共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ashis Kumar Dhara Sudipta Mukhopadhyay Anirvan Dutta Mandeep Garg Niranjan Khandelwal 《Journal of digital imaging》2016,29(4):466-475
Classification of malignant and benign pulmonary nodules is important for further treatment plan. The present work focuses on the classification of benign and malignant pulmonary nodules using support vector machine. The pulmonary nodules are segmented using a semi-automated technique, which requires only a seed point from the end user. Several shape-based, margin-based, and texture-based features are computed to represent the pulmonary nodules. A set of relevant features is determined for the efficient representation of nodules in the feature space. The proposed classification scheme is validated on a data set of 891 nodules of Lung Image Database Consortium and Image Database Resource Initiative public database. The proposed classification scheme is evaluated for three configurations such as configuration 1 (composite rank of malignancy “1” and “2” as benign and “4” and “5” as malignant), configuration 2 (composite rank of malignancy “1”,“2”, and “3” as benign and “4” and “5” as malignant), and configuration 3 (composite rank of malignancy “1” and “2” as benign and “3”,“4” and “5” as malignant). The performance of the classification is evaluated in terms of area (A z) under the receiver operating characteristic curve. The A z achieved by the proposed method for configuration-1, configuration-2, and configuration-3 are 0.9505, 0.8822, and 0.8488, respectively. The proposed method outperforms the most recent technique, which depends on the manual segmentation of pulmonary nodules by a trained radiologist. 相似文献
3.
原发性肺癌孤立性结节的自动提取 总被引:2,自引:0,他引:2
研究自动分割和提取原发性肺癌肺部孤立性结节(SPN)特征的方法。对CT图像进行预处理后,首先分割出肺实质,然后用模糊C均值聚类方法对肺实质图像作进一步地细分割,提取感兴趣区域(ROI),最后根据分形理论计算出分形维数结合灰度方差供分类判决。结果表明此方法能够有效地自动识别SPN。 相似文献
4.
基于肺部CT序列图像的肺实质三维分割 总被引:3,自引:1,他引:2
目的:肺实质分割是基于CT图像的肺结节计算机辅助检测技术必不可少的步骤。结合阈值技术、连通区域标记以及形态学技术,提出了一种简单有效的从CT图像中分割三维肺实质的方法,以期能为后续肺结节计算机辅助检测技术的研究奠定基础。方法:首先,将原图像二值化,并应用三维连通域标记去除背景及细小空洞;然后,经三维区域生长法去除气管;最后,经形态学滤波平滑肺边界得到肺部精确的三维模板,并采用该模板从CT序列图像中分割出肺实质。结果:根据对20组层厚2.0mm、每组约250个切片的肺部CT临床数据实验验证,其肺实质分割的平均正确度为91.55%,处理单组数据平均耗时167.4563s。结论:实验结果表明,本文方法能自动快速地从CT序列图像中分割出肺实质。 相似文献
5.
肺癌是对人类生命健康危害最大的恶性肿瘤之一。计算机辅助诊断系统对肺部CT图像进行自动分析后,可提示医生可疑肺结节,从而克服医生在诊断中的一些主观因素,为此本文提出了一种基于胸部CT图像的可疑肺结节自动检测算法。首先,根据胸部组织的特殊结构,利用一种新的分割算法提取出肺实质部分;在此基础上提取出灰度与结节相近的感兴趣区域,包括结节、肺血管、支气管;然后,以已标记的结节数据作为样本集,计算结节的面积、灰度均值、灰度方差、圆形度、形状矩、体积、球形度等特征值,利用最近邻法建立分类器判别函数;最后,计算测试集感兴趣区域的上述特征,对其进行判别、分类,并标记出结节。试验结果表明,该算法综合考虑了肺结节特征,具有较高的准确度。 相似文献
6.
肺部气管是人体与外界进行气体交换的唯一通路;其解剖结构信息可用于诊断呼吸系统疾病。计算机断层扫描技术(CT)是检测呼吸系统疾病的主要手段,但因就诊人数多、图像数据量大等因素;导致人工阅片费时费力。而肺部气管树的自动提取与分割;是实现自动化定量分析与呼吸系统疾病辅助诊断的前提。首先对肺部气管树分割技术的背景及意义进行介绍;然后分析对比传统分割技术、基于管状结构检测的分割技术以及基于机器学习的分割技术所运用的研究方法和存在的问题。最后指出提高肺部气管树分割效果;依赖于将气管分割技术与泄漏剔除技术相互结合;需要在尽可能分割出多数气管树分枝的基础上;消除分割结果中存在的伪气管区域。 相似文献
7.
