首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The importance of angiotensin II (AII) and glutamate has long since been recognized in neuroendocrine regulation. However, the mechanisms by which AII and glutamate modulate the excitability of the paraventricular nucleus (PVN) have largely remained a mystery until recently. It is now apparent that AII and glutamate are potent stimulators of both magnocellular and parvocellular neurones in the rat PVN. While glutamate, the predominant excitatory neurotransmitter in the CNS, ubiquitously excites PVN neurones, AII appears to mediate excitability of the PVN by both direct and indirect mechanisms. Interestingly, both of these neurotransmitters, upon exciting the PVN, activate an inhibitory feedback system, which is capable of diminishing the initial stimulus. Physiologically, this moderates the output signals from the PVN, and probably also regulates neuropeptide release from the neurohypophysis. The importance of this negative-feedback loop is evident in the pathophysiological implications of a disruption in the system. Evidence suggests that a breakdown in this system may be responsible in part for the onset and maintenance of both congestive heart failure and hypertension. Future studies will continue to characterize both the actions of glutamate and AII in the PVN, and to further elucidate the mechanisms which control the excitability of the PVN.  相似文献   

3.
The effect of neuromedin U (NMU) on rat paraventricular nucleus (PVN) neurons was examined using whole cell patch-clamp recordings. Under current-clamp, 31% of PVN parvocellular neurons (n = 243) were depolarized by 100 nM NMU, but magnocellular neurons were not affected. NMU (10 nM to 1 microM) resulted in increased basal firing rate and depolarization in a dose-dependent manner with an EC50 of 70 nM. NMU-induced depolarization was unaffected by co-perfusion with 0.5 microM TTX + 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) + 10 microM bicuculline. Extracellular application of 70 microM ZD 7288 completely inhibited NMU-induced depolarization. Under voltage-clamp, 1 microM NMU produced negligible inward current but did increase the hyperpolarization-activated current (IH) at step potentials less than -80 mV. The effects of NMU on IH were voltage-dependent, and NMU shifted the IH conductance-voltage relationship (V1/2) by about 10.8 mV and enhanced IH kinetics without changing the slope constant (k). Extracellular application of 70 microM ZD 7288 or 3 mM Cs+ blocked IH and the effects of NMU in voltage-clamp. These results suggest that NMU selectively depolarizes the subpopulation of PVN parvocellular neurons via enhancement of the hyperpolarization-activated inward current.  相似文献   

4.
The effects of salt loading and adrenalectomy on arginine vasopressin (AVP) mRNA levels in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) of the hypothalamus were studied by semiquantitative in situ hybridization histochemistry, using a synthetic oligonucleotide probe and a computer-assisted image analysis system. Salt loading (2% NaCl) for 7 days produced marked increases in AVP mRNA levels in the magnocellular neurons of the PVN, SON, and accessory nuclei. Adrenalectomy caused an increase in AVP mRNA expression in the magnocellular part of the PVN and the expansion of hybridization signals into its medial parvocellular region, where the cell bodies of corticotropin-releasing hormone (CRH) neurons are located. No apparent alteration of AVP mRNA levels was observed in the SON following adrenalectomy. These results indicate that hyperosmotic stimulation and the loss of circulating glucocorticoids had differential effects on AVP gene expression in the PVN and SON, and that the magnocellular PVN and SON neurons responded in different manners to the loss of feedback signals.  相似文献   

5.
大鼠室旁核内一氧化氮合酶阳性神经元的构筑   总被引:1,自引:0,他引:1  
利用黄递酶组织化学染色 ,观察鼠脑室旁核各亚核内 NOS阳性神经元的构筑。结果显示室旁核内 NOS阳性神经元主要分为两种类型 :大型 NOS阳性神经元 ,占大部分 ,相对密集、成群分布于室旁核四个大细胞亚核即 :前连合核、内侧室旁核、外侧室旁核、室旁核后亚核 ;小型 NOS阳性神经元 ,占小部分 ,散在分布于大细胞亚核内或小细胞部 ,如室旁核前小细胞部、背外侧帽。结果提示 ,室旁核各亚核内 NOS阳性神经元的形态与分布存在着差别 ,意味着具有多种相应的生理功能  相似文献   

