and more favorable in vivo pharmacokinetics than the 64Cu labeled RGD monomer due to the polyvalency effect.  相似文献   

10.
The aim of this study is to develop a novel arginine-glycine-aspartic acid (RGD) peptide-containing ligand for (99m)Tc labeling as alpha(v)beta(3) integrin receptor-targeted imaging agent. BPy-RGD conjugate was successfully synthesized by coupling of 5-carboxylate-2,2'-bipyridine and c(RGDyK) peptide through EDC/SNHS in aqueous solution and was characterized by MADLI-TOF-MS (m/z=802.72, C(38)H(48)N(11)O(9)). (99m)Tc(CO)(3)-BPy-RGD was prepared by exchange reaction between [(99m)Tc(H(2)O)(3)(CO)(3)](+) and BPy-RGD. Final product was purified by HPLC and tested for octanol/water partition coefficient. Cell-binding assays of BPy-RGD and unmodified c(RGDyK) were tested in MDA-MB-435 cells ((125)I-echistatin as radioligand). Preliminary biodistribution of the (99m)Tc(I)-labeled radiotracer in orthotopic MDA-MB-435 breast tumor xenograft model was also evaluated. The BPy-RGD conjugate had good integrin-binding affinity (50% inhibitory concentration (IC(50))=92.51+/-22.69 nM), slightly lower than unmodified c(RGDyK) (IC(50)=59.07+/-11.03 nM). The hydrophilic radiotracer also had receptor-mediated activity accumulation in MDA-MB-435 tumor (1.45+/-0.25 percentage of injected dose per gram (%ID/g) at 1.5h postinjection (p.i.)), which is known to be integrin positive. After blocking with c(RGDyK), the tumor uptake was reduced from 0.71+/-0.01%ID/g to 0.33+/-0.18%ID/g at 4h p.i. (99m)Tc(I) tricarbonyl complex of cyclic RGD peptide is a promising strategy for integrin targeting. Further modification of the bipyridine-conjugated RGD peptide by using more potent RGD peptides and fine tuning of the tether group between the RGD moiety and (99m)Tc(CO)(3)(+) core to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress.  相似文献   

11.
The association of the alpha(v)beta(3) integrin with tumor metastasis and tumor related angiogenesis has been suggested. Therefore, by imaging the alpha(v)beta(3) receptor with PET, information concerning the tumor status could be obtained. Cyclic peptides including the RGD sequence, were radiolabeled by direct electrophilic fluorination with [(18)F]AcOF. In tumor-bearing mice, the labeled peptides accumulated at the tumor with a high tumor to blood ratio. These findings suggest that an assessment of tumor characteristics may be obtained by using these (18)F-labeled peptides.  相似文献   

