首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Systemic administration of MPTP to experimental animals induces neurodegeneration of dopaminergic neurons in the central nervous system. MPTP crosses the blood-brain barrier where it is taken up by astrocytes and converted to MPP+ by monamine oxidase-B (MAO-B). Subsequently, MPP+ is selectively taken up by dopaminergic neurons upon which it exerts intracellular neurotoxic effects. Systemic administration of the selective MAO-B inhibitor deprenyl prevents the conversion of MPTP to MPP+ and by this mechanism is able to protect against MPTP neurotoxicity. Deprenyl has also been reported to exert neuroprotective effects that are independent of its MAO-B inhibitory properties, but since MPP+ itself does not cross the blood-brain barrier it is difficult to directly study the MAO-B independentin vivo effects of MPP+ itself. One approach is to use organotypic tissue cultures of the canine substantia nigra (CSN) which permit administration of precise concentrations of pharmacological agents directly to mature, well-developed and metabolically active dopaminergic neurons. These neurons as well as other components of the cultures exhibit morphological and biochemical characteristics identical to theirin vivo counterparts. This study was undertaken to evaluate the neuroprotective effects of deprenyl in MPP+-treated cultures by measuring changes in the levels of HVA as an indicator of dopamine release and metabolism by dopaminergic neurons and to correlate this indication of dopaminergic function with morphological evidence of survival or loss of dopaminergic neurons in mature CSN cultures. Mature CSN cultures, at 44 days in vitro (DIV), were exposed to either MPP+ alone, deprenyl alone or simultaneously to both deprenyl and MPP+ or to MPP+ following 4 day pretreatment with deprenyl. Exposure to MPP+ alone caused significant reduction in HVA levels, evidence of widespread injury and ultimate disappearance of large neurons in the cultures. These effects were attenuated by simultaneous exposure to MPP+ and deprenyl and the destructive effects of MPP+ appeared to be prevented by pretreatment with deprenyl. Thus the neuroprotective effects of deprenyl on MPP+-induced reduction of HVA levels in living cultures appears similar to the effects of deprenyl on dopamine levels and tyrosine hydroxylase activity reported by others in cultures previously exposed to deprenyl and MPP+. These studies also confirm that the neuroprotective effects of deprenyl against MPP+ in dopaminergic neurons are, at least in part, independent of deprenyl's inhibition of MAO-B.  相似文献   

2.
Summary Unilateral intranigral administration of the oxidative metabolites of 1-methyl-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP), 1-methyi-4-phenyl-dihydropyridine (MPDP+) or l-methyl-4-phenylpyridine (MPP+) produced dose-dependently a depletion of dopamine in the ipsilateral striatum of rats two weeks following treatment.d- Amphetamine and apomorphine induced circling toward the lesioned side in these unilaterally treated animals. No contralateral circling behavior was observed after challenging with apomorphine. This dopamine lesioning effect of MPP+ was not blocked by pretreatment of animals with a dopamine uptake blocker, GBR 12909.Furthermore, MPP+ increased the45Ca accumulation into cells at the site of injection and produced nonspecific cell membrane and/or cytotoxic damage seen by histological procedures. These results indicate that MPDP+ and MPP+ produced localized cytotoxic damage to nigrostriatal neurons, caused a decrease in striatal dopamine, and disrupted the nigrostriatal system's functioning following intranigral administration to rats. It is postulated that the cationic surfactant properties of MPDP+ and MPP+ might contribute to its neurotoxic effects.  相似文献   