基于CT图像的肺气管树3D分割方法的研究 总被引:1,自引:0,他引:1
目的:对肺部气管树的分割在临床上具有重要应用价值。针对目前肺气管树分割存在的问题,本文提出了一种结合区域生长和形态学方法的气管树3D分割的方法。方法:首先,采用基于3D联通区域与形态学的方法分割出CT序列图像中的肺实质;其次,利用3D区域生长法初步提取气管树;然后,利用形态学分割方法选取细小气管候选区域,并与上一步分割结果合成三维肺气管区域;最后,再次利用区域生长法去除伪气管区域,提取出最终的气管树。结果:实验结果表明,三维区域生长方法能够很好地获得气管/主支气管、段气管及主要的气管分支,而形态学方法能够有效地检测出细小气管区域。所以利用本文方法可以简单、有效地提取出肺气管树,并防止区域生长过程中的遗漏现象。结论:本文方法可为肺部气管的定量分析奠定基础,具有十分重要的临床诊断意义。 相似文献
8.
针对肺结节检测的肺实质CT图像分割 总被引:1,自引:0,他引:1
目的:针对CT图像上肺结节的自动检测,开发并评价对全肺螺旋CT扫描中的肺实质进行自动分割的一种综合方法。方法:首先利用全局阈值对CT图像进行二值化,然后消除由于支气管、细支气管等低密度影和由于结节、血管等高密度影以及由检查床造成的条状伪影等噪声,最后对包含胸膜连接结节的图像利用数学形态学运算和图像凸包运算进行完善形成肺实质掩膜。结果:利用该方法对从LIDC数据库中所有包含结节的505张CT扫描片(来自69个病例)进行肺实质分割,正确率为95.4%。其中,包含胸膜连接结节的139张CT扫描片的正确分割率为94.2%。结论:本文提出的方法较好地完成了肺实质分割任务,为利用CT图像进行计算机辅助肺结节的检测打下了基础。 相似文献
9.
基于CT图像的肺结节计算机辅助诊断系统 总被引:8,自引:0,他引:8
本文介绍了一种基于CT图像的肺结节计算机辅助自动诊断系统。我们将肺结节的自动检测分为肺实质的提取、感兴趣区域(ROI)的分割和ROI特征参数提取及分类判别几个步骤。该系统能够在对肺部CT图像进行自动分析后给医生提示出可疑肺结节,从而提高了医疗诊断效率。 相似文献
10.
Giorgio De Nunzio Eleonora Tommasi Antonella Agrusti Rosella Cataldo Ivan De Mitri Marco Favetta Silvio Maglio Andrea Massafra Maurizio Quarta Massimo Torsello Ilaria Zecca Roberto Bellotti Sabina Tangaro Piero Calvini Niccolò Camarlinghi Fabio Falaschi Piergiorgio Cerello Piernicola Oliva 《Journal of digital imaging》2011,24(1):11-27
A fully automated and three-dimensional (3D) segmentation method for the identification of the pulmonary parenchyma in thorax X-ray computed tomography (CT) datasets is proposed. It is meant to be used as pre-processing step in the computer-assisted detection (CAD) system for malignant lung nodule detection that is being developed by the Medical Applications in a Grid Infrastructure Connection (MAGIC-5) Project. In this new approach the segmentation of the external airways (trachea and bronchi), is obtained by 3D region growing with wavefront simulation and suitable stop conditions, thus allowing an accurate handling of the hilar region, notoriously difficult to be segmented. Particular attention was also devoted to checking and solving the problem of the apparent ‘fusion’ between the lungs, caused by partial-volume effects, while 3D morphology operations ensure the accurate inclusion of all the nodules (internal, pleural, and vascular) in the segmented volume. The new algorithm was initially developed and tested on a dataset of 130 CT scans from the Italung-CT trial, and was then applied to the ANODE09-competition images (55 scans) and to the LIDC database (84 scans), giving very satisfactory results. In particular, the lung contour was adequately located in 96% of the CT scans, with incorrect segmentation of the external airways in the remaining cases. Segmentation metrics were calculated that quantitatively express the consistency between automatic and manual segmentations: the mean overlap degree of the segmentation masks is 0.96 ± 0.02, and the mean and the maximum distance between the mask borders (averaged on the whole dataset) are 0.74 ± 0.05 and 4.5 ± 1.5, respectively, which confirms that the automatic segmentations quite correctly reproduce the borders traced by the radiologist. Moreover, no tissue containing internal and pleural nodules was removed in the segmentation process, so that this method proved to be fit for the use in the framework of a CAD system. Finally, in the comparison with a two-dimensional segmentation procedure, inter-slice smoothness was calculated, showing that the masks created by the 3D algorithm are significantly smoother than those calculated by the 2D-only procedure.Key words: CAD, image segmentation, lung nodules, region growing, grid, 3D imaging, biomedical image analysis 相似文献
11.