12.
The alphav-integrins, cell adhesion molecules that are highly expressed on activated endothelial cells and tumor cells but not on dormant endothelial cells or normal cells, present an attractive target for tumor imaging and therapy. We previously coupled a cyclic Arg-Gly-Asp (RGD) peptide, c(RGDyK), with 1,4,7,10-tetraazacyclododecane-N,N',N',N'-tetraacetic acid (DOTA) and labeled the RGD-DOTA conjugate with 64Cu (half-life, 12.8 h; 19% beta+) for solid tumor targeting, with high tumor-to-background contrast. The rapid tumor washout rate and persistent liver and kidney retention of this tracer prompted us to optimize the tracer for improved pharmacokinetic behavior. In this study, we introduced a polyethylene glycol (PEG; molecular weight, 3,400) moiety between DOTA and RGD and evaluated the 64Cu-DOTA-PEG-RGD tracer for microPET imaging in brain tumor models. METHODS: DOTA was activated in situ and conjugated with RGD-PEG-NH2 under slightly basic conditions. alphavbeta3-Integrin-binding affinity was evaluated with a solid-phase receptor-binding assay in the presence of 125I-echistatin. Female nude mice bearing subcutaneous U87MG glioblastoma xenografts were administered 64Cu-DOTA-PEG-RGD, and the biodistributions of the radiotracer were evaluated from 30 min to 4 h after injection. microPET (20 min of static imaging at 1 h after injection) and then quantitative autoradiography were used for tumor visualization and quantification. The same tracer was also applied to an orthotopic U87MG model for tumor detection. RESULTS: The radiotracer was synthesized with a high specific activity (14,800-29,600 GBq/mmol [400-800 Ci/mmol]). The c(RGDyK)-PEG-DOTA ligand showed intermediate binding affinity for alphavbeta3-integrin (50% inhibitory concentration, 67.5 +/- 7.8 nmol/L [mean +/- SD]). The pegylated RGD peptide demonstrated rapid blood clearance (0.57 +/- 0.15 percentage injected dose [%ID]/g [mean +/- SD] at 30 min after injection and 0.03 +/- 0.02 %ID/g at 4 h after injection). Activity accumulation in the tumor was rapid and high at early time points (2.74 +/- 0.45 %ID/g at 30 min after injection), and some activity washout was seen over time (1.62 +/- 0.18 %ID/g at 4 h after injection). Compared with (64)Cu-DOTA-RGD, this tracer showed improved in vivo kinetics, with significantly reduced liver uptake (0.99 +/- 0.08 %ID/g vs. 1.73 +/- 0.39 %ID/g at 30 min after injection and 0.58 +/- 0.07 %ID/g vs. 2.57 +/- 0.49 %ID/g at 4 h after injection). The pegylated RGD peptide showed higher renal accumulation at early time points (3.51 +/- 0.24 %ID/g vs. 2.18 +/- 0.23 %ID/g at 30 min after infection) but more rapid clearance (1.82 +/- 0.29 %ID/g vs. 2.01 +/- 0.25 %ID/g at 1 h after injection) than 64Cu-DOTA-RGD. The integrin receptor specificity of this radiotracer was demonstrated by blocking of tumor uptake by coinjection with nonradiolabeled c(RGDyK). The high tumor-to-organ ratios for the pegylated RGD peptide tracer (at 1 h after injection: tumor-to-blood ratio, 20; tumor-to-muscle ratio, 12; tumor-to-liver ratio, 2.7; and tumor-to-kidney ratio, 1.2) were confirmed by microPET and autoradiographic imaging in a subcutaneous U87MG tumor model. This tracer was also able to detect an orthotopic brain tumor in a model in which U87MG cells were implanted into the mouse forebrain. Although the magnitude of tumor uptake in the orthotopic xenograft was lower than that in the subcutaneous xenograft, the orthotopic tumor was still visualized with clear contrast from normal brain tissue. CONCLUSION: This study demonstrated the suitability of a PEG moiety for improving the in vivo kinetics of a 64Cu-RGD peptide tracer without compromising the tumor-targeting ability and specificity of the peptide. Systematic investigations of the effects of the size and geometry of PEG on tumor targeting and in vivo kinetics will lead to the development of radiotracers suitable for clinical applications such as visualizing and quantifying alphav-integrin expression by PET. In addition, the same ligand labeled with therapeutic radionuclides may be applicable for integrin-targeted internal radiotherapy.  相似文献   

