首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTION: Running shoes are designed specifically for different foot types in order to reduce injuries. Running in the correct footwear matched for foot type may have a greater influence on mechanics when runners become exerted. Therefore, the purpose of this study was to evaluate changes in kinematics and kinetics over the course of a prolonged run when low (LA) and high (HA) arched runners wear motion control and cushioning shoes. METHODS: Twelve HA and 12 LA recreational runners were recruited for this study. Subjects ran in a motion control (MC) and cushion trainer (CT) shoe. Lower extremity kinematics and tibial accelerometry were collected while the runners ran at a self-selected training pace. The data were analyzed using a two-way (footwear x time) repeated measures ANOVA (p=0.05) for each arch type. RESULTS: Low arched runners: Peak tibial internal rotation decreased in the MC shoe and was increased in the CT over the course of the prolonged run. However, no interactions or main effects were noted for peak eversion or eversion excursion. High arched runners: No shoe by time interaction was observed for tibial shock. However, there was a main effect for shoe, with lower tibial shock associated with the CT shoe. CONCLUSION: In LA runners, MC shoes decreased tibial internal rotation compared to CT shoes over the course of a prolonged run. In HA runners, running in the CT shoes reduced tibial shock compared to the MC shoes.  相似文献   

2.
ObjectivesPrevious studies comparing shoes based on the amount of midsole cushioning have generally used shoes from multiple manufacturers, where factors outside of stack height may contribute to observed biomechanical differences in running mechanics between shoes. Therefore, the purpose of this study was to compare ground reaction forces and ankle kinematics during running between three shoes (maximal, traditional, and minimal) from the same manufacturer that only varied in stack height.DesignWithin-participant repeated measuresMethodsTwenty recreational runners ran overground in the laboratory in three shoe conditions (maximal, traditional, minimal) while three-dimensional kinematic and kinetic data were collected using a 3D motion capture system and two embedded force plates. Repeated measures ANOVAs (α = .05) compared biomechanical data between shoes.ResultsWhile the loading rate was significantly greater in the minimal shoe compared to the maximal shoe, no other differences were seen for the ground reaction force variables. Peak eversion was greater in the maximal and minimal shoe compared to the traditional shoe, while eversion duration and eversion at toe-off were greater in the maximal shoe.ConclusionsPreviously cited differences in ground reaction force parameters between maximal and traditional footwear may be due to factors outside of midsole stack height. The eversion mechanics in the maximal shoes from this study may place runners at a greater risk of injury. Disagreement between previous studies indicates that more research on maximal running shoes is needed.  相似文献   

3.
Leg stiffness between high-arched (HA) and low-arched (LA) runners was compared. It was hypothesized that high-arched runners would exhibit increased leg stiffness, increased sagittal plane support moment, greater vertical loading rates, decreased knee flexion excursion and increased activation of the knee extensor musculature. Twenty high-arched and 20 low-arched subjects were included in this study. Leg stiffness, knee stiffness, vertical loading rate and lower extremity support moment were compared between groups. Electromyographic data were collected in an attempt to explain differences in leg stiffness between groups. High-arched subjects were found to have increased leg stiffness and vertical loading rate compared to low-arched runners. Support moment at the impact peak of the vertical ground reaction force was related to leg stiffness across all subjects. High-arched subjects demonstrated decreased knee flexion excursion during stance. Finally, high-arched subjects exhibited a significantly earlier onset of the vastus lateralis (VL) than the low-arched runners. Differences exist in leg stiffness and vertical loading rate between runners with different foot types. Differences in lower extremity kinetics in individuals with different foot types may have implications for new treatment strategies or preventative measures.  相似文献   

