首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The nature of the synaptic transmitter involved in the excitatory fibers linking the nucleus tegmenti pedunculopontinus (PPN) to the pars compacta of the substantia nigra (SNPC) was investigated using microiontophoretic techniques in rats anesthetized with ketamine. Among the SNPC cells activated orthodromically by PPN electrical stimulation, only a few cells were weakly excited by iontophoretically administered acetylcholine (Ach) while most were not affected. Conversely all cells were promptly and powerfully excited by short pulses of glutamate (GLU). The administration of the GLU antagonists glutamic acid diethylester (GDEE) and D--aminoadipic acid (DAA) reversibly and simultaneously suppressed both the PPN-evoked orthodromic response and the GLU-induced excitation of SNPC cells without affecting their response to iontophoretic Ach. GDEE was more effective than DAA in counteracting the synaptically evoked excitation. On the other hand, atropine, while antagonizing the Ach response in those cells which were cholinoceptive, did not affect either the PPN-evoked or the GLU-induced excitation. Hence, despite the presence of cholinergic cells in the PPN region, Ach does not appear to be involved in the excitatory PPNSNPC pathway. The present findings suggest that the excitatory PPN fibers innervating the SNPC may utilize GLU or a closely related amino acid as a neurotransmitter.Supported by grants from the Ministero della Pubblica Istruzione  相似文献   

2.
Summary Responses of 43 pedunculopontine area (PPN area) neurons to electrical stimulation of the substantia nigra (SN) were studied in anesthetized rats. An intracellular recording technique was used to demonstrate that SN stimulation evoked hyperpolarizing potentials, which were identified by intracellular injections as inhibitory postsynaptic potentials (IPSPs). These IPSPs were often followed by a rebound depolarization that originates several spike potentials. These IPSPs were characterized as monosynaptic, with latencies varying from 1.0 to 8.5 ms. Similar results were observed in some animals with chronic unilateral coronal lesion just rostral to subthalamic nucleus (STH), which severed the rostral afferents. PPN area neurons were also antidromically activated by SN stimulation. Two PPN area projection neurons were clearly identified. Mean latency of one group was 0.71 ms; mean latency of the second group was 5.16 ms. The morphological analysis of a neuron inhibited by SN stimulation and labeled with horseradish peroxidase (HRP) demonstrated that the soma was fusiform in shape, with the axon originating in the soma and collaterals and a large dendritic field extending in the ventrodorsalis direction. The results indicate that the PPN area is reciprocally connected with the SN, which elicits an inhibitory effect on PPN area neurons.  相似文献   

3.
Age-dependent changes in dopaminergic (DA) innervation of the neostriatum (Str) were studied in male F344/N rats. Projections from the substantia nigra pars compacta (SNc) to the neostriatum were quantified using electrophysiological methods at age points from 6 to 24 months. The percentage of DA neurons activated antidromically by electrical stimulation (P-index) of Str increased between 18 and 24 months. Additionally, the percentage of DA neurons showing multiple antidromic latencies from striatal stimulation (M-index), which suggests axonal branching of individual DA neurons, increased significantly between 6 and 12 months and 6 and 24 months. These results suggest that DA neurons exhibit increased axonal branching in the aged brain.  相似文献   

4.
Summary Preischemic hyperglicemia worsens brain damage after ischemia, and characteristically leads to post-ischemic seizures and a pan-necrotic lesion in substantia nigra pars reticulata (SNPR). The excitatory input to SNPR could contribute to the damage observed. By performing a unilateral frontal cortex lesion 6–19 days prior to the ischemia, we wanted to explore whether a decrease in excitatory input to the ipsilateral SNPR ameliorate the seizures or alter the light microscopical damage in SNPR. Our results demonstrate that unilateral frontal cortex lesion did not alter the development of fatal post-ischemic seizures after 10 min of ischemia in hyperglycemic subjects. Thus, 7/8 animals developed seizures and died within 20 h of recovery. This study also failed to show any difference between the left and right side in post-ischemic SNPR damage after 15 h of recovery in animals with preischemic unilateral frontal cortex lesion. Furthermore, no side difference was observed in any other brain region evaluated. The results thus suggest that the pan-necrotic lesion in SNPR after hyperglicemic ischemia is not caused by excessive excitatory input from frontal cortex. A decrease in the GABA-ergic inhibitory input from caudoputamen to SNPR may be a more important mechanism for the ensuing excitotoxic post-ischemic SNPR damage, and for seizure development.  相似文献   