13.
Arg-Gly-Asp (RGD) derivatives have been labeled with various radioisotopes for the imaging of angiogenesis in ischemic tissue, in which alpha(v)beta(3) integrin plays an important role. In this study, cyclic Arg-Gly-Asp-D-Tyr-Lys [c(RGDyK)] was conjugated with 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bz-NOTA) and then labeled with (68)Ga. The labeled RGD so produced was subjected to an in vitro binding assay and in vivo biodistribution and PET studies. METHODS: A mixture of SCN-Bz-NOTA (660 nmol) and c(RGDyK) (600 nmol) in 0.1 M sodium carbonate buffer (pH 9.5) was allowed to react for 20 h at room temperature in the dark for thiourea bond formation. The conjugate obtained was purified by semipreparative high-performance liquid chromatography (HPLC). The purified c(RGDyK)-SCN-Bz-NOTA (NOTA-RGD) was then labeled with (68)Ga from a (68)Ge/(68)Ga generator and purified by semipreparative HPLC. A competitive binding assay for c(RGDyK) and NOTA-RGD was performed with (125)I-c(RGDyK) as a radioligand and alpha(v)beta(3) integrin-coated plates as a solid phase. (68)Ga-NOTA-RGD (0.222 MBq/100 microL) was injected, through a tail vein, into mice with hind limb ischemia and into mice bearing human colon cancer SNU-C4 xenografts. Biodistribution and imaging studies were performed at 1 and 2 h after injection. RESULTS: The labeling of NOTA-RGD with (68)Ga was straightforward. The K(i) values of c(RGDyK) and NOTA-RGD were 1.3 and 1.9 nM, respectively. In the biodistribution study, the mean +/- SD uptake of (68)Ga-NOTA-RGD by ischemic muscles was 1.6+/-0.2 percentage injected dose per gram (%ID/g); this uptake was significantly blocked by cold c(RGDyK) to 0.6+/-0.3 %ID/g (P<0.01). Tumor uptake was 5.1+/-1.0 %ID/g, and the tumor-to-blood ratio was 10.3+/-4.8. Small-animal PET revealed rapid excretion through the urine and high levels of tumor and kidney uptake. CONCLUSION: Stable (68)Ga-NOTA-RGD was obtained in a straightforward manner at a high yield and showed a high affinity for alpha(v)beta(3) integrin, specific uptake by angiogenic muscles, a high level of uptake by tumors, and rapid renal excretion. (68)Ga-NOTA-RGD was found to be a promising radioligand for the imaging of angiogenesis.  相似文献   

14.
The development of noninvasive methods to visualize and quantify integrin alpha(v)beta(3) expression in vivo appears to be crucial for the success of antiangiogenic therapy based on integrin antagonism. Precise documentation of integrin receptor levels will allow appropriate selection of patients who will most likely benefit from an antiintegrin treatment regimen. Imaging can also be used to provide an optimal dosage and time course for treatment based on receptor occupancy studies. In addition, imaging integrin expression will be important to evaluate antiintegrin treatment efficacy and to develop new therapeutic drugs with favorable tumor targeting and in vivo kinetics. We labeled the dimeric RGD peptide E[c(RGDyK)](2) with (18)F and evaluated its tumor-targeting efficacy and pharmacokinetics of (18)F-FB-E[c(RGDyK)](2) ((18)F-FRGD2). METHODS: E[c(RGDyK)](2) was labeled with (18)F by conjugation coupling with N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) under a slightly basic condition. The in vivo metabolic stability of (18)F-FRGD2 was determined. The diagnostic value after injection of (18)F-FRGD2 was evaluated in various xenograft models by dynamic microPET followed by ex vivo quantification of tumor integrin level. RESULTS: Starting with (18)F(-) Kryptofix 2.2.2./K(2)CO(3) solution, the total reaction time for (18)F-FRGD2, including final high-performance liquid chromatography purification, is about 200 +/- 20 min. Typical decay-corrected radiochemical yield is 23% +/- 2% (n = 20). (18)F-FRGD2 is metabolically stable. The binding potential extrapolated from graphical analysis of PET data and Logan plot correlates well with the receptor density measured by sodium dodecyl sulfate polyacrylamide electrophoresis and autoradiography in various xenograft models. The tumor-to-background ratio at 1 h after injection of (18)F-FRGD2 also gives a good linear relationship with the tumor tissue integrin level. CONCLUSION: The dimeric RGD peptide tracer (18)F-FRGD2, with high integrin specificity and favorable excretion profile, may be translated into the clinic for imaging integrin alpha(v)beta(3) expression. The binding potential calculated from simplified tracer kinetic modeling such as the Logan plot appears to be an excellent indicator of tumor integrin density.  相似文献   