4.
Running shoes, orthotics, and injuries   总被引:2,自引:0,他引:2  
Running is the most visible expression of the continued interest in regular physical activities. Unfortunately injuries are common, primarily due to overuse, and a number of aetiological factors have been recognised. Of these, training errors can be responsible for up to 60% of injuries. The training surface, a lack of flexibility and strength, the stage of growth and development, poor footwear and abnormal biomechanical features have all been implicated in the development of running injuries. A thorough understanding of the biomechanics of running is a necessary prerequisite for individuals who treat or advise runners. Clinically, the configuration of the longitudinal arch is a valuable method of classifying feet and has direct implications on the development and management of running problems. The runner with excessively pronated feet has features which predispose him/her to injuries that most frequently occur at the medial aspect of the lower extremity: tibial stress syndrome; patellofemoral pain syndrome; and posterior tibialis tendinitis. These problems occur because of excessive motion at the subtalar joint and control of this movement can be made through the selection of appropriate footwear, plus orthotic foot control. The runner with cavus feet often has a rigid foot and concomitant problems of decreased ability to absorb the force of ground contact. These athletes have unique injuries found most commonly on the lateral aspect of the lower extremity: iliotibial band friction syndrome; peroneus tendinitis; stress fractures; trochanteric bursitis; and plantar fasciitis. Appropriate footwear advice and the use of energy-absorbing materials to help dissipate shock will benefit these individuals. Running shoes for the pronated runner should control the excessive motion. The shoes should be board-lasted, straight-lasted, have a stable heel counter, extra medial support, and a wider flare than the shoes for the cavus foot. For these athletes a slip-lasted, curve-lasted shoe with softer ethylene vinyl acetate (EVA) and a narrow flare is appropriate. Orthotic devices are useful in selected runners with demonstrated biomechanical abnormalities that contribute to the injury. Soft orthotics made of a commercial insole laminated with EVA are comfortable, easily adjusted, inexpensive, and more for-giving than the semirigid orthotics which are useful in cases where the soft orthotic does not provide adequate foot control. A review of injury data shows an alarming rise in the incidence of knee pain in runners-from 18% to 50% of injuries in 13 years.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
目的:比较穿着鞋带跑鞋和采用松紧鞋舌跑鞋在主观舒适度、足底压力分布和后足运动参数方面的区别。方法:15名有经验的跑步者自愿参与本研究。采用一份可靠的问卷进行主观舒适度调查;采用Novel pedar足底压力测试系统记录受试者穿着两种跑鞋跑步时的足底压力分布;采用二维高速摄像系统和Ariel动作解析系统记录、分析受试者穿着两种跑鞋跑步时后足的运动图像及足跟相对小腿的内、外翻参数。结果:与穿着有鞋带跑鞋比较,受试者在穿着松紧鞋舌跑鞋跑步时的主观舒适度较差,第4和第5跖趾关节分区足底压强明显增加,后足外翻角度较大。结论:松紧鞋舌式设计并不适用于跑鞋。有鞋带跑鞋合脚性更好,可以帮助跑步者固定鞋内的脚。  相似文献   

6.
ObjectivesExcessive foot pronation and fatigue in running are possible risk factors for injuries. Motion control footwear was designed to limit excessive foot motion in runners, but its clinical efficacy has not been well reported. This study investigated the rearfoot kinematics in runners when running with different footwear before and after fatigue of the lower leg muscles.DesignWithin subjects repeated measures.SettingUniversity gait laboratory.Participants25 female recreational runners.Main outcome measuresA Vicon three-dimensional motion analysis system was used to capture the rearfoot motions of 25 recreational runners who had excessive foot pronation, when running with motion control shoes and neutral shoes before and after fatigue of the lower leg muscles.ResultsThe findings with neutral shoe testing revealed a significant increase in rearfoot angle of 6.5° (95% CI 4.7–8.2°) (p<0.01) when the muscles were fatigued. However, the findings with motion control shoes revealed that rearfoot angle was marginally insignificant (p=0.06) in subjects before and after muscle fatigue. Moreover, rearfoot motion when running with neutral shoes was higher than that with motion control shoes in both pre- (p<0.01) and post-fatigue states (p<0.01).ConclusionsMotion control shoes can control excessive rearfoot movements in runners with over-pronation regardless of the state of leg muscle fatigue.  相似文献   

7.