6.
Intracerebroventricular (ICV) or PVN local injections of oxytocin induce yawning and penile erection, for which a positive feedback mechanism for the PVN oxytocinergic activation is suggested, but this had not been directly substantiated in vivo. We have assessed the behavioral effects and activity of oxytocinergic neurons with double-staining for c-Fos and oxytocin in the PVN after ICV administration of oxytocin in adult male rats. ICV oxytocin injections (50 and 200 ng) dose-dependently induced yawning and penile erection and significantly increased the percentage of c-Fos positive oxytocin neurons in the medial, dorsal and lateral parvocellular subdivision of the PVN. However, increases in the magnocellular portion were not significant. We also found that lithium chloride (LiCl, 0.5 and l.0 mEq), a compound known to activate oxytocinergic neurons, also significantly increased the percentage of c-Fos positive oxytocin neurons in all PVN portions. However, LiCl did not induce yawning and penile erection, but counteracted the oxytocin-induced yawning and penile erection. These results suggest that if the activation of oxytocinergic neurons in the PVN is important for mediating oxytocin-induced yawning and penile erection, a selective activation of parvocellular oxytocinergic neurons in the PVN is likely to be involved.  相似文献   

7.
The distribution of dopaminergic and noradrenergic terminal fields of the paraventricular (PVN) and supraoptic (SON) nuclei of the rat was investigated at the optic and electron microscopical level using antibodies directed against dopamine (DA) and noradrenaline (NA). The DA innervation was uniform among these nuclei, although more important in the PVN than in the SON. NA fibers were preferentially distributed in the parvocellular parts of the PVN and in areas of the magnocellular nuclei where vasopressinergic neurons were mainly located. Both DA and NA terminals synaptically contacted magnocellular neurons on their cell body or dendrites. This study thus provides morphological evidence for a double and independent catecholaminergic control, by DA and NA, on neuroendocrine mechanisms at the hypothalamic level.  相似文献   

8.
The hypothalamic paraventricular nucleus (PVN) has been shown to play major obligatory roles in autonomic and neuroendocrine regulation. Angiotensin II (ANG) acts as a neurotransmitter regulating the excitability of magnocellular neurons in this nucleus. We report here that ANG also activates a nitric-oxide-mediated negative feedback loop in the PVN that acts to regulate the functional output of magnocellular neurons. Thus in addition to its depolarizing actions on magnocellular neurons, ANG application results in an increase in the frequency of inhibitory postsynaptic potentials in a population of these neurons without effect on the amplitude of these events. ANG was also without significant effect on the mean frequency or amplitude of mini synaptic currents analyzed in voltage-clamp experiments. This increase in inhibitory input after ANG can be abolished by the nitric oxide synthase inhibitor Nomega-nitro-l-arginine methylester, demonstrating a requisite role for nitric oxide in the activation of this pathway. The depolarization of magnocellular neurons that show increased inhibitory postsynaptic potential (IPSP) frequency in response to ANG is significantly smaller than that observed in neurons in which IPSPs frequency was unaffected (3.2 +/- 1.1 vs. 8.0 +/- 0.5 mV, P < 0.05). Correspondingly, after nitric oxide synthase inhibition, the depolarizing effects of ANG on magnocellular neurons are augmented (2.0 +/- 0.7 vs. 6.7 +/- 0.7 mV, P < 0.05). The depolarization was also enhanced in the presence of the GABAergic antagonist bicuculline (1.9 +/- 1.2 vs. 11.9 +/- 2.3, P < 0.001). These data demonstrate that there exists within the PVN an intrinsic negative feedback loop that modulates neuronal excitability in response to peptidergic excitation.  相似文献   

9.
10.
The anatomical connection of the magnocellular isthmic nucleus with the optic tectum was investigated with the axonal tracer biotinylated dextran amine. Following iontophoretic injection of this tracer into different areas of the chick optic tectum, neurones of both magno- and parvocellular isthmic nuclei were labelled together in a topographical arrangement. The number of labelled neurones in the parvocellular nucleus was generally higher than in magnocellular. Using different locations of the tracer injections, systematic shifts in the location of the labelled neurones were detected. The labelled axons were seen to course along the shortest possible distance between the injection site and the cells of origin, i.e., the ventral part of the tectum received projections from neurones located ventrally in the isthmic nuclei, the dorsal tectum from neurones in the dorsal part, and the lateral extension of the tectum from neurones lying midway along the nuclei. This parallel and topographic projection of the two nuclei was primarily observed in sagittal sections. After tracer injections into the magnocellular nucleus, the terminal arbours were seen to extend from the deep layers (11–12) to layer 2 of the tectum. The projections observed appeared to be topographically organised, and furthermore appeared to be parallel with and complimentary to previously described projections of the parvocellular isthmic nucleus.  相似文献   