15.
Brain tumors are highly angiogenesis dependent. The cell adhesion receptor integrin alpha(v)beta(3) is overexpressed in glioma and activated endothelial cells and plays an important role in brain tumor growth, spread and angiogenesis. Suitably labeled alpha(v)beta(3)-integrin antagonists may therefore be useful for imaging brain tumor associated angiogenesis. Cyclic RGD peptide c(RGDyK) was labeled with (18)F via N-succinimidyl-4-[(18)F]fluorobenzoate through the side-chain epsilon-amino group of the lysine residue. The radiotracer was evaluated in vivo for its tumor targeting efficacy and pharmacokinetics in subcutaneously implanted U87MG and orthotopically implanted U251T glioblastoma nude mouse models by means of microPET, quantitative autoradiography and direct tissue sampling. The N-4-[(18)F]fluorobenzoyl-RGD ([(18)F]FB-RGD) was produced in less than 2 h with 20-25% decay-corrected yields and specific activity of 230 GBq/micromol at end of synthesis. The tracer showed very rapid blood clearance and both hepatobiliary and renal excretion. Tumor-to-muscle uptake ratio at 30 min was approximately 5 in the subcutaneous U87MG tumor model. MicroPET imaging with the orthotopic U251T brain tumor model revealed very high tumor-to-brain ratio, with virtually no uptake in the normal brain. Successful blocking of tumor uptake of [(18)F]FB-RGD in the presence of excess amount of c(RGDyK) revealed receptor specific activity accumulation. Hence, N-4-[(18)F]fluorobenzoyl labeled cyclic RGD peptide [(18)F]FB-RGD is a potential tracer for imaging alpha(v)beta(3)-integrin positive tumors in brain and other anatomic locations.  相似文献   

16.
ObjectivesThe αvβ3 integrin is a cell adhesion molecule known to be involved in stages of angiogenesis and metastasis. In this study, the chelators CB-TE2A and diamsar were conjugated to cyclic RGDyK and RGDfD and the biological properties of 64Cu-labeled peptides were compared.MethodsCB-TE2A-c(RGDyK) and diamsar-c(RGDfD) were labeled with 64Cu in 0.1 M NH4OAc (pH=8) at 95°C and 25°C, respectively. PET and biodistribution studies were carried out on M21 (αvβ3-positive) and M21L (αv-negative) melanoma-bearing mice. Binding affinity of the Cu-chelator–RGD peptides to αvβ3 integrins was determined by a competitive binding affinity assay.ResultsBiological studies showed higher concentration of 64Cu-CB-TE2A-c(RGDyK) in M21 tumor compared to M21L tumor at 1 and 4 h pi. Tumor concentration of 64Cu-CB-TE2A-c(RGDyK) was higher than that of 64Cu-diamsar-c(RGDfD). The difference is not due to differing binding affinities, since similar values were obtained for the agents. Compared to 64Cu-diamsar-c(RGDfD), there is more rapid liver and blood clearance of 64Cu-CB-TE2A-c(RGDyK), resulting in a lower liver and blood concentration at 24 h pi. Both 64Cu-labeled RGD peptides show similar binding affinities to αvβ3. The differences in their biodistribution properties are likely related to different linkers, charges and lipophilicities. The M21 tumor is clearly visualized with 64Cu-CB-TE2A-c(RGDyK) by microPET imaging. Administration of c(RGDyK) as a block significantly reduced the tumor concentration; however, the radioactivity background was also decreased by the blocking dose.ConclusionsBoth 64Cu-CB-TE2A-c(RGDyK) and 64Cu-diamsar-c(RGDfD) are potential candidates for imaging tumor angiogenesis. For diamsar-c(RGDfD), a linker may be needed between the Cu-chelator moiety and the RGD peptide to achieve optimal in vivo tumor concentration and clearance from nontarget organs.  相似文献   