Objectives

To determine the differences in the morphology of foot soft tissues between runners using different types of running shoes.

Design

Cross-sectional study.

Methods

Thirty-eight recreational runners were divided into four groups based on running shoe type, namely, neutral shoes, motion control shoes, minimalistic shoes and neutral shoes with custom-made insoles. An arch height index and a relative arch deformation index were calculated for each participant. An ultrasound device was used to measure the cross-sectional area and/or the thickness of selected intrinsic foot muscles (abductor hallucis, flexor hallucis brevis and flexor digitorum brevis) and extrinsic foot muscles (flexor digitorum longus, tibialis anterior and the peroneus muscles), and the thickness of the plantar fascia, Achilles tendon and heel pad.

Results

Recreational runners using minimalistic shoes demonstrated stiffer foot arches than those using neutral shoes. Among the selected foot muscles, only abductor hallucis showed a significant morphological difference between shoe groups. Runners using minimalistic shoes had the thickest abductor hallucis. The minimalistic shoe runners also showed a thinner proximal plantar fascia and a thicker Achilles tendon than other runners. Insole runners had a thinner heel pad than neutral shoe runners.

Conclusions

This study suggests that the morphology of foot soft tissues is associated with running shoe type in recreational runners. A sudden change in running shoe type without adjusting training volume should be undertaken with caution, since it may take time for foot soft tissues to adapt to a new shoe condition.  相似文献   

8.
Objectives: Minimalist running is increasing in popularity based upon a concept that it can reduce impact forces and decrease injury rates. The purpose of this investigation is to identify the rate and severity of injuries in runners transitioning from traditional to minimalist footwear. The secondary aims were to identify factors correlated with injuries.

Methods: Fourteen habitually shod (traditional running shoes) participants were enrolled for this prospective study investigating injury prevalence during transition from traditional running shoes to 5-toed minimalist shoes. Participants were uninjured, aged between 22-41 years, and ran at least twenty kilometers per week in traditional running shoes. Participants were given industry recommended guidelines for transition to minimalist footwear and fit with a 5-toed minimalist running shoe. They completed weekly logs for identification of injury, pain using Visual Analogue Scale (VAS), injury location, and severity. Foot strike pattern and impact forces were collected using 3D motion analysis at baseline, 4 weeks, and 12 weeks. Injuries were scored according to a modified Running Injury Severity Score (RISS).

Results: Fourteen runners completed weekly training and injury logs over an average of 30 weeks. Twelve of 14 (86%) runners sustained injuries. Average injury onset was 6 weeks (range 1–27 weeks). Average weekly mileage of 23.9 miles/week prior to transition declined to 18.3 miles/week after the transition. The magnitude of the baseline impact transient peak in traditional shoes and in minimalist shoes negatively correlated with RISS scores (r = ?0.45, p = 0.055 and r = ?0.53, p = 0.026, respectively).

Conclusion: High injury rates occurred during the transition from traditional to minimalist footwear. Non-compliance to transition guidelines and high injury rates suggest the need for improved education. High impact transient forces unexpectedly predicted lower modified RISS scores in this population.  相似文献   