3.
Stereotaxic administration of L-cysteine (CySH) into the rat substantia nigra pars compacta (SNC) evokes a dose-dependent fall of striatal levels of dopamine. This, together with decreased tyrosine hydroxylase immunoreactivity in the striatum and SNcand decreased nigral staining for Niss1 substance indicate that CySH is a dopaminergic neurotoxin. The neurotoxic effects of CySH infusion into the rat SNC were blocked by prior administration of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. Previous studies have demonstrated that administration of the neurotoxin l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) not only evokes the degeneration of nigrostriatal dopamine neurons but also causes a significant fall of glutathione (GSH) without corresponding increases of glutathione disulfide (GSSG). Furthermore, microdialysis studies have demonstrated that when perfusions of l-methyl-4-phenylpyridinium (MPP+), the active metabolite of MPTP, into the rat SNC are discontinued extracellular levels of GSH massively but transiently increase followed by a prolonged elevation of extracellular CySH, the latter effect being blocked by inhibition of γ-glutamyl transpeptidase (γ-GT). These observations, together with the present results, suggest that the delayed but prolonged elevation of extracellular CySH that occurs as a MPP+-induced dopaminergic SNccell energy impairment begins to subside might evoke NMDA receptor mediated excitotoxicity. The potential roles of elevated extracellular CySH in MPTP/MPP+-induced dopaminergic neurotoxicity and in the pathogenesis of Parkinson’s disease are discussed.  相似文献   

4.
In this study we investigated the uptake and effect of a dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+) on a clonal strain, GH3 cells, established from rat anterior pituitary. Although the level was very low compared with that in PC12 cells, a clonal rat pheochromocytoma cell line, there was a detectable amount of tyrosine hydroxylase protein in GH3 cells. The levels of monoamines including dopamine in GH3 cells were also very low compared with those in PC12 cells.

was incorporated to GH3 cells in a concentration-dependent manner and the uptake was inhibited by nomifensine, an inhibitor of dopamine transporter. Addition of 200 μM MPP+ stimulated the leakage of lactate dehydrogenase (LDH) after a lag of 24 h. Pretreatment with 50 ng/ml of epidermal growth factor (EGF), but not nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF), protected against MPP+-induced cell death. These findings show that: (1) MPP+ uptake to GH3 cells was via an effective dopamine transport system and causes delayed cell death, and (2) EGF protects against MPP+-induced cell death. A possible role for GH3 cells as dopaminergic neurons is discussed.  相似文献   

5.
Summary 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) destroys nigrostriatal dopaminergic pathways and thereby produces a syndrome similar to Parkinson's disease. MPTP is oxidized by monoamine oxidase B (MAO B) to the 1-methyl-4-phenylpyridinium ion (MPP+), which is taken up in dopaminergic neurons through the dopamine (DA) uptake system, where it develops its toxic effect. Our observations show a new aspect of the MPP+ mode of action, in which deprenyl in mice has a partially protective effect against MPP+. Furthermore budipine, a therapeutic agent for Parkinsonism, is also able to partially prevent MPP+ toxicity. A MAO B-inhibitory component of budipine, as shown in receptor binding studies previously, could contribute to this effect. Comparable experiments with nomifensine do not exclude the possibility of budipine as an effect as a DA uptake inhibitor. An unexplained after effect of budipine leads to a large increase in 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels five weeks after the last administration.  相似文献   

6.
Summary The distribution and density of3H-MPP+ binding sites were studied by in vitro quantitative autoradiography in the brain of the mouse, rat and monkey. The highest levels of3H-MPP+ specific binding were observed in rat brain. The substantia nigra in rat and monkey, and the anterior caudate-putamen formation in mouse and monkey showed the lowest density of autoradiographic grains. The presence of a relatively high density of MPP+ sites in the hippocampus of all species studied could be of interest to explain some effects of MPTP administration on convulsions caused by chemoconvulsants.The finding of a 60–70% reduction of3H-MPP+ binding sites in the rat caudate-putamen, on the side of quinolinic acid infusion and no changes after 6-hydroxydopamine lesion of dopaminergic nigrostriatal neurons suggests the presence of these sites mainly on striatal cells.The results suggest that the distribution of MPP+ binding sites in brain would not seem to be related to MPTP toxicity.  相似文献   