11.
Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex.  相似文献   

12.
1. The effects of specific excitatory amino acid (EAA) antagonists on evoked excitatory synaptic responses were studied in the hypothalamic paraventricular nucleus (PVN) of the guinea pig, by the use of the in vitro slice preparation. Intracellular recordings were obtained from paraventricular neurons, and excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) were induced by perifornical electrical stimulation. To reduce the influence of a potential gamma-aminobutyric acidA (GABAA) inhibitory component on the synaptic responses, all experiments were performed in the presence of 50 microM picrotoxin. 2. Of 20 cells tested, 13 had electrophysiological characteristics similar to magnocellular neuropeptidergic cells (MNCs) and 7 displayed low-threshold Ca2+ spikes (LTSs). No difference was detected in the effect of the antagonists on the synaptic responses of cells with or without LTS potentials. 3. The broad-spectrum EAA antagonist kynurenic acid decreased the amplitude of the EPSPs and EPSCs in a dose-dependent manner: the mean decrease was 5% for 100 microM, 43% for 300 microM, and 70% for 1 mM. 4. The quisqualate/kainate-receptor-selective antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX) induced a dose-dependent decrease of the EPSPs and EPSCs: 1 microM had no detectable effect, 3 and 10 microM caused 30 and 70% decreases, respectively, and 30 microM blocked the response almost completely. This effect was not accompanied by a change in resting membrane potential or input resistance and was slowly reversible. 5. The N-methyl-D-aspartate (NMDA)-receptor-selective antagonist DL-2-amino-5-phosphonopentanoic acid (AP5), applied at 30 and 300 microM, reduced slightly the amplitude of the decay phase of the EPSP but did not significantly affect the peak amplitude. In some cells, the current-voltage relationship of the decay phase of the EPSC revealed a region of negative slope conductance between -70 and -40 mV. 6. These results suggest that 1) glutamate or a related EAA is responsible for the fast excitatory input to magnocellular and parvocellular neurons in the PVN and probably also for cells around PVN, 2) a quisqualate/kainate receptor type is responsible for the rising phase and peak amplitude of the synaptic current, and 3) an NMDA receptor contributes to the late part of the synaptic response.  相似文献   

13.
Exogenous cannabinoids have been shown to significantly alter neuroendocrine output, presaging the emergence of endogenous cannabinoids as important signalling molecules in the neuroendocrine control of homeostatic and reproductive functions, including the stress response, energy metabolism and gonadal regulation. We showed recently that magnocellular and parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus and supraoptic nucleus (SON) respond to glucocorticoids by releasing endocannabinoids as retrograde messengers to modulate the synaptic release of glutamate. Here we show directly for the first time that both of the main endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are released in an activity-dependent fashion from the soma/dendrites of SON magnocellular neurones and suppress synaptic glutamate release and postsynaptic spiking. Cannabinoid reuptake blockade increases activity-dependent endocannabinoid levels in the region of the SON, and results in the inhibition of synaptically driven spiking activity in magnocellular neurones. Together, these findings demonstrate an activity-dependent release of AEA and 2-AG that leads to the suppression of glutamate release and that is capable of shaping spiking activity in magnocellular neurones. This activity-dependent regulation of excitatory synaptic input by endocannabinoids may play a role in determining spiking patterns characteristic of magnocellular neurones under stimulated conditions.  相似文献   