9.
Recreational running has many proven benefits which include increased cardiovascular, physical and mental health. It is no surprise that Running USA reported over 10 million individuals completed running road races in 2009 not to mention recreational joggers who do not wish to compete in organized events. Unfortunately there are numerous risks associated with running, the most common being musculoskeletal injuries attributed to incorrect shoe choice, training errors and excessive shoe wear or other biomechanical factors associated with ground reaction forces. Approximately 65% of chronic injuries in distance runners are related to routine high mileage, rapid increases in mileage, increased intensity, hills or irregular surface running, and surface firmness. Humans have been running barefooted or wearing minimally supportive footwear such as moccasins or sandals since the beginning of time while modernized running shoes were not invented until the 1970s. However, the current trend is that many runners are moving back to barefoot running or running in “minimal” shoes. The goal of this masterclass article is to examine the similarities and differences between shod and unshod (barefoot or minimally supportive running shoes) runners by examining spatiotemporal parameters, energetics, and biomechanics. These running parameters will be compared and contrasted with walking. The most obvious difference between the walking and running gait cycle is the elimination of the double limb support phase of walking gait in exchange for a float (no limb support) phase. The biggest difference between barefoot and shod runners is at the initial contact phase of gait where the barefoot and minimally supported runner initiates contact with their forefoot or midfoot instead of the rearfoot. As movement science experts, physical therapists are often called upon to assess the gait of a running athlete, their choice of footwear, and training regime. With a clearer understanding of running and its complexities, the physical therapist will be able to better identify faults and create informed treatment plans while rehabilitating patients who are experiencing musculoskeletal injuries due to running.  相似文献   

10.
BackgroundBetter midsole materials and comfort have been incorporated into more expensive shoes and are popular with runners. Consequently, knockoff running shoes are currently widely distributed in the Chinese market and and cost only 30%–50% of the total price of genuine branded products.Research questionUncertainty exists concerning the beneficial effects of advanced shoe material application in decreasing foot loading or impact force during running. Additionally, using comfort as a criterion to identify genuine branded running shoes may exclude brand factor.MethodsFifteen healthy male volunteers were asked to perform two different tests, including running and a comfort evaluation. Each participant was asked to identify which footwear was the Adidas brand shoe based on their perception of comfort.ResultsTime to the first peak of the vertical ground reaction force occurred significantly later when subjects wore the genuine branded shoe compared to knockoff shoe 1 (p = 0.003) and knockoff shoe 2 (p = 0.015) footwea. The genuine branded shoe (p = 0.005) and knockoff shoe 1 (p = 0.029) were significantly more comfortable compared to the knockoff shoe 2. Only four subjects selected the genuine branded shoe, whereas six subjects selected both the genuine branded shoe and knockoff shoe 1.SignificanceKnockoff running footwear significantly increases impact loading compared to the genuine branded product, thereby posing greater risk of running injury.  相似文献   

11.
Running has evolved throughout history from a necessary form of locomotion to an athletic and recreational pursuit. During this transition, our barefoot ancestors developed footwear. By the late 1970s, running popularity surged, and footwear manufacturers developed the running shoe. Despite new shoe technology and expert advice, runners still face high injury rates, which have yet to decline. Recently, "minimalist" running, marked by a soft forefoot strike and shorter, quicker strides, has become increasingly popular within the running community. Biomechanical studies have suggested that these features of barefoot-style running may lead to a reduction in injury rates. After conducting more outcomes-based research, minimalist footwear and gait retraining may serve as new methods to reduce injuries within the running population.  相似文献   

