首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca(2+). The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizure-like activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.  相似文献   

2.
Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABA(A) receptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 microM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid-induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after > or = 1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABA(A) receptor-dependent recurrent inhibitory circuits and 10 mM [Ca(2+)](o) to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats (n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 +/- 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.  相似文献   

3.
Wu K  Leung LS 《Neuroscience》2001,104(2):379-396
Temporal lobe epilepsy is related to many structural and physiological changes in the brain. We used kainic acid in rats as an animal model of temporal lobe epilepsy, and studied the neural interactions of the dentate gyrus in urethane-anesthetized rats in vivo. Our initial hypothesis was that sprouting of mossy fibers, the axons of the granule cells, increases proximal dendritic excitatory currents in the inner molecular layer of the dentate gyrus. Extracellular currents were detected in vivo using current source density analysis. Backfiring the mossy fibers in CA3 or orthodromic excitation of the granule cells through the medial perforant path induced a current sink at the inner molecular layer. However, the sink or inferred excitation at the inner molecular layer was not increased in kainic acid-treated rats and the sink actually correlated negatively with the degree of mossy fiber sprouting. It is inferred that the latter sink was mediated mainly by association fibers and not by recurrent mossy fibers. After kainic acid treatment, paired-pulse inhibition of the population spikes in the dentate gyrus was increased. In contrast, reverberant activity that involved looping around an entorhinal-hippocampal circuit was increased in kainic acid-treated rats, compared to control rats. The increase of inhibition in kainic acid-treated rats was readily blocked by a small dose of GABA(A) receptor antagonist bicuculline. The latter dose of bicuculline induced paroxsymal spike bursts in kainic acid-treated but not control rats, demonstrating that the increased inhibition in dentate gyrus was fragile.In conclusion, after kainic acid induced seizures, the dentate gyrus in vivo showed an increase in inhibition that appeared to be fragile. The hypothesized increase in proximal dendritic excitation due to mossy fiber sprouting was not detected. However, the fragile inhibition could explain the seizure susceptibility in patients with temporal lobe epilepsy.  相似文献   

4.
A common feature of temporal lobe epilepsy and of animal models of epilepsy is the growth of hippocampal mossy fibers into the dentate molecular layer, where at least some of them innervate granule cells. Because the mossy fibers are axons of granule cells, the recurrent mossy fiber pathway provides monosynaptic excitatory feedback to these neurons that could facilitate seizure discharge. We used the pilocarpine model of temporal lobe epilepsy to study the synaptic responses evoked by activating this pathway. Whole cell patch-clamp recording demonstrated that antidromic stimulation of the mossy fibers evoked an excitatory postsynaptic current (EPSC) in approximately 74% of granule cells from rats that had survived >10 wk after pilocarpine-induced status epilepticus. Recurrent mossy fiber growth was demonstrated with the Timm stain in all instances. In contrast, antidromic stimulation of the mossy fibers evoked an EPSC in only 5% of granule cells studied 4-6 days after status epilepticus, before recurrent mossy fiber growth became detectable. Notably, antidromic mossy fiber stimulation also evoked an EPSC in many granule cells from control rats. Clusters of mossy fiber-like Timm staining normally were present in the inner third of the dentate molecular layer at the level of the hippocampal formation from which slices were prepared, and several considerations suggested that the recorded EPSCs depended mainly on activation of recurrent mossy fibers rather than associational fibers. In both status epilepticus and control groups, the antidromically evoked EPSC was glutamatergic and involved the activation of both AMPA/kainate and N-methyl-D-aspartate (NMDA) receptors. EPSCs recorded in granule cells from rats with recurrent mossy fiber growth differed in three respects from those recorded in control granule cells: they were much more frequently evoked, a number of them were unusually large, and the NMDA component of the response was generally much more prominent. In contrast to the antidromically evoked EPSC, the EPSC evoked by stimulation of the perforant path appeared to be unaffected by a prior episode of status epilepticus. These results support the hypothesis that recurrent mossy fiber growth and synapse formation increases the excitatory drive to dentate granule cells and thus facilitates repetitive synchronous discharge. Activation of NMDA receptors in the recurrent pathway may contribute to seizure propagation under depolarizing conditions. Mossy fiber-granule cell synapses also are present in normal rats, where they may contribute to repetitive granule cell discharge in regions of the dentate gyrus where their numbers are significant.  相似文献   