人体CT切片图像中骨骼的分割 总被引:5,自引:1,他引:5
在实现人体骨骼的三维可视化中 ,首要的一步是将骨骼从二维图像中分割出来。本研究选用美国国家医学图书馆提供的可视人体项目中 1733张女性 CT切片数据 ,提出了一套图像去噪、分割和平滑的处理方法。在去噪中使用了 Chebyshev一致逼近滤波技术 ;在分割中提出了一种简单实用的自适应阈值法 ,将图像之间的相关性与区域生长法结合 ;后处理中使用形态学方法、多分辨率滤波等算法。完成了对所有 1733张图片的分割 ,经过与原图的对照 ,证明了所提出方法在分割中的准确性和较广泛的适用性 相似文献
12.
Chest radiologists rely on the segmentation and quantificational analysis of ground-glass opacities (GGO) to perform imaging diagnoses that evaluate the disease severity or recovery stages of diffuse parenchymal lung diseases. However, it is computationally difficult to segment and analyze patterns of GGO while compared with other lung diseases, since GGO usually do not have clear boundaries. In this paper, we present a new approach which automatically segments GGO in lung computed tomography (CT) images using algorithms derived from Markov random field theory. Further, we systematically evaluate the performance of the algorithms in segmenting GGO in lung CT images under different situations. CT image studies from 41 patients with diffuse lung diseases were enrolled in this research. The local distributions were modeled with both simple and adaptive (AMAP) models of maximum a posteriori (MAP). For best segmentation, we used the simulated annealing algorithm with a Gibbs sampler to solve the combinatorial optimization problem of MAP estimators, and we applied a knowledge-guided strategy to reduce false positive regions. We achieved AMAP-based GGO segmentation results of 86.94%, 94.33%, and 94.06% in average sensitivity, specificity, and accuracy, respectively, and we evaluated the performance using radiologists' subjective evaluation and quantificational analysis and diagnosis. We also compared the results of AMAP-based GGO segmentation with those of support vector machine-based methods, and we discuss the reliability and other issues of AMAP-based GGO segmentation. Our research results demonstrate the acceptability and usefulness of AMAP-based GGO segmentation for assisting radiologists in detecting GGO in high-resolution CT diagnostic procedures. 相似文献
13.
牙颌CT图像序列中牙的半自动分割方法 总被引:2,自引:0,他引:2
牙颌CT图像序列相邻切片之间,相应牙的大小、位置以及牙区域和轮廓的灰度分布等特征比较接近,并呈一定的变化规律,根据这一特点提出了牙颌CT图像序列中牙的半自动分割方法。首先选取参考切片,加入少量用户操作进行参考切片中牙轮廓的提取,接着以参考切片为起始切片,由已完成轮廓提取的牙包围盒作为待处理切片(相邻切片)相应牙的操作区间,然后在此区间内用区域生长法提取牙轮廓,由此逐张切片处理可以自动地得到所有切片全牙列每颗牙的轮廓。实验结果表明,本方法仅需少量用户交互就能快速、基本准确地从牙颌CT图像序列中分割出牙轮廓,具有一定的实用价值。 相似文献
14.
肺癌是人类的一大杀手,为了提高其治愈率,人们越来越重视对肺癌的早期形态——肺结节的影像检测,但一直被较高的假阳性率所困扰。在高分辨率CT图像基础上,打破常规思维,从肺部血管三维重建入手,间接去掉血管组织对结节提取的干扰。首先利用数学形态学及凸包算法获得二维完整肺实质,再利用区域增长法提取肺部软组织,间接得到疑似结节图像,然后利用三维Hessian矩阵特征值的几何意义,构造三维血管结构的增强因子,得到完整的肺部血管图像,将其与疑似结节图像进行对比,重合区域即可除去,最大限度地剔除血管的干扰,最后再利用疑似区域的几何特征剔除残余的肺部杂质,最终获得较低的假阳性率,提取准确率较高。 相似文献
15.
Koyuncu Hasan Ceylan Rahime Sivri Mesut Erdogan Hasan 《Journal of digital imaging》2018,31(2):262-274
Journal of Digital Imaging - Computed tomography (CT) scans usually include some disadvantages due to the nature of the imaging procedure, and these handicaps prevent accurate abdomen segmentation.... 相似文献
16.