14.
Abstract Aim: The gas molecule nitric oxide (NO) has been shown to modulate autonomic function by acting both peripherally and centrally. Accumulating evidence indicates that the paraventricular nucleus (PVN) of the hypothalamus is an important locus mediating central NO actions on autonomic function, under both physiological and pathological conditions. However, the cellular targets and mechanisms mediating NO actions within the PVN are still poorly understood. Results: By combining in vitro patch‐clamp recordings with neuronal tract tracing techniques, we show that neuronal excitability of autonomic‐related neurones in the PVN is tonically inhibited by an endogenous NO input. Furthermore, immunohistochemical studies show that ~25% of autonomic‐related PVN neurones express neuronal nitric oxide synthase, suggesting that at least a proportion of them contribute to the cellular sources of NO within the PVN. Conclusion: In summary, this work suggests that NO modulation of the firing activity of autonomic‐related PVN neurones constitutes an efficient mechanism mediated central NO regulation of autonomic function.  相似文献   

15.
Preoptic–anterior hypothalamic (PO/AH) neurones sense and regulate body temperature. Although controversial, it has been postulated that warm-induced depolarization determines neuronal thermosensitivity. Supporting this hypothesis, recent studies suggest that temperature-sensitive cationic channels (e.g. vanilloid receptor TRP channels) constitute the underlying mechanism of neuronal thermosensitivity. Moreover, earlier studies indicated that PO/AH neuronal warm sensitivity is due to depolarizing sodium currents that are sensitive to tetrodotoxin (TTX). To test these possibilities, intracellular recordings were made in rat hypothalamic tissue slices. Thermal effects on membrane potentials and currents were compared in PO/AH warm-sensitive, temperature-insensitive and silent neurones. All three types of neurones displayed slight depolarization during warming and hyperpolarization during cooling. There were no significant differences in membrane potential thermosensitivity for the different neuronal types. Voltage clamp recordings (at −92 mV) measured the thermal effects on persistent inward cationic currents. In all neurones, resting holding currents decreased during cooling and increased during warming, and there was no correlation between firing rate thermosensitivity and current thermosensitivity. To determine the thermosensitive contribution of persistent, TTX-sensitive currents, voltage clamp recordings were conducted in the presence of 0.5 μ m TTX. TTX decreased the current thermosensitivity in most neurones, but there were no resulting differences between the different neuronal types. The present study found no evidence of a resting ionic current that is unique to warm-sensitive neurones. This supports studies suggesting that neuronal thermosensitivity is controlled, not by resting currents, but rather by currents that determine rapid changes in membrane potential between successive action potentials.  相似文献   

16.
The effects of hypertonic saline on hypothalamic paraventricular nucleus (PVN) parvocellular neurons were examined using whole-cell patch-clamp technique. Under current-clamp, 50% (41/82) of parvocellular neurons were depolarized than the predicted values by hypertonic saline, and associated with increasing action potential frequency. Under voltage-clamp, unless hypertonic saline induced a shift of reverse potential to more positive values, neither mannitol nor hypertonic saline obviously increased the conductance in parvocellular neurons. Moreover, spontaneous excitatory postsynaptic currents (sEPSCs) were increased by isotonic increases in [Na+]o in the parvocellular neurons. Bath application AMPA receptor antagonist CNQX or non-selective glutamate antagonist kynurenic acid almost completely blocked the sEPSCs. Extracellular application of gadolinium (Gd3+) blocked the hypertonic saline-induced response. These results suggested that subpopulation of PVN parvocellular neurons are selectively sensitive to NaCl. Hypertonic saline excited the PVN parvocellular neurons through Na+-detection and the excitatory glutamatergic synaptic input.  相似文献   

17.
Summary The paraventricular nucleus (PVN) of male albino rats was analyzed for the presence of glucocorticoid receptor-like immunoreactivity (GR-LI) in neuropeptide containing neurons. Using immunohistochemistry, coronal sections trough the entire PVN were double-stained with a mouse monoclonal antibody against GR and one of the following antisera: rabbit antiserum to corticotropin releasing factor (CRF), neurotensin (NT), enkephalin (ENK), cholecystokinin (CCK), thyrotropin releasing hormone (TRH), galanin (GAL), peptide histidine isoleucine (PHI), vasoactive intestinal polypeptide (VIP), somatostatin (SOM) or tyrosine hydroxylase (TH). For comparison the occurrence of GR-LI in NT-, SOM-, NPY- or TH-positive neurons of the arcuate nucleus was also studied. Our results indicate