7.
《Neurodegeneration》1996,5(2):129-136
The present study offers confirmation of the fact that an MAO—B inhibitor, (−) deprenyl and a DA uptake blocker, GBR—12909, prevent MPTP-induced striatal DA decrease. This protective effect is accompanied by an almost complete prevention of MPP+production induced by (−) deprenyl and an accelerated MPP+clearance induced by GBR—12909 within the striatum. Similarly, the MPTP toxicity enhancers, DDC and acetaldehyde, both increase striatal MPP+levels, as previously reported. On the contrary, the treatment with MK 801, although uneffective in preventing the long-term MPTP-induced striatal DA decrease, causes an increase in the striatal amount of MPP+. In a similar way, the administration of nicotine in combination with MPTP produces a significant increase in the levels of striatal MPP+, which does not elicit any effect on striatal DA. The effect of clonidine is consistent with these results and in sharp contrast with the current belief that a direct relationship exists between striatal MPP+concentrations and the degree of MPTP-induced depletion of striatal DA. In this study, using different treatments, we failed to confirm the correlation between MPP+striatal levels and dopaminergic lesions after MPTP administration in mice. We suggest that this correlation is not a rule and exceptions may depend on a different compartimentalization of the toxic metabolite.  相似文献   

8.
In order to reach deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, MK-801, a non-competitive antagonist of NMDA receptors, has been used as a tool to study the role of excitatory amino acids. In agreement with previous reports, (+)MK-801 did not significantly affect either striatal dopamine (DA) or tyrosine-hydroxylase (TH) activity in MPTP-treated animals. On the contrary (+)MK-801, but not (−)MK-801 significantly reduced the DDC + MPTP-induced fall in striatal DA and TH activity. A similar preventing effect on DA metabolites (DOPAC and HVA) and HVA/DA ratio was observed. The number of TH+Mneurons in the substantia nigra (SN) of (+)MK-801-pretreated mice was not significantly different from that of control animals, indicating that this treatment specifically antagonized the extensive DDC-induced lesion of dopaminergic cell bodies in this brain area. (+)MK-801 treatment did not affect the DDC-induced changes of striatal MPP+ levels, suggesting that the observed antagonism of MK-801 against DDC is not due to MPP+ kinetic modifications. Pretreatment with the MAO-B inhibitor,l-deprenyl, or with the DA uptake blocker, GBR 12909, completely prevented the marked DA depletion elicited by DDC + MPTP within the striatum. Both treatments also protected from the fall in DA metabolites and TH activity as well. This indicates that DDC-induced potentiation is dependent upon MPP+ production and its uptake by the dopaminergic nerve terminals. All these findings suggest that NMDA receptors play a crucial role in the DDC-induced enhancement of MPTP toxicity.  相似文献   

9.
Disshon KA  Dluzen DE 《Brain research》2000,868(1):1570-104
The effects of in vivo estrogen treatment upon MPP+-induced dopamine (DA) release were determined using in vivo microdialysis in female and male rats. Ovariectomized female rats were implanted or not with an estrogen pellet (0.1 mg, 17β estradiol) and subjected to microdialysis 6 days later. After baseline DA release was determined, 5 mM MPP+ was infused through the microdialysis probe for one 20-min interval. Perfusion resumed with normal medium for the duration of the experiment. A significant attenuation of MPP+-induced DA release was obtained in estrogen-treated females. One week later, striatal DA and dihydroxyphenylacetic acid (DOPAC) concentrations were determined for the lesioned and non-lesioned striata of each animal. MPP+ infusion significantly decreased striatal DA concentrations, however, there was no effect of estrogen treatment on striatal DA depletion. This experiment was repeated using orchidectomized male rats treated with 0, 0.1, or 5 mg estradiol. In contrast to the females, no differences in MPP+-induced DA release were seen among these males, and there was no significant effect of the varying estrogen treatments on striatal DA or DOPAC concentrations. These results demonstrate that in vivo estrogen treatment attenuates MPP+-induced striatal DA release in gonadectomized female, but not male, rats.  相似文献   