12.
Objectives: Although the overuse injury rate of the Achilles tendon (AT) for running is high, the effect of shoe conditions on AT loading remains unclear. Hence, this study aims to determine the mechanical properties of AT during running under different shoe conditions (minimalist vs. conventional shoes).Design:This work is a controlled laboratory study.Methods:Sixteen healthy male rearfoot strike runners were recruited to complete over ground running trials at 3.33 m/s (±5%) under two shoe conditions (minimalist shoes: INOV-8 Bare-XF 210; conventional shoes: NIKE AIR ZOOM PEGASUS 34). Sagittal plane ankle kinematics and ground reaction forces were simultaneously recorded. Ankle joint mechanics (ankle joint angle and moment) and the mechanical properties (peak force, impulse, stress, strain, and their corresponding peak rate) of the AT were calculated.Results: In comparison with conventional shoes, wearing minimalist shoes showed significant changes (p < 0.05): (1) decreased strike angle (48.92 ± 9.01 vs. 41.04 ± 8.69°); (2) increased ankle moment (2.34 ± 0.44 vs. 2.55 ± 0.46 Nm/kg); (3) increased peak AT force (5.85 ± 1.22 vs. 6.24 ± 1.13 BW), AT force impulse (0.65 ± 0.13 vs. 0.70 ± 0.13 BW·s), peak AT loading rate (109.94 ± 9.33 vs. 118.84 ± 26.62 BW/s), and average loading rate (48.42 ± 15.64 vs. 54.90 ± 17.47 BW/s); (4) decreased time to peak AT force (126.31 ± 20.68 vs. 117.77 ± 17.62 ms); (5) increased AT stress (66.96 ± 14.59 vs. 71.89 ± 14.74 MPa), strain (8.19 ± 1.77 vs. 8.78 ± 1.80 %), peak AT stress rate (66.96 ± 14.59 vs. 71.89 ± 14.74 MPa/s), and strain rate (148.71 ± 48.52 vs. 167.28 ± 42.82 %/s).Conclusion: Increased AT force, loading rate, and stress were observed in runners who habitually wear conventional shoes with rearfoot strike patterns when they wore minimalist shoes. Hence, we recommend a gradual transition to minimalist shoes for runners who habitually wear conventional shoes with rearfoot strike patterns.  相似文献   

13.
The presence of long-range correlations (self-similarity) in the stride-to-stride fluctuations in running stride interval has been used as an indicator of a healthy adaptable system. Changes to footfall patterns when running with minimalist shoes could cause a less adaptable running gait. The purpose of this study was to investigate stride interval variability and the degree of self-similarity of stride interval in runners wearing minimalist and conventional footwear. Twenty-six trained habitual rearfoot footfall runners, unaccustomed to running in minimalist footwear, performed 6-min sub-maximal treadmill running bouts at 11, 13 and 15 km·h−1 in minimalist and conventional shoes. Force sensitive resistors were placed in the shoes to quantify stride interval (time between successive foot contacts). Footfall position, stride interval mean and coefficient of variation (CV), were used to assess performance as a function of shoe type. Long-range correlations of stride interval were assessed using detrended fluctuation analysis (α). Mean stride interval was 1-1.3% shorter (P = 0.02) and 27% of runners adopted a midfoot footfall (MFF) in the minimalist shoe. There was a significant shoe effect on α and shoe*speed*footfall interaction effect on CV (P < 0.05). Runners that adopted a MFF in minimalist shoes, displayed reduced long-range correlations (P < 0.05) and CV (P < 0.06) in their running stride interval at the 15 km·h−1 speed. The reduced variability and self-similarity observed for runners that changed to a MFF in the minimalist shoe may be suggestive of a system that is less flexible and more prone to injury.  相似文献   

14.
Running footwear is known to influence step rate, foot inclination at foot strike, average vertical loading rate (VLR) and peak patellofemoral joint (PFJ) force. However, the association between the level of minimalism of running shoes and running mechanics, especially with regards to these relevant variables for runners with patellofemoral pain (PFP), has yet to be investigated. The objective of this study was to explore the relationship between the level of minimalism of running shoes and habitual running kinematics and kinetics in runners with PFP. Running shoes of 69 runners with PFP (46 females, 23 males, 30.7 ± 6.4 years) were evaluated using the Minimalist Index (MI). Kinematic and kinetic data were collected during running on an instrumented treadmill. Principal component and correlation analyses were performed between the MI and its subscales and step rate, foot inclination at foot strike, average VLR, peak PFJ force and peak Achilles tendon force. Higher MI scores were moderately correlated with lower foot inclination (r = −0.410, P < 0.001) and lower peak PFJ force (r = −0.412, P < 0.001). Moderate correlations also showed that lower shoe mass is indicative of greater step rate (ρ = 0.531, P < 0.001) and lower peak PFJ force (ρ = −0.481, P < 0.001). Greater shoe flexibility was moderately associated with lower foot inclination (ρ = −0.447, P < 0.001). Results suggest that greater levels of minimalism are associated with lower inclination angle and lower peak PFJ force in runners with PFP. Thus, this population may potentially benefit from changes in running mechanics associated with the use of shoes with a higher level of minimalism.  相似文献   

15.