5.
A population of cells in the anterior substantia nigra pars compacta (SNPc) of the guinea-pig have been reported previously that differ from classical dopaminergic neurons in terms of their active and passive membrane properties. To investigate this population further, anterior nigral neurons (n=17) were compared with neurons in the adjacent subthalamic nucleus (STN; n=26). The anterior nigral neurons were found to be indistinguishable from STN neurons in their action potential characteristics, firing rate, resting membrane potential and input resistance. A low-threshold calcium conductance and anomalous rectification could be demonstated in cells from both groups. Furthermore, the gross morphological characteristics of anterior nigral neurons and STN neurons were very similar, as assessed following the intracellular injection of biocytin. A further similarity was seen in the response of the two cell groups to cyanide (200 M) and apomorphine (500 M). Cyanide hyperpolarised the membrane potential of all STN neurons and the majority (77.8%) of anterior nigral neurons, in both cases producing a concomitant reduction in firing rate. These changes were accompanied by an increase in membrane conductance for potassium ions. Apomorphine depolarised the membrane potential of all STN neurons and anterior nigral neurons, in most cases increasing the input resistance (83.3% of STN neurons and 100% of anterior nigral neurons). In both groups of cells, when firing rate was affected, an increase was usually seen. Given the physiological, morphological and pharmacological similarities of STN and anterior nigral neurons, the most parsimonious interpretation is that the anterior nigral neurons belong to the STN. However, the anterior nigral neurons were found in slices that, when resectioned, contained tyrosine hydroxylase (TH)-immunoreactive cell bodies in every section, in a location corresponding to the SNPc. The implication is that in the guinea pig the SNPc and STN (usually considered to be anatomically distinct nuclei) intermix at this level for several hundred microns. This close association of the STN and the compacta was further demonstrated by the presence of TH-positive varicose and non-varicose neuronal processes within the STN.  相似文献   

6.
 The present study aimed to investigate whe- ther the pedunculopontine projection to the thalamus overlaps with identified thalamostriatal neurons. These projections were studied using a dual tract-tracing procedure combining anterogradely transported biotinylated dextran amine (pedunculopontine projections) and retrogradely transported Fluoro-Gold (thalamostriatal projections). Overlapping thalamic territories between thalamostriatal neurons and the axon terminals arising from the pedunculopontine tegmental nucleus were observed in the midline (paraventricular) and in the intralaminar (centrolateral, central medial, paracentral and parafasci- cular) thalamic nuclei. Other thalamic nuclei, such as the ethmoid, intermediodorsal, mediodorsal, paratenial, posteromedian, ventromedian, ventrolateral and rhomboid thalamic nuclei, displayed a lesser degree of overlap. These observations suggest the existence of presumptive contacts between thalamostriatal neurons and axons emerging from the pedunculopontine tegmental nucleus, therefore supporting the possible existence of feedback circuits in the rat basal ganglia in which the tegmentothalamic projection would play a major role. Received: 7 December 1998 / Accepted: 8 March 1999  相似文献   

7.
8.
R.C. Meibach  R. Katzman 《Neuroscience》1981,6(11):2159-2171
The organization of dopaminergic neurons projecting to the amygdala was examined using retrograde (horseradish peroxidase histochemistry) and anterograde ([3H]leucine autoradiography) transport methods and Falck-Hillarp histofluorescence techniques combined with microspectrofluorometry and radiofrequency lesions. Cell bodies located within the pars lateralis and pars compacta of the substantia nigra were found to project to the lateral and central amygdaloid nuclei, respectively. Both of these areas within the substantia nigra contained dopaminergic perikarya, while the central and lateral amygdaloid nuclei contained fluorescent varicosities with features indicative of dopaminergic neurons. Lesions restricted to the pars lateralis of the substantia nigra resulted in a loss of fluorescence in the lateral amygdaloid nucleus. Autoradiographic experiments revealed that the projections from the pars lateralis did not run with fibers originating from the pars compacta in the nigrostriatal tract but rather had their own course occupying a lateral position adjacent to the cerebral peduncle and joining the ventral amygdalo-fugal bundle.The data indicate that, in the cat, there are two separate dopaminergic projections to the amygdala arising from the substantia nigra.  相似文献   