10.
Summary. Nigral cell degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tertrahydropyridine (MPTP) or its metabolite 1-methy1-4-phenyl pyridinium (MMP+) may involve toxicity induced by nitric oxide. In the present study a microdialysis procedure incorporating salicylate hydroxylation was used to measure striatal hydroxyl radical production through the formation of 2,3-dihydroxybenzoic acid (2,3-DHBA). MPP+ (5–20 mM for 20 min) increased 2,3-DHBA formation in the rat striatum in a concentration-dependent manner with a concomitant increase in dopamine release and decrease in 3,4-dihydroxyphenyl acetic acid (DOPAC) formation. Inhibition of NO synthesis following NG-nitro-L-arginine methyl ester (L-NAME; 1 mM) and 7-nitroindazole monosodium salt (7-NINA; 1 mM), but not NG-nitro-D-arginine methyl ester (D-NAME; 1 mM) attenuated the MPP+-induced increase in hydroxyl radical formation. However, neither L-NAME nor 7-NINA had any effect on the MPP+-induced increase in dopamine efflux measured in vivo by microdialysis or in vitro using superfused striatal slices, although nomifensine (10 μM) abolished the MPP+-evoked dopamine efflux in vitro. These data suggest that NO formation is necessary for the production of hydroxyl radical following MPP+ treatment, but is not involved in the MPP+-evoked dopamine release. Received September 11, 1998; accepted November 10, 1998  相似文献   

11.
Inhibitors of poly(ADP-ribose) polymerase (PARP), including benzamide, protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine neurotoxicity in vivo [Cosi et al., Brain Res. 729 (1996) 264–269]. In vitro, the activation of PARP by free radical damaged DNA has been shown to be correlated with rapid decreases in the cellular levels of its substrate nicotinamide adenine dinucleotide (NAD+), and ATP. Here, we investigated in vivo whether MPTP acutely caused region- and time-dependent changes in brain levels of NAD+, ATP, ADP and AMP in C57BL/6N mice killed by head-focused microwave irradiation, and whether such effects were modified by treatments with neuroprotective doses of benzamide. At 1 h after MPTP injections (4×20 mg/kg i.p.), NAD+ was reduced by 11–13% in the striatum and ventral midbrain, but not in the frontal cortex. The ATP/ADP ratio was reduced by 10% and 32% in the striatum and cortex, respectively, but was unchanged in the midbrain. All of these regional changes were prevented by co-treatment with benzamide (2×160 mg/kg i.p.), which by itself did not alter regional levels of NAD+, ATP, ADP or AMP in control mice. In a time-course study, a single dose of MPTP (30 mg/kg i.p.) resulted in maximal and transient increases in striatal levels of MPP+ and 3-methoxytyramine (+540%) at 0.5–2 h, followed by maximal and coincidental decreases in NAD+ (−10%), ATP (−11%) and dopamine content (−39%) at 3 h. Benzamide (1×640 mg/kg i.p., 30 min before MPTP) partially reduced MPP+ levels by 30% with little or no effect on MPTP or MPDP+ levels, did not affect or even slightly potentiated the increase in 3-methoxytyramine, and completely prevented the losses in striatal NAD+, ATP and dopamine content, without by itself causing any changes in these latter parameters in control mice. These results (1) confirm that MPTP reduces striatal ATP levels [Chan et al., J. Neurochem. 57 (1991) 348–351.]; (2) show that MPTP causes a regionally-dependent (striatal and midbrain) loss of NAD+; (3) indicate that the PARP inhibitor benzamide can prevent these losses without interfering with MPTP-induced striatal dopamine release; and (4) provide further evidence to suggest an involvement of PARP in MPTP-induced neurotoxicity in vivo.  相似文献   