Objectives

To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain.

Design

Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence.

Methods

Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2–4).

Results

Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (p < 0.001) compared to the control condition. Running in a minimalist shoe at preferred cadence reduced patellofemoral joint stress by 15% and joint reaction force by 17% (p < 0.001), compared to the control condition. Running in control shoes at an increased cadence reduced patellofemoral joint stress and joint reaction force by 16% and 19% (p < 0.001), respectively, compared to the control condition.

Conclusions

In individuals with patellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain.  相似文献   

16.
IntroductionAtypical rearfoot eversion is an important kinematic risk factor in running-related injuries. Prominent interventions for atypical rearfoot eversion include foot orthoses, footwear, and taping, yet a running gait retraining is lacking. Therefore, the aim was to investigate the effects of changing mediolateral center of pressure (COP) on rearfoot eversion, subtalar pronation, medial longitudinal arch angle (MLAA), hip kinematics and vertical ground reaction force (vGRF).MethodsFifteen healthy female runners underwent gait retraining under three conditions. Participants were instructed to run normally, on the lateral (COP lateral) and medial (COP medial) side of the foot. Foot progression angle (FPA) was controlled using real-time visual feedback. 3D measurements of rearfoot eversion, subtalar pronation, MLAA, FPA, hip kinematics, vGRF and COP were analyzed. A repeated-measures ANOVA followed by pairwise comparisons was used to analyze changes in outcome between three conditions. Data were also analyzed using statistic parameter mapping.ResultsRunning on the lateral side of the foot compared to normal running and running on the medial side of the foot reduced peak rearfoot eversion (mean difference (MD) with normal 3.3°, p < 0.001, MD with COP medial 6°, p < 0.001), peak pronation (MD with normal 5°, p < 0.001, MD with COP medial 9.6°, p=<0.001), peak MLAA (MD with normal 2.3°, p < 0.001, MD with COP medial 4.1°, p < 0.001), peak hip internal rotation (MD with normal 1.8°, p < 0.001), and peak hip adduction (MD with normal running 1°, p = 0.011). Running on the medial side of the foot significantly increased peak rearfoot eversion, pronation and MLAA compared to normal running.SignificanceThis study demonstrated that COP translation along the mediolateral foot axis significantly influences rearfoot eversion, MLAA, and subtalar pronation during running. Running with either more lateral or medial COP reduced or increased peak rearfoot eversion, peak subtalar pronation, and peak MLAA, respectively, compared to normal running. These results might use as a basis to help clinicians and researchers prescribe running gait retraining by changing mediolateral COP for runners with atypical rearfoot eversion or MLAA.  相似文献   

17.
The effects of shoe design parameters on rearfoot control in running   总被引:3,自引:0,他引:3  
Control of the amount and/or rate of pronation of the foot which occurs during distance running has been cited as an important consideration for runners when selecting a running shoe. In this study, high-speed movie film was taken from the rear while 10 subjects ran on a treadmill at a pace of 3.8 m X s-1. These subjects wore 36 different shoes in combinations of three midsole hardnesses, three heel flares, and four heel heights. The film data were digitized and used to determine the eversion or inversion of the heel relative to the lower leg throughout foot contact. Because eversion of the foot is a component of pronation it was used as a predictor of how much pronation was occurring. It was found that shoes with soft midsoles (25 durometer, Shore A scale) allowed significantly more maximum pronation (MP) and total rearfoot movement (TRM) than shoes with either medium (35 durometer) or hard (45 durometer) midsoles. Shoes with 0 degrees heel flare allowed significantly more MP and TRM than shoes with either 15 degrees or 30 degrees heel flares. Heel height was found to have no significant effect on either MP or TRM. These data provide guidelines for the construction of running shoes designed to limit rearfoot movement.  相似文献   