17.
Radiolabeled alpha(v)beta(3)-integrin antagonists are increasingly investigated as a means of imaging angiogenesis. Several methods of labeling alpha(v)beta(3)-integrin binding peptide with (18)F have been reported recently. In the present study, we devised a straightforward means for labeling Arg-Gly-Asp (RGD) peptide with (18)F via hydrazone formation between c(RGDyK)-hydrazinonicotinic acid (HYNIC) (3) and 4-[(18)F]-fluorobenzaldehyde ([(18)F]4). The resulting reaction mixture was purified by HPLC to give 4'-[(18)F]-fluorobenzylidenehydrazone-6-nicotinamide-c(RGDyK) ([(18)F]5). The conjugation efficiency of 3 and 4 to form [(18)F]5 was 95.2%, and the radiochemical purity of [(18)F]5 after purification was >99%. The specific activity of [(18)F]5 estimated by radio-HPLC was 20.5 GBq/mumol (end of synthesis). Competitive binding assay of c(RGDyK) (1) and 5 was performed using [(125)I]iodo-c(RGDyK) as a radioligand, and K(i) values were found to be 2.8 and 21.7 nM, respectively. For the biodistribution study, the angiogenic mouse model was established by inducing unilateral ischemia on the left hindlimbs of ICR mice after femoral artery ablation. Seven days after inducing ischemia, [(18)F]5 was administered to the mice through the tail vein. Ischemic muscle uptake of [(18)F]5 was significantly higher than that of normal muscle (P<.01). Specific uptake was confirmed by coinjection of 1 with [(18)F]5. Here, we successfully labeled RGD peptide with (18)F via hydrazone formation between 3 and 4, resulting to [(18)F]5. [(18)F]5 was found to have high affinity for alpha(v)beta(3)-integrin and to accumulate specifically in ischemic hindlimb muscle of mice. We suggest that (18)F labeling via formation of hydrazone between HYNIC peptide and [(18)F]4 is a useful method for labeling c(RGDyK), which can be applied for imaging angiogenesis.  相似文献   

18.
目的 评价引入2个聚乙二醇(PEG4)对精氨酸-甘氨酸-天冬氨酸(RGD)环肽二聚体(Dimer:E[c(RGDfK)]2)体外受体结合亲和力和体内药代动力学特征的影响,以及99Tcm标记2PEG4-Dimer用于整合素αvβ3阳性肿瘤显像的前景.方法 用免疫组织化学实验测定U87MG人神经胶质瘤细胞以及肿瘤组织中整合素αvβ3的表达.通过U87MG细胞受体竞争结合实验测定RGD环肽单体c(RGDyK)、联肼尼克酰胺(HYNIC)-Dimer和HYNIC-2PEG4-Dimer对125I-c(RGDyK)的半数抑制浓度(IC50).采用无亚锡一步法制备99Tcm-HYNIC-Dimer和99Tcm-HYNIC-2PEG4-Dimer,评价"TcmHYNIC-2PEG4-Dimer在荷U87MG瘤裸鼠的生物分布并进行γ显像.采用非配对t检验法对实验数据进行分析.结果 U87MG细胞和荷瘤裸鼠肿瘤组织中高表达整合素αvβ3.HYNIC-2PEG4-Dimer比c(RGDyK)和HYNIC-Dimer有更高的整合素αvβ3亲和力(IC50分别是0.8,27和2.4 nmol/L).99Tcm-HYNIC-Dimer和99Tcm-HYNIC-2PEG4-Dimer的99Tcm标记率均>95%,经Sep-Pek C18柱纯化后其放化纯>99%.生物分布实验显示,2种标记物均主要经肾排泄,在注射后2h,肿瘤对99Tcm-HYNIC-2PEG4-Dimer的摄取为99Tcm-HYNIC-Dimer的2.7倍[(5.71±0.96)%ID/g和(2.10±0.50)%ID/g],t=4.80,P<0.05,与体外受体竞争结合实验数据相一致.γ显像结果显示,注射99Tcm-HYNIC-2PEG4-Dimer后0.5 h肿瘤即清晰可见,随时间延长,体内放射性本底明显减低,显像对比度增高.结论 99Tcm-HYNIC-2PEG4-Dimer有希望用于整合素αvβ3阳性肿瘤显像.  相似文献   