9.
The amplitude of the acoustic startle response (ASR) is markedly reduced when the startle eliciting pulse is preceded by a weak, non-startling stimulus at an appropriate lead time, usually about 100 ms. This phenomenon is termed prepulse inhibition (PPI) and has received considerable attention in recent years as a model of sensorimotor gating. We report here on experiments which were undertaken in order to investigate some of the neural mechanisms of PPI. We focused on the characterization of the cholinergic innervation of the pontine reticular nucleus, caudal part (PnC), an obligatory relay station in the primary startle pathway. The combination of retrograde tracing with choline acetyltransferase-immunocytochemistry revealed a cholinergic projection from the pedunculopontine tegmental nucleus (PPTg) and laterodorsal tegmental nucleus (LDTg) to the PnC. Extracellular recording from single PnC units, combined with microiontophoretic application of the acetylcholine (ACh) agonists acetyl--methylcholine (AMCH) and carbachol revealed that ACh inhibits the majority of acoustically responsive PnC neurons. Neurotoxic lesions of the cholinergic neurons of the PPTg significantly reduced PPI without affecting the ASR amplitude in the absence of prepulses. No effect on long-term habituation of the ASR was observed. The present data indicate that the pathway mediating PPI impinges upon the primary acoustic startle circuit through an inhibitory cholinergic projection from the PPTg to the PnC.  相似文献   

10.
We studied the relationship between aging and the vulnerability of substantia nigra pars compacta (SNc) calbindin-D-28k immunoreactive positive (CB+) dopaminergic (DA) neurons. Immunohistochemistry and cell counting were used to determine the number of CB+ DA neuron in aged rats (24 mon) compared to adult rats (5 mon). Furthermore, the expression of CB mRNA and protein levels in SN was studied by semi-quantitative RT-PCR and Western blotting. An 11% loss of CB+ DA neurons was detected in both the rostral (8.9%) and caudal (1.7%) segments but not in the intermedial segment of SNc in aged rats compared to adult rats (P < 0.05). No difference was detected in CB mRNA and protein levels between aged and adult rats (P > 0.05). These data suggest that expression levels of CB mRNA and protein may increase in the existing SNc DA neurons, which may compensate for the partial age dependent loss of CB+ DA neurons in the SNc.  相似文献   

11.
Two main subclasses of ionotropic receptors for excitatory amino acids (EAAs), N-methyl-d-aspartate (NMDA) receptors and non-NMDA receptors, are involved in neurotransmission in the cortex of mammals. To examine whether EAAs are transmitters at the cortical taste area (CTA) in rats and to elucidate which types of the two ionotropic receptors operate at these synapses, we studied the effects of microiontophoretic administration of EAA antagonists on the responses of 64 taste cortical neurons to four basic taste stimuli in urethane-anesthetized rats. Both d-2-amino-5-phosphonovalerate (APV), a selective antagonist for NMDA receptors, and 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), a selective antagonist for non-NMDA receptors, suppressed most of the taste responses. The percentage of neurons suppressed by APV (70.3%) was almost the same as that suppressed by CNQX (64.1%). These suppressive effects were independent of the effects of background discharges during the prestimulus, water-rinsing period. The percentage of neurons suppressed by the antagonists did not differ between any pairs of taste stimuli. The number of neurons possessing both receptors was larger in the granular insular area (area GI), one of the two CTAs, than in the dysgranular insular area (area DI). In addition, taste responses were suppressed by CNQX or by both APV and CNQX in area GI in a significantly larger number of layer V neurons than in area DI. The present results indicate that normal excitatory transmission of taste afferents in the CTA in rats was mediated by both NMDA and non-NMDA receptors. The finding that a large fraction of neurons in the CTA in rats mediated taste information through NMDA receptors in normal transmission might be related to the higher potency of the plasticity observed in the CTA.  相似文献   