12.
Summary 1-Methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is taken up into dopaminergic terminals and selectively destroys dopaminergic neurons, serving as a valuable tool in animal model of Parkinson's disease. Cocultures from ventral mesencephalon and neostriatum of embryonic C57/BL6 mouse brains were used to study the sensitivity of dopaminergic neurons to the toxic agent MPP+. Cultures were grown for 9 days in vitro and exposed to different concentrations of MPP+ for various times. Treatment with (0.1–1.0 M) MPP+ for 24 hours decreased3H-dopamine (3H-DA) uptake with an IC50 at 0.2 M. Exposure of cells to 1 M MPP+ over time decreased the+H-DA uptake to 38% of controls within the first two hours of incubation and to 8% after 48 hours. Loss of tyrosine hydroxylase (TH) positive cells became evident at 0.1 M MPP+ (80% of control) leading to maximal toxicity at 10 M (20% of control). MPP+ reduced the dopamine content in the cultures in a dose dependent manner (IC50 at 0.1 M) and failed to show reversibility in recovery studies. These findings provide evidence that exposure of MPP+ even at low concentrations and for short time in our coculture model results in irreversible toxicity for dopaminergic neurons.  相似文献   

13.
The mechanisms involved in methamphetamine (METH)-induced damage to nigrostriatal dopaminergic neurons in experimental animals are unknown. We have examined the possibility that perturbations in energy metabolism contribute to METH-induced toxicity by investigating the effects of systemic METH treatment in mice which received a unilateral intrastriatal infusion of malonate, a metabolic inhibitor which decreases ATP levels. Malonate (1–4 μmol) produced a dose-dependent decrease in striatal dopamine (DA). The combined treatment of intrastriatal malonate with systemic METH resulted in greater damage to dopaminergic neurons than by METH or malonate treatment alone. In parallel studies, MPTP was administered to mice which received intrastriatal infusions of saline or malonate. Similar to results obtained with METH, decreases in striatal DA content and tyrosine hydroxlase (TH) activity were greatest in MPTP-treated mice infused with malonate. The present results lend credence to the hypothesis that METH-induced increases in energy utilization create a state of metabolic stress for DA neurons which may ultimately contribute to the neurodegenerative effects of METH. Moreover, the fording that combined malonate and MPTP treatment produced greater damage than either substance alone is consistent with the hypothesis that perturbations in energy metabolism contribute to the neuronal death produced by MPP+.  相似文献   

14.
Summary. The aim of this study was to evaluate the effect of MPTP (2 × 45mg/kg s.c., 20h apart) on striatal neuropeptide Y-like immunoreactivity (NPY-LI) in C57BL/6 mice. NPY-LI markedly increased 2 weeks after MPTP but it remained unchanged after 24h, 1 or 6 weeks. The increase in NPY-LI was accompanied by depletion of dopamine (–80%), DOPAC (–70%), 3-MT (–44%) and HVA (–52%). L-Deprenyl completely prevented the MPTP-induced NPY-LI increase, neurodegeneration of the striatal dopamine system and motor dysfunction. Clonidine attenuated the neurotoxin effect on NPY-LI and dopaminergic neurons. L-dopa/carbidopa protected NPY neurons against MPTP but slightly enhanced MPTP-induced decrease in the levels of dopamine and its metabolites. The relationship between changes in NPY-LI and dopamine and serotonin metabolism determined by HPLC was discussed. The results further extend the range of MPTP-elicited modifications in striatum and demonstrate that drugs with antiparkinsonian activity can protect NPY neurons against MPTP toxicity.  相似文献   