18.
BackgroundNike ZoomX Vaporfly (NVF) improves running economy and performance. The biomechanical mechanisms of these shoes are not fully understood, although thicker midsoles and carbon fiber plates are considered to play an important role in the spring-like leg characteristics during running. Leg stiffness (kleg) in the spring-mass model has been commonly used to investigate spring-like running mechanics during running.Research questionDoes kleg during running differ between NVF and traditional (TRAD) shoes?MethodsEighteen male habitual forefoot and/or midfoot strike runners ran on a treadmill at 20 km/h with NVF and TRAD shoes, respectively. kleg, vertical oscillation of the center of mass (∆CoM), spatiotemporal parameters, and mechanical loading were determined.Resultskleg was 4.8% lower in the NVF shoe condition than in the TRAD condition, although no significant difference was observed. ∆CoM was not significantly different between shoe conditions. Spatiotemporal parameters and mechanical loading were also not significantly different between shoe conditions.SignificanceThe NVF shoe is well known as improving the running economy and running performance for the cause by characteristics of better spring function. Contrary to expectation, kleg and other parameters were not significantly different during running in the NVF compared to TRAD shoe at 20 km/h. These findings indicate that well-trained runners’ spring-like running mechanics would not alter even if wearing the NVF shoes.  相似文献   

19.
The effects of shoes on the torsion and rearfoot motion in running.   总被引:1,自引:0,他引:1  
Excessive pronation is accepted as a good indicator for various running injuries. The least amount of pronation takes place when running barefoot. The latest investigations show that this is connected to a large torsional movement between forefoot and rearfoot which can be influenced by the shoe sole construction. The shoes which are in use among runners in track and field are basically of two types, running shoes (in general torsionally stiff) and spikes (torsionally flexible). The possibly varying effect of these shoes on the shoe/foot motion in running is not known. The purpose of this investigation was therefore to show whether the pronation angle and the torsion angle differ when running barefoot, with spikes, and with running shoes (forefoot touchdown, N = 9 left and right). A film analysis provided the angular movements of the lower leg, rearfoot, and forefoot as well as pronation and torsion in the frontal plane. The results show that at touchdown the torsional movements with both shoe types are quite different from those of running barefoot. With shoes, the torsion angle is reduced back to zero--with running shoes more than with spikes--and the pronation angle is increased beyond the barefoot values (P less than 0.01). In order to reduce the risk of injury, both shoe types should be improved--the running shoes with respect to torsion and the spikes with respect to pronation.  相似文献   

20.
The increased prevalence for flatfoot and hallux valgus in modern societies may be the consequence of inadequate footwear in childhood. Based on the assumption that barefoot walking represents the best condition for the development of a healthy foot the objective of this study was to monitor the influence of commercial footwear on children's foot motion during walking. Furthermore, an attempt was made to reduce this influence by changing the physical properties of standard footwear. Children's barefoot motion pattern was monitored by a marker-based optical 3D-tracking method using a multi-segment foot model. In the study's first stage, barefoot walking was compared to walking with a commercial product. In the second stage it was compared to both, the pattern with the commercial product and with the shoe modified on the basis of the findings of the first stage of the study. Eighteen children (8.2+/-0.7 years old) with no foot deformity and with the same shoe size were recruited for this study. It was found that tibio-talar ROM increased in the commercial shoe (26.6 degrees ) compared to the barefoot condition (22.5 degrees , p=0.001) whereas the medial arch changes for push-off were diminished since the variation in arch length was reduced from 9.9% (barefoot) to 5.9% (shoe, p<0.001). Further, ROM in foot torsion along the long foot axis was reduced from 9.8 degrees (bare) to 4.7 degrees (shoe, p<0.001). These parameters could be improved with more flexible footwear. The present study shows that slimmer and more flexible children's shoes do not change foot motion as much as conventional shoes and therefore should be recommended not only for children in this age but for healthy children in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号