12.
Summary A marked histochemical compartmentalization is visible in the substantia nigra of the squirrel monkey in sections stained for acetylcholinesterase (AChE). In nigral regions containing tyrosine hydroxylase-positive neurons, there are AChE-poor and AChE-rich zones, and many of the AChE-poor zones have the form of narrow fingers extending ventrally into an AChE-rich matrix (Jimenez-Castellanos and Graybiel 1987b). The study reported here was carried out to determine whether this histochemical heterogeneity of the primate's substantia nigra is related to the known differentiation within its pars compacta of subdivisions projecting respectively to the caudate nucleus and to the putamen. Retrograde and anterograde labeling in the substantia nigra was elicited by tracer injections placed in the caudate nucleus or putamen and was plotted in relation to patterns of AChE staining and tyrosine hydroxylase immunostaining. Much of the labeling observed was organized according to borders visible with AChE histochemistry: labeled nigral neurons (and afferent fibers) tended to be clustered precisely within the AChE-poor ventrally-extending fingers or to be situated outside these zones. However, projection neurons in these ventrally-extending fingers were not exclusively related either to the caudate nucleus or to the putamen. After injections in the caudate nucleus, labeled neurons were predominantly in the AChE-poor fingers in some cases, but predominantly in AChE-rich nigral zones outside them in other cases. Labeling in and out of the ventrally-extending fingers, and along the edges of the fingers, also occurred following different tracer injections in the putamen. These findings confirm the independent clustering of nigrostriatal neurons projecting respectively to the caudate nucleus and to the putamen. The plan of nigrostriatal connections additionally appears concordant with the histochemical compartmentalization of the substantia nigra that can be detected with acetylthiocholinesterase histochemistry.  相似文献   

13.
 Glutamate-mediated excitotoxicity plays an important role in the degeneration of nigrostriatal dopamine (DA) neurons induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), although the role of the N-methyl D-aspartate (NMDA) receptor subtype in this process is still uncertain. We studied glutamate receptor subtype agonist-induced ionic currents in acutely dissociated DAergic neurons from the rat substantia nigra zona compacta (SNc) using the nystatin-perforated patch-clamp whole-cell recording technique. The results fall into four main categories. First, single neurons, freshly isolated from SNc, exhibited a large soma and multipolar morphology, responded to DA, and stained positively for tyrosine hydroxylase (TH). Second, rapid application of L-glutamate (> 10–5 M) induced an inward current with minimal desensitization at a clamp voltage of –60 mV. Third, kainic acid (KA) or α-amino-3-hydroxy-5-methyl-isoxazole (AMPA) induced an inward current that was similar to the glutamate-induced current while, in the same neuron, NMDA (10–4 M) failed to induce any current response in Mg2+-free solution that contained 10–5 M glycine at a clamp voltage of –60 mV. Under the same experimental conditions, NMDA induced a clear current response in isolated substantia nigra reticulata (SNr) neurons. Fourth, the specific NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (APV, 10–4 M) failed to block 10–4 M glutamate-induced inward current, while the specific KA/AMPA receptor antagonist 6-cyano-7-ni-troguinoxaline-2,3-dione (CNQX, 10–5 M) completely blocked the glutamate-induced current. These results indicate that in single SNc DAergic neurons of 2-week-old rats, L-glutamate-induced inward current is mediated by non-NMDA receptors rather than by NMDA receptors. Received: 9 September 1997 / Received after revision: 19 November 1997 / Accepted: 20 November 1997  相似文献   