5.
Temporal lobe epilepsy is usually associated with a latent period and an increased seizure frequency following a precipitating insult. After kainate treatment, the mossy fibers of the dentate gyrus are hypothesized to form recurrent excitatory circuits between granule cells, thus leading to a progressive increase in the excitatory input to granule cells. Three groups of animals were studied as a function of time after kainate treatment: 1-2 wk, 2-4 wk, and 10-51 wk. All the animals studied 10-51 wk after kainate treatment were observed to have repetitive spontaneous seizures. Whole cell patch-clamp recordings in hippocampal slices showed that the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in granule cells increased with time after kainate treatment. This increased excitatory synaptic input was correlated with the intensity of the Timm stain in the inner molecular layer (IML). Flash photolysis of caged glutamate applied in the granule cell layer evoked repetitive EPSCs in 10, 32, and 66% of the granule cells at the different times after kainate treatment. When inhibition was reduced with bicuculline, photostimulation of the granule cell layer evoked epileptiform bursts of action potentials only in granule cells from rats 10-51 wk after kainate treatment. These data support the hypothesis that kainate-induced mossy fiber sprouting in the IML results in the progressive formation of aberrant excitatory connections between granule cells. They also suggest that the probability of occurrence of electrographic seizures in the dentate gyrus increases with time after kainate treatment.  相似文献   

6.
目的 探讨海马齿状回苔状纤维侧枝发芽与癫痫发作敏感性形成之间的关系。方法 在颈部皮下注射惊厥剂量的海人酸 (KA ,10mg/kg)诱发大鼠出现癫痫发作后 ,采用Timm’s染色法 ,分别在注射KA后3d、7d和 1个月 3个时间点观察致痫大鼠海马齿状回内苔状纤维发芽的情况。结果 Timm’s染色发现 ,注射KA后 7d ,海马齿状回分子层内带和颗粒细胞上层出现苔状纤维的异常发芽 ,注射KA后 1个月海马齿状回内Timm’s染色颗粒颜色加深 ,范围增大。提示海马苔状纤维发芽形成的时间过程与癫痫发作敏感性形成的时间过程一致。结论 海马齿状回分子层内带和颗粒细胞上层出现异常的苔状纤维发芽可能与癫痫发作敏感性形成有关。  相似文献   

7.
Tu B  Jiao Y  Herzog H  Nadler JV 《Neuroscience》2006,143(4):1085-1094
A unique feature of temporal lobe epilepsy is the formation of recurrent excitatory connections among granule cells of the dentate gyrus as a result of mossy fiber sprouting. This novel circuit contributes to a reduced threshold for granule cell synchronization. In the rat, activity of the recurrent mossy fiber pathway is restrained by the neoexpression and spontaneous release of neuropeptide Y (NPY). NPY inhibits glutamate release tonically through activation of presynaptic Y2 receptors. In the present study, the effects of endogenous and applied NPY were investigated in C57Bl/6 mice that had experienced pilocarpine-induced status epilepticus and subsequently developed a robust recurrent mossy fiber pathway. Whole cell patch clamp recordings made from dentate granule cells in hippocampal slices demonstrated that, as in rats, applied NPY inhibits recurrent mossy fiber synaptic transmission, the Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide (BIIE0246) blocks its action and BIIE0246 enhances synaptic transmission when applied by itself. Y5 receptor agonists had no significant effect. Thus spontaneous release of NPY tonically inhibits synaptic transmission in mice and its effects are mediated by Y2 receptor activation. However, both NPY and BIIE0246 were much less effective in mice than in rats, despite apparently equivalent expression of NPY in the recurrent mossy fibers. Immunohistochemistry indicated greater expression of Y2 receptors in the mossy fiber pathway of normal mice than of normal rats. Pilocarpine-induced status epilepticus markedly reduced the immunoreactivity of mouse mossy fibers, but increased the immunoreactivity of rat mossy fibers. Mossy fiber growth into the inner portion of the dentate molecular layer was associated with increased Y2 receptor immunoreactivity in rat, but not in mouse. These contrasting receptor changes can explain the quantitatively different effects of endogenously released and applied NPY on recurrent mossy fiber transmission in mice and rats.  相似文献   

8.
Jeub M  Lie A  Blümcke I  Elger CE  Beck H 《Neuroscience》1999,94(2):465-471
The endogenous kappa receptor selective opioid peptide dynorphin has been shown to inhibit glutamate receptor-mediated neurotransmission and voltage-dependent Ca2+ channels. It is thought that dynorphin can be released from hippocampal dentate granule cells in an activity-dependent manner. Since actions of dynorphin may be important in limiting excitability in human epilepsy, we have investigated its effects on voltage-dependent Ca2+ channels in dentate granule cells isolated from hippocampi removed during epilepsy surgery. One group of patients showed classical Ammon's horn sclerosis characterized by segmental neuronal cell loss and astrogliosis. Prominent dynorphin-immunoreactive axon terminals were present in the inner molecular layer of the dentate gyrus, indicating pronounced recurrent mossy fiber sprouting. A second group displayed lesions in the temporal lobe that did not involve the hippocampus proper. All except one of these specimens showed a normal pattern of dynorphin immunoreactivity confined to dentate granule cell somata and their mossy fiber terminals in the hilus and CA3 region. In patients without mossy fiber sprouting the application of the kappa receptor selective opioid agonist dynorphin A ([D-Arg6]1-13, 1 microM) caused a reversible and dose-dependent depression of voltage-dependent Ca2+ channels in most granule cells. These effects could be antagonized by the non-selective opioid antagonist naloxone (1 microM). In contrast, significantly less dentate granule cells displayed inhibition of Ca2+ channels by dynorphin A in patients with mossy fiber sprouting (Chi-square test, P < 0.0005). The lack of dynorphin A effects in patients showing mossy fiber sprouting compares well to the loss of kappa receptors on granule cells in Ammon's horn sclerosis but not lesion-associated epilepsy. Our data suggest that a protective mechanism exerted by dynorphin release and activation of kappa receptors may be lost in hippocampi with recurrent mossy fiber sprouting.  相似文献   

9.
Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatory postsynaptic currents (sEPSCs) >600 pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.  相似文献   

10.
Synaptopodin, a 100 kD protein, associated with the actin cytoskeleton of the postsynaptic density and dendritic spines, is thought to play a role in modulating actin-based shape and motility of dendritic spines during formation or elimination of synaptic contacts. Temporal lobe epilepsy in humans and in rats shows neuronal damage, aberrant sprouting of hippocampal mossy fibers and subsequent synaptic remodeling processes. Using kainic acid (KA) induced epilepsy in rats, the postictal hippocampal expression of synaptopodin was analyzed by in situ hybridization (ISH) and immunohistochemistry. Sprouting of mossy fibers was visualized by a modified Timm's staining. ISH showed elevated levels of Synaptopodin mRNA in perikarya of CA3 principal neurons, dentate granule cells and in surviving hilar neurons these levels persisted up to 8 weeks after seizure induction. Synaptopodin immunoreactivity in the dendritic layers of CA3, in the hilus and in the inner molecular layer of the dentate gyrus (DG) was initially reduced. Eight weeks after KA treatment Synaptopodin protein expression returned to control levels in dendritic layers of CA3 and in the entire molecular layer of the DG. The recovery of protein expression was accompanied by simultaneous supra- and infragranular mossy fiber sprouting. Postictal upregulation of Synaptopodin mRNA levels in target cell populations of limbic epilepsy-elicited damage and subsequent Synaptopodin protein expression largely co-localized with remodeling processes as demonstrated by mossy fiber sprouting. It may thus represent a novel postsynaptic molecular correlate of hippocampal neuroplasticity.  相似文献   

11.
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to dentate hyperexcitability, we built a biophysically realistic and anatomically representative computational model of the dentate gyrus to examine this question. The 527-cell model, containing granule, mossy, basket, and hilar cells with axonal projections to the perforant-path termination zone, showed that even weak mossy fiber sprouting (10-15% of the strong sprouting observed in the pilocarpine model of epilepsy) resulted in the spread of seizure-like activity to the adjacent model hippocampal laminae after focal stimulation of the perforant path. The simulations also indicated that the spatially restricted, lamellar distribution of the sprouted mossy fiber contacts reported in in vivo studies was an important factor in sustaining seizure-like activity in the network. In contrast to the robust hyperexcitability-inducing effects of mossy fiber sprouting, removal of mossy cells resulted in decreased granule cell responses to perforant-path activation in agreement with recent experimental data. These results indicate the crucial role of mossy fiber sprouting even in situations where there is only relatively weak mossy fiber sprouting as is the case after moderate concussive experimental head injury.  相似文献   

12.
The most well-documented synaptic rearrangement associated with temporal lobe epilepsy is mossy fiber sprouting (MFS). MFS is a pronounced expansion of granule cell mossy fiber axons into the inner dentate molecular layer. The recurrent excitatory network formed by MFS is hypothesized to play a critical role in epileptogenesis, which is the transformation of the normal brain into one that is prone to recurrent spontaneous seizures. While many studies have focused on the functional consequences of MFS, relatively few have investigated the molecular mechanisms underlying the increased propensity of mossy fibers to invade the inner molecular layer. We hypothesized that changes in two components of the extracellular matrix, hyaluronan and its primary receptor, CD44, contribute to MFS. Hyaluronan contributes to laminar-specificity in the hippocampus and increases in hyaluronan and CD44 are associated with temporal lobe epilepsy. We tested our hypothesis in an in vitro model of MFS using a combination of histological and biochemical approaches. Application of kainic acid (KA) to organotypic hippocampal slice cultures induced robust MFS into the inner dentate molecular layer compared with vehicle-treated controls. Degradation of hyaluronan with hyaluronidase significantly reduced but did not eliminate KA-induced MFS, suggesting that hyaluronan played a permissive role in MFS, but that loss of hyaluronan signaling alone was not sufficient to block mossy fiber reorganization. Comparison of CD44 expression with MFS revealed that when CD44 expression in the molecular layers was high, MFS was minimal and when CD44 expression/function was reduced following KA treatment or with function blocking antibodies, MFS was increased. The time course of KA-induced reductions in CD44 expression was identical to the temporal progression of KA-induced MFS reported previously in hippocampal slice cultures, suggesting that reduced CD44 expression may help promote MFS. Understanding the molecular mechanisms underlying MFS may lead to therapeutic interventions that limit epileptogenesis.  相似文献   

13.
The mossy fiber system in the hippocampus of amygdaloid-kindled rats was examined by using highly polysialylated neural cell adhesion molecule (PSA-NCAM) as a marker for immunohistochemical detection of immature dentate granule cells and mossy fibers in combination with bromodeoxyuridine (BrdU) labeling of newly generated granule cells. Statistically significant increases in BrdU-labeled cells and PSA-NCAM-positive cells occurred in the dentate gyrus following kindling. The increase in PSA-NCAM-immunoreactive neurites was confined to the entire stratum lucidum of CA3. Immunoelectron-microscopic examination also revealed that PSA-NCAM-positive immature synaptic terminals of the sprouting mossy fibers increased in the stratum lucidum of CA3 in the kindled rats. The increase in the numbers of PSA-NCAM-positive granule cells correlated well with the increase in the immunopositive neurites and synaptic terminals on the mossy fiber trajectory. The increase in these PSA-NCAM-immunopositive structures is thought to reflect the enhancement of sprouting and synaptogenesis of mossy fibers by a subset of granule cells newly generated during amygdaloid-kindling and suggests that the reorganization of the mossy fiber system on the normal trajectory at least in part contributes to the acquisition and maintenance of an epileptogenic state.  相似文献   

14.
目的探讨腹腔注射锂-匹罗卡品建立小鼠颞叶癫痫(EP)模型方法及其行为学改变与苔藓纤维出芽的关系。方法小鼠腹腔注射锂-匹罗卡品建立颞叶EP模型,应用ZnSe金属自显影技术(AMG)检测3d、7d、15d、30d及60d的苔藓纤维出芽情况。结果锂-匹罗卡品注射后,约40%的小鼠呈现癫痫持续状态,并出现慢性自发发作。形态学检查发现海马齿状回分子层苔藓纤维出芽,并且随着时间的延长,苔藓纤维出芽逐渐增多。结论腹腔注射锂-匹罗卡品小鼠模型是一种理想的颞叶EP动物模型,苔藓纤维出芽可作为判断SE模型是否成功的形态学标准。  相似文献   

15.
The hippocampus contains one very strong recurrent excitatory network formed by associational connections between CA3 pyramidal cells and another that depends largely on a disynaptic excitatory pathway between dentate granule cells. The recurrent excitatory network in CA3 has long been considered a possible location of autoassociative memory storage, whereas changes in the level and arrangement of recurrent excitation between granule cells are strongly implicated in epileptogenesis. Hilar mossy cells are likely to receive collateral input from CA3 pyramidal cells and they are key intermediaries (by mossy fiber inputs) in the recurrent excitatory network between granule cells. The current study uses minimal stimulation techniques in an in vitro preparation of the rat dentate gyrus to examine presynaptic modulation of both mossy fiber and non-mossy fiber inputs to hilar mossy cells. We report that both mossy fiber and non-mossy fiber inputs to hilar mossy cells express presynaptic gamma-aminobutyric acid type B (GABA(B)) receptors that are subject to tonic inhibition by ambient GABA. We further find that only non-mossy fiber inputs express presynaptic muscarinic acetylcholine receptors, but that bath application of cholinergic agonists produces action potential-dependent increases in ambient GABA that can indirectly inhibit mossy fiber inputs. Finally, we demonstrate that mossy cells express high-affinity postsynaptic GABA(A) receptors that are also capable of detecting changes in ambient GABA produced by cholinergic agonists. Our results are among the first to directly characterize these important collateral inputs to hilar mossy cells and may help facilitate informed comparison between primary and collateral projections in two major excitatory pathways.  相似文献   

16.
The granule cells of the dentate gyrus (DG), origin of the mossy fibers (MFs), have been considered to be glutamatergic. However, data obtained with different experimental approaches in recent years may be calling for a redefinition of their phenotype. Although they indeed release glutamate for fast neurotransmission, immunohistological and molecular biology evidence has revealed that these glutamatergic cells also express GABAergic markers. The granule cell expression of a GABAergic phenotype is developmentally regulated. Electrophysiological studies reveal that during the first 3 weeks of age, mossy fiber stimulation provokes monosynaptic fast inhibitory transmission mediated by GABA, besides the monosynaptic excitatory glutamatergic transmission, onto their targets in CA3. After this age, mossy fiber GABAergic transmission abruptly disappears and the GABAergic markers are undetected. In the adult, the GABAergic markers are upregulated and GABA-mediated transmission emerges after induction of hyperexcitability. The simultaneous glutamate- and GABA-mediated signals share the same plastic and pharmacological characteristics that correspond to neurotransmission of mossy fiber origin. This intriguing evidence gives rise to two fundamental points of discussion. The first is the plausible fact that glutamate and GABA, two neurotransmitters of opposing actions, are coreleased from the mossy fibers. The second relates to its functional implications that can be immediately inferred, as the dentate gyrus can exert direct GABA-mediated excitatory actions early in life and inhibitory actions in young and adult hippocampus. This evidence poses the need to reevaluate and reinterpret some aspects of the physiology of the mossy fiber pathway under normal and pathological conditions. This work reviews the recent evidence that supports the assumption that glutamate and GABA can be coreleased from a single pathway, the mossy fibers, and makes some considerations about its functional implications.  相似文献   

17.
Synaptic reorganization by mossy fibers in human epileptic fascia dentata.   总被引:31,自引:0,他引:31  
This study was designed to identify whether synaptic reorganizations occur in epileptic human hippocampus which might contribute to feedback excitation. In epileptic hippocampi, (n = 21) reactive synaptogenesis of mossy fibers into the inner molecular layer of the granule cell dendrites was demonstrated at the light microscopic and electron microscopic levels. There was no inner molecular layer staining for mossy fibers in autopsy controls (n = 4) or in controls with neocortex epilepsy having no hippocampal sclerosis (n = 2). Comparing epileptics to controls, there were statistically significant correlations between Timm stain density and hilar cell loss. Since hilar neurons are the origin of ipsilateral projections to the inner molecular layer, this suggests that hilar deafferentation of this dendritic zone precedes mossy fiber reafferentation. Quantitative Timm-stained electron microscopy revealed large, zinc-labelled vesicles in terminals with asymmetric synapses on dendrites in the inner molecular and granule cell layers. Terminals in the middle and outer molecular layers did not contain zinc, were smaller and had smaller vesicles. These histochemical and ultrastructural data suggest that in damaged human epileptic hippocampus, mossy fiber reactive synaptogenesis may result in monosynaptic recurrent excitation of granule cells that could contribute to focal seizure onsets.  相似文献   

18.
Williams PA  Dudek FE 《Neuroscience》2007,149(4):943-961
Ischemic brain injury is one of the leading causes of epilepsy in the elderly, and there are currently no adult rodent models of global ischemia, unilateral hemispheric ischemia, or focal ischemia that report the occurrence of spontaneous motor seizures following ischemic brain injury. The rodent hypoxic-ischemic (H-I) model of brain injury in adult rats is a model of unilateral hemispheric ischemic injury. Recent studies have shown that an H-I injury in perinatal rats causes hippocampal mossy fiber sprouting and epilepsy. These experiments aimed to test the hypothesis that a unilateral H-I injury leading to severe neuronal loss in young-adult rats also causes mossy fiber sprouting and spontaneous motor seizures many months after the injury, and that the mossy fiber sprouting induced by the H-I injury forms new functional recurrent excitatory synapses. The right common carotid artery of 30-day old rats was permanently ligated, and the rats were placed into a chamber with 8% oxygen for 30 min. A quantitative stereologic analysis revealed that the ipsilateral hippocampus had significant hilar and CA1 pyramidal neuronal loss compared with the contralateral and sham-control hippocampi. The septal region from the ipsilateral and contralateral hippocampus had small but significantly increased amounts of Timm staining in the inner molecular layer compared with the sham-control hippocampi. Three of 20 lesioned animals (15%) were observed to have at least one spontaneous motor seizure 6-12 months after treatment. Approximately 50% of the ipsilateral and contralateral hippocampal slices displayed abnormal electrophysiological responses in the dentate gyrus, manifest as all-or-none bursts to hilar stimulation. This study suggests that H-I injury is associated with synaptic reorganization in the lesioned region of the hippocampus, and that new recurrent excitatory circuits can predispose the hippocampus to abnormal electrophysiological activity and spontaneous motor seizures.  相似文献   

19.
20.
We have investigated changes in the extracellular matrix of the hippocampus associated with the early progression of epileptogenesis in a murine model of temporal lobe epilepsy using immunohistochemistry. In the first week following intrahippocampal injection of the glutamate agonist, domoate, there is a latent period at the end of which begins a sequential upregulation of extracellular matrix (ECM) molecules in the granule cell layer of the dentate gyrus, beginning with neurocan and tenascin-C. This expression precedes the characteristic dispersion of the granule cell layer which is evident at 14 days post-injection when the first recurrent seizures can be recorded. At this stage, an upregulation of the chondroitin sulfate proteoglycan, phosphacan, the DSD-1 chondroitin sulfate motif, and the HNK-1 oligosaccharide are also observed. The expression of these molecules is localized differentially in the epileptogenic dentate gyrus, especially in the sprouting molecular layer, where a strong upregulation of phosphacan, tenascin-C, and HNK-1 is observed but there is no expression of the proteoglycan, neurocan, nor of the DSD-1 chondroitin sulfate motif. Hence, it appears that granule cell layer dispersion is accompanied by a general increase in the ECM, while mossy fiber sprouting in the molecular layer is associated with a more restricted repertoire. In contrast to these changes, the expression of the ECM glycoproteins, laminin and fibronectin, both of which are frequently implicated in tissue remodelling events, showed no changes associated with either granule cell dispersion or mossy fiber sprouting, indicating that the epileptogenic plasticity of the hippocampus is accompanied by ECM interactions that are characteristic of the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号