15.
《Neurodegeneration》1996,5(3):265-274
Isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6Ndash;tetrahydropyridine or 1-methyl-4-phenylpyridinium (MPP+) are potential endogenous neurotoxins causing nigral cell death in Parkinson's disease. We now report the effects of 7 days unilateral supranigral infusion in rats of four isoquinoline derivatives, namely N-n-propylisoquinolinium (N-Pr-IQ+), N-methyl-6,7-dimethoxyisoquinolinium (N-Me-6,7-diOMe-IQ+), 6,7-dimethoxy-1-styrylNdash;3,4-dihydroisoquinoline (6,7-diOMe-1-S-3,4-DHIQ) and 1,2,3,4-tetrahydroisoquinoline (THIQ) compared to MPP+. MPP+(33 nmol/24 h)-infused rats showed a marked reduction in motor activity and displayed ipsilateral postural asymmetry. Administration of apomorphine or (+)-amphetamine to these animals produced robust contralateral and ipsilateral rotations, respectively. In contrast, rats infused with the isoquinoline derivatives (150 nmol/24 h) did not show spontaneous or drug-induced motor changes. Infusion of MPP+decreased the number of tyrosine hydroxylase (TH)-positive cells in the ipsilateral substantia nigra pars compacta (SNc) by approximately 90%. Infusion of N–Me-diOMe-IQ+and THIQ produced approximately 42% and 20% ipsilateral SNc cell loss, respectively, but N-Pr-IQ+and 6,7-diOMe-1-S-3,4-DHIQ did not alter SNc cell numbers. MPP+markedly depleted the dopamine (DA, 95%), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) content of the ipsilateral striatum. N-Me-diOMe-IQ+and THIQ also reduced the DA content of the ipsilateral striatum by approximately 39% and 20% respectively, but N-Pr-IQ+and 6,7-diOMe-1-S-3,4-DHIQ did not deplete striatal DA content. The isoquinoline derivatives slightly reduced (N-Me-diOMe-IQ+and THIQ) or had no effect (N-Pr-IQ+and 6,7-diOMe-1-S-3,4-DHIQ) on DOPAC or HVA levels. In conclusion, some isoquinoline derivatives that are substrates for the dopamine re-uptake system and inhibitors of mitochondrial function, are toxic to nigral dopaminergic neurones. Chronic exposure to endogenous or exogenous isoquinoline derivatives might contribute to cell death in Parkinson's disease.  相似文献   

16.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a selective dopaminergic neurotoxin affecting the nigrostriatal system in a variety of species including, rodents, nonhuman primates and humans. There exists, however, a great deal of variability in the sensitivity of different species to the effects of MPTP. The present study was designed to determine whether a significant difference in gender susceptibility to the toxin in CD-1 mice might also exist. A dosing regiment of 30 mg/kg MPTP once a day for 3 days (90 mg/kg total dose) in 4-month-old male and female CD-1 mice led to a significant depletion of striatal dopamine in both sexes. Two way ANOVA analysis of a time-course generated by measuring striatal dopamine at 4, 12 and 24 h after each dose of MPTP revealed that the initial dopamine reduction is significantly greater in male CD-1 mice (P < 0.001). Further, dopamine levels were reduced to a greater extent in male mice 5 days after the last dose (31 % vs. 59% of control; P < 0.02). HPLC analysis using fluorescence detection revealed no difference in the striatal nor the cerebellar levels of MPP+ between the two sexes, however, accumulation of larger amounts of MPP+ was observed in the livers of the female mice. These findings suggest that, while female CD-1 mice are more resistant to the dopamine-depleting effects of MPTP, this gender difference is not due to decreased production or accumulation of striatal MPP+.  相似文献   

17.
As an environmental risk factor, psychological stress may trigger the onset or accelerate the progression of Parkinson’s disease (PD). Here, we evaluated the effects of acute restraint stress on striatal dopaminergic terminals and the brain metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which has been widely used for creating a mouse model of PD. Exposure to 2 h of restraint stress immediately after injection of a low dose of MPTP caused a severe loss of striatal dopaminergic terminals as indicated by decreases in the dopamine transporter protein and dopamine levels compared with MPTP administration alone. Both striatal 1-methyl-4-phenylpyridinium ion (MPP+) and MPTP concentrations were significantly increased by the application of restraint stress. Striatal monoamine oxidase-B, which catalyzes the oxidation of MPTP to MPP+, was not changed by the restraint stress. Our results indicate that the enhanced striatal dopaminergic terminal loss in the stressed mice is associated with an increase in the transport of neurotoxin into the brain.  相似文献   