14.
Summary We have developed a model system in which the mechanisms of neuronal damage due to hyperexcitation can be studied in isolation and where extended observation periods can be used. Substantia nigra pars reticulata (SNPR) develops a hypermetabolic necrosis following status epilepticus (Nevander et al. 1985; Auer et al. 1986). We transplanted rat fetal nigral area alone or together with fetal frontal neocortex to the anterior chamber of the eye in adult rats. Following 3 months of transplant maturation the hosts were subjected to status epilepticus for 60 min. In single nigral transplants no sign of structural damage was found. In the double transplants of frontal cortex and the substantia nigra a tissue necrosis had developed in the nigral part. This was demonstrated by a total loss of glial fibrillary acidic protein (GFA) immunoreactivity within a circumscribed necrotic region in the nigral part of the double transplant. Such a loss of GFA immunofluorescence had also developed in the host SNPR, as we have earlier shown (Eriksdotter Nilsson et al. 1987). Thus, intraocular brain tissue transplants provide a unique model for studies on the development of neuronal damage and functional dependence between different neuronal structures for the development of such damage.Abbreviations SNPR Substantia nigra pars reticulata - SN Substantia nigra  相似文献   

15.
Summary To examine the organization of axon collaterals of neurons that selectively take up and transport excitatory amino acids, we have used retrograde tracing with D-[3H]Aspartate after injections into different layers of rat primary visual cortex. The results show cells in the lateral geniculate nucleus retrogradely labeled from the cortex. Additional topographically precise input to the thalamic recipient layer 4 originates from neurons in the visual cortex lying in layers 2/3, 5 and 6. These inputs are reciprocated by point-to-point projections from layer 4. Layer 2/3 cells project to layers 5 and 6 in columnar fashion. Putative excitatory input to layer 2/3 originates from a vertical column of cells in layer 5 and the middle of layer 6. In addition layer 2/3 receives input via horizontal collaterals of topographically distant upper layer neurons, from more widespread projections in lower layer 6, and from very widespread projections of cells at the layer 5/6 border. Cells in the depth of layer 5 also distribute collaterals within layers 5 and 6. Our findings provide anatomical evidence that the geniculo-cortical pathway in the mammalian visual system may use excitatory amino acid transmitters. In addition, the results support the notion that most long range connections that link distant points of the topographic map are excitatory.  相似文献   

16.
Previous [3H]thymidine studies in Nisslstained sections in rats established that the substantia nigra pars compacta and the ventral tegmental area originate sequentially according to an anterolateral to posteromedial neurogenetic gradient. We investigated whether that same pattern is found in mice in the dopaminergic neurons in each of these structures. Using tyrosine hydroxylase immunostaining combined with [3H]thymidine autoradiography, the time of origin of dopaminergic midbrain neurons in the retrorubral field, the substantia nigra pars compacta, the ventral tegmental area, and the interfascicular nucleus was determined in postnatal day 20 mice. The dams of the experimental animals were injected with [3H]thymidine on embryonic days (E) 11–E12, E12–E13, E13–E14, and E14–E15. The time of origin profiles for each group indicated significant differences between populations. The retrorubral field and the substantia nigra pars compacta arose nearly simultaneously and contained the highest proportion of neurons, 49 to 37%, generated on or before E11. Progressively fewer early-generated neurons were found in the ventral tegmental area (20%), and the interfascicular nucleus (8.5%). In addition, anterior dorsolateral neurons in the substantia nigra and ventral tegmental area were more likely to be generated early than the posterior ventromedial neurons. These findings indicate that mouse and rat brains have nearly identical developmental patterns in the midbrain, and neurogenetic gradients in dopaminergic neurons are similar to those found in Nissl studies in rats.  相似文献   

17.
Summary Flurothyl-induced status epilepticus in the rat causes a hypermetabolic necrosis in the substantia nigra pars reticulata (SNPR). We studied if cortically generated excitatory input into the SNPR was causative of the structural damage. Rats were subjected to a unilateral frontal cortex lesion prior to induction of 40 min status epilepticus. A distinct mitigation in the size of the necrotic region in the ipsilateral SNPR was noted when compared to the contralateral side of the same animals (N = 10). No side difference was noted in animals where a lesion of similar size was placed in the parietal cortex region (N = 2) or in unlesioned animals subjected to seizures (N = 4). Neither analyses of energy metabolites in the cerebral cortex nor EEG revealed any side differences during seizures in the animals with lesions in the frontal cortex. This suggests that difference in seizure intensity was not the explanation for the mitigation of SNPR damage. It is suggested that the excitatory input from the frontal cortex was necessary for development of neuronal necrosis in the SNPR due to seizures.Abbreviations SNPR Substantia nigra pars reticulata - SNN Selective neuronal necrosis  相似文献   