19.
INTRODUCTION: Due to the selective expression of the alpha(v)beta3 integrin in tumors, radiolabeled arginine-glycine-aspartic acid (RGD) peptides are attractive candidates for tumor targeting. Minor modifications of these peptides could have a major impact on in vivo characteristics. In this study, we systematically investigated the effects of linker modification between two cyclic RGD sequences and DOTA (1,4,7,10-tetraazadodecane-N,N',N",N'-tetraacetic acid) on the in vitro and in vivo characteristics of the tracer. METHODS: A dimeric RGD peptide was synthesized and conjugated either directly with DOTA or via different linkers: PEG4 (polyethylene glycol), glutamic acid or lysine. The RGD peptides were radiolabeled with 111In, and their in vitro and in vivo alpha(v)beta3-binding characteristics were determined. RESULTS: LogP values varied between -2.82+/-0.06 and -3.95+/-0.33. The IC50 values for DOTA-E-[c(RGDfK)]2, DOTA-PEG4-E-[c(RGDfK)]2, DOTA-E-E-[c(RGDfK)]2 and DOTA-K-E-[c(RGDfK)]2 were comparable. Two hours after injection, the tumor uptakes of the 111In-labeled compounds were not significantly different. The kidney accumulation of [111In]-DOTA-K-E-[c(RGDfK)]2 [4.05+/-0.20% of the injected dose per gram (ID/g)] was significantly higher as compared with that of [111In]-DOTA-E-[c(RGDfK)]2 (2.63+/-0.19% ID/g; P<.05) as well as that of [111In]-DOTA-E-E-[c(RGDfK)]2 (2.16+/-0.21% ID/g; P<.01). The liver uptake of [111In]-DOTA-E-E-[c(RGDfK)]2 (2.12+/-0.09% ID/g) was significantly higher as compared with that of [111In]-DOTA-E-[c(RGDfK)]2 (1.64+/-0.1% ID/g; P<.05) as well as that of [111In]-DOTA-K-E-[c(RGDfK)]2 (1.52+/-0.04% ID/g; P<.01). CONCLUSIONS: Linker variation did not affect affinity for alpha(v)beta3 and tumor uptake. Insertion of lysine caused enhanced kidney retention; that of glutamic acid also resulted in enhanced retention in the kidneys. PEG4 appeared to be the most suitable linker as compared with glutamic acid and lysine because it has the highest tumor-to-blood ratio and the lowest uptake in the kidney and liver.  相似文献   

20.
The cell adhesion molecule integrin alpha v beta 3 plays a key role in tumor angiogenesis and metastasis. A series of 18F-labeled RGD peptides have been developed for PET of integrin expression based on primary amine-reactive prosthetic groups. In this study we introduced a new method of labeling RGD peptides through a thiol-reactive synthon, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM). METHODS: 18F-FBEM was synthesized by coupling N-succinimidyl 4-18F-fluorobenzoate (18F-SFB) with N-(2-aminoethyl)maleimide. After high-pressure liquid chromatography purification, it was allowed to react with thiolated RGD peptides, and the resulting tracers were subjected to receptor-binding assay, in vivo metabolic stability assessment, biodistribution, and microPET studies in murine xenograft models. RESULTS: Conjugation of monomeric and dimeric sulfhydryl-RGD peptides with 18F-FBEM was achieved in high yields (85% +/- 5% nondecay-corrected on the basis of 18F-FBEM). The radiochemical purity of the 18F-labeled peptides was >98% and the specific activity was 100 approximately 150 TBq/mmol. Noninvasive microPET and direct tissue sampling experiments demonstrated that both 18F-FBEM-SRGD (RGD monomer) and 18F-FBEM-SRGD2 (RGD dimer) had integrin-specific tumor uptake in subcutaneous U87MG glioma and orthotopic MDA-MB-435 breast cancer xenografts. CONCLUSION: The new tracer 18F-FBEM-SRGD2 was synthesized with high specific activity via 18F-FBEM and the tracer exhibited high receptor-binding affinity, tumor-targeting efficacy, metabolic stability, as well as favorable in vivo pharmacokinetics. The new synthon 18F-FBEM developed in this study will also be useful for radiolabeling of other thiolated biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号