18.
Dopamine (DA) and its main cerebral metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured in striatum and cerebrospinal fluid (CSF) from cisterna magna in rats bilaterally lesioned by intrastriatal administration of 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium ion (MPP+). 6-OHDA caused a progressive lesion in striatum that is only moderately reflected in the decrease in dopamine metabolite concentration in CSF. MPP+ caused an acute but less selective lesion in the dopamine striatal system, as indicated by a significant reduction in striatal GABA content, followed by a slow recovery in dopamine striatal metabolism and content. The locomotor activity was dramatically reduced in both groups 48 hours after the treatment but remained significantly decreased after two months only in 6-OHDA lesioned animals. A positive correlation was found between HVA CSF concentration and striatal DA content in MPP+ lesioned rats, but not in 6-OHDA lesioned rats. It is concluded that the concentration of dopamine metabolites in CSF can be altered only after a severe striatal lesion: reduction of striatal dopamine content below 50% of normal values and involvement of neuronal or non-neuronal elements other than the dopaminergic system, similarly to the lesions caused by MPP+. These results may partly explain why CSF dopamine metabolites concentrations were significantly decreased both in advanced stages of parkinsonism and in other neurodegenerative disorders.  相似文献   

19.
Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a prototypical neurotoxicant used in mice to mimic primary features of PD pathology including striatal dopamine depletion and dopamine neuron loss in the substantia nigra pars compacta (SNc). In the literature, there are several experimental paradigms involving multiple doses of MPTP that are used to elicit dopamine neuron loss. However, a recent study reported that a single low dose caused significant loss of dopamine neurons. Here, we determined the effect of a single intraperitoneal injection of one of three doses of MPTP (0.1, 2 and 20 mg/kg) on dopamine neurons, labeled by tyrosine hydroxylase (TH+), and total neuron number (Nissl+) in the SNc using unbiased stereological counting. Data reveal a significant loss of neurons in the SNc (TH+ and Nissl+) only in the group treated with 20 mg/kg MPTP. Groups treated with lower dose of MPTP (0.1 and 2 mg/kg) only showed significant loss of TH+ neurons rather than TH+ and Nissl+ neurons. Striatal dopamine levels were decreased in the groups treated with 2 and 20 mg/kg MPTP and striatal terminal markers including, TH and the dopamine transporter (DAT), were only decreased in the groups treated with 20 mg/kg MPTP. These data demonstrate that lower doses of MPTP likely result in loss of TH expression rather than actual dopamine neuron loss in the SN. This finding reinforces the need to measure both total neuron number along with TH+ cells in determining dopamine neuron loss.  相似文献   

20.
Summary Rats were treated continuously for 12 months with therapeutically equivalent doses of haloperidol (1.4–1.6 mg/kg/day), sulpiride (102–109 mg/kg/day) or clozapine (24–27 mg/kg/day) and examined for alterations in brain glutamic acid decarboxylase (GAD) and3H-flunitrazepam binding.Administration of haloperidol, but not sulpiride or clozapine, for 6 or 12 months increased striatal GAD activity. None of the drug treatments altered nigral GAD activity when examined after 1, 3, 6, 9 or 12 months administration.The number of specific3H-flunitrazepam binding sites (Bmax) in striatal membrane preparations were not altered by 12 months administration of haloperidol, sulpiride or clozapine. Surprisingly, Bmax for3H-flunitrazepam binding to cerebellar membrane preparations was decreased-by 12 months administration of all drug treatments. The dissociation constant (Kd) for3H-flunitrazepam binding in striatal and cerebellar preparations was not altered. The ability of GABA (0.25–100 M) alone, and in conjunction with sodium chloride (200 mM), to stimulate specific3H-flunitrazepam binding in striatal and cerebellar preparations was unaltered by haloperidol, sulpiride or clozapine administration for 12 months. The selective effect of haloperidol, but not sulpiride or clozapine, treatment on striatal GAD activity parallels the ability of haloperidol, but not sulpiride or clozapine, to induce striatal dopamine receptor supersensitivity in the same animals. The actions of haloperidol may reflect its greater ability to induce tardive dyskinesia compared to sulpiride or clozapine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号