18.
Summary Organotypic slice cultures of striatum and neocortex were prepared from newborn to seven day old rats and cultured for three to 60 days. When processed for tyrosine hydroxylase (TH) immunocytochemistry medium-sized, aspiny TH immunoreactive (TH-i) neurons with a similar morphology were revealed in the striatum and the neocortex. The neurons had a very similar morphology in both tissues and were present both when the two tissues were grown separately as single cultures and when grown together either en bloc as part of the same tissue slices or as co-cultures. In order to examine whether innervation by dopaminergic fibers would affect the expression of TH-i neurons in the striatal slice cultures, co-cultures of ventral mesencephalon (VM) and striatum were prepared, but the ingrowth of TH-i fibers from the VM did not alter the expression of TH immunoreactivity by a subpopulation of striatal neurons.  相似文献   

19.
Summary Sensory synaptic responses of rat ventrobasal thalamus neurones were challenged with iontophoretic applications of the excitatory amino acid antagonists CNQX and CPP. CNQX, applied with currents which were selective for non-NMDA receptors, antagonised responses of VB neurones to both 10 ms and 2000 ms air jet stimulation of the peripheral receptive field. In contrast, CPP only antagonised the latter type of response. These results suggest a differential involvement of excitatory amino acid receptors in sensory synaptic transmission to the ventrobasal thalamus, with an initial synaptic component being mediated by non-NMDA receptors (including kainate receptors), and a further NMDA receptor-mediated component being manifested upon maintained sensory stimulation. The expression of this latter component appears to be largely dependent upon the integrity of the non-NMDA receptor-mediated component.  相似文献   

20.
We studied the ability of the vigilance-promoting drug modafinil to modulate the anterograde and retrograde changes in tyrosine hydroxylase (TH) immunoreactivity and in dopamine (DA) stores in the nigro-neostriatal DA neurons, following a partial hemitransection of this ascending DA system, using a combined morphometrical, biochemical and behavioural analysis. Modafinil was given daily i.p. in doses of 10–100 mg/kg, starting 15 min after the lesion, and the partially hemitransected rats were killed 2 weeks later. Changes in TH-immunoreactive nerve cell bodies and nerve terminals induced by the partial hemitransection were studied in the substantia nigra and neostriatum in combination with image analysis. The substantia nigra and neostriatum were also subjected to biochemical analysis of DA, 3,4-dihydroxyphenylacetic acid and homovanillic acid levels. Modafinil treatment dose-dependently (10–100 mg/kg) counteracted the hemitransection-induced disappearance of nigral TH-immunoreactive nerve cell body profiles and neostriatal TH-immunoreactive nerve terminal profiles. A 2-week treatment with 100 mg/kg of modafinil also counteracted the hemitransection-induced depletion of DA stores in the neostriatum and the ventral midbrain. Moreover, the repeated daily treatment with modafinil (100 mg/kg) protected against the hemitransection-induced disappearance of striatal 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and noradrenaline levels. Striatal DA function was analysed by studying apomorphine-induced (1 mg/kg, s.c.) ipsilateral rotational behaviour 4 and 11 days after the operation. A marked dose-dependent reduction of ipsilateral rotational behaviour was demonstrated after the daily modafinil treatment in the partially hemitransected rats. In another model involving unilateral nigral microinjections of 6-hydroxydopamine, acute (one single dose) modafinil (100 mg/kg) did not affect the contralateral rotational behaviour induced by apomorphine (0.05 mg/kg s.c.), when given 30 min before the apomorphine. Taken together, morphological, neurochemical and behavioural evidence has been obtained that anterograde and retrograde changes induced in the DA stores and TH immunoreactivity of the nigro-neostriatal DA neurons by a partial hemitransection are counteracted by modafinil in a dose dependent way with 100 mg/kg producing a significant protective action against impairment of DA transmission. The results of this study open up the possibility that modafinil may protect against the anterograde and retrograde degeneration of nigrostriatal DA neurons seen after mechanically induced injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号