《中国生物医学工程学报(英文版)》2016,(3)
Segmenting whole heart from cardiac computed tomography(CT images can provide an important basis for the evaluation of cardiac function and help improve the accuracy of clinical diagnosis. Manual segmentation is the most accurate method for cardiac segmentation. But it is time consuming and not sufficiently reproducible. However, clinicians still rely on this method in practical applications. So a fully automatic method is needed to improve the segmentation efficiency. This pape proposes a registration-based automatic approach for three-dimensional(3D segmentation of cardiac CT images. The proposed method utilizes the similarity o cardiac CT images between different individuals, and uses registration to achieve the segmentation. Affine transformation is firstly implemented to achieve global coarse registration. Then, cubic B-splines are used to refine the local details in locally accurate registration. Mutual information(Ml) is used as the similarity measure, and adaptive stochastic gradient descent(ASGD) as the optimization algorithm. Ou method is applied to the dual-source cardiac CT images to segment whole heart Experimental results show that the proposed method can automatically segment whole heart from cardiac CT images. 相似文献
17.
准确快速地分割CT切片特征轮廓是医学图像三维重建的重要环节。现有的轮廓分割方法必须通过手动层层交互操作,不仅耗时而且分割精度不高。针对这种局限性,提出一种基于启发式牙颌CT影像自动分割方法。首先用拉普拉斯算子对CT图像序列进行边缘增强,其次用轮廓匹配映射技术实现轮廓启发式传递,最后基于收缩包围算法自动分割牙颌序列。以14例完整牙(每例28~32颗牙数据样本)锥束CT断层扫描图像序列进行实验,在相同条件下分别用所提出的轮廓自动提取方法和其他提取方法,对实验样本进行轮廓提取,得到单颗牙轮廓提取的平均用时和提取轮廓与真实轮廓之间的距离差平均值。实验结果显示,轮廓自动分割算法提取单颗牙轮廓的用时约为其他手工分割法提取单颗牙轮廓用时的23%,同时提取的轮廓质量和用传统方法提取的轮廓质量相当。该方法为CT数据特征区自动化分割提供一种可行且高效的方法,为进一步改进现有的CT影像分割和三维重建算法提供了新的思路。 相似文献
18.
肺部CT图像的分割是计算机辅助诊断系统处理的一个重要环节,其分割的结果影响到医生的诊断与进一步的分析。由于胸膜结节的灰度与肺实质外围的灰度相近,运用传统的分割方法无法正确分割出此类病灶。将胸膜结节包含肺实质一起分割出来,使计算机辅助诊断系统能够对此类病灶做进一步的分析。提出一种结合Graham算法以及边界逼近的方法,对肺实质的轮廓进行修正,进而得到修正的二值模板;将该模板与原图像做乘运算,得到包含胸膜结节的肺实质。运用所提出的方法,对公开数据库LIDC中68张含病灶的CT样本图像做处理,通过与传统方法的对比以及对算法的过分割比例、欠分割比例以及准确性的分析,得到准确率为98.5%,平均过分割比例为1.35%,平均欠分割比例为0.51%,证明了该方法的有效性。 相似文献
19.
Matthias Hammon Alexander Cavallaro Marius Erdt Peter Dankerl Matthias Kirschner Klaus Drechsler Stefan Wesarg Michael Uder Rolf Janka 《Journal of digital imaging》2013,26(6):1082-1090
This study aims to automatically detect and segment the pancreas in portal venous phase contrast-enhanced computed tomography (CT) images. The institutional review board of the University of Erlangen-Nuremberg approved this study and waived the need for informed consent. Discriminative learning is used to build a pancreas tissue classifier incorporating spatial relationships between the pancreas and surrounding organs and vessels. Furthermore, discrete cosine and wavelet transforms are used to build texture features to describe local tissue appearance. Classification is used to guide a constrained statistical shape model to fit the data. The algorithm to detect and segment the pancreas was evaluated on 40 consecutive CT data that were acquired in the portal venous contrast agent phase. Manual segmentation of the pancreas was carried out by experienced radiologists and served as reference standard. Threefold cross validation was performed. The algorithm-based detection and segmentation yielded an average surface distance of 1.7 mm and an average overlap of 61.2 % compared with the reference standard. The overall runtime of the system was 20.4 min. The presented novel approach enables automatic pancreas segmentation in portal venous phase contrast-enhanced CT images which are included in almost every clinical routine abdominal CT examination. Reliable pancreatic segmentation is crucial for computer-aided detection systems and an organ-specific decision support. 相似文献
20.
本研究旨在从心脏双源 CT 数据中自动精确分割出冠状动脉。采用一种基于多尺度滤波和概率决策的血管自动分割算法。先基于多尺度 Hessian 矩阵增强图像中的管状结构,再利用最大后验概率基于灰度将体素分为目标和背景2类,最后用26邻域区域生长法分割出左冠状动脉。实验结果表明,可精确分割出冠状动脉并提取血管中心线。该算法避免了血管泄露问题,无伪血管,无需人工交互,是一种有效的双源 CT 冠状动脉自动提取方法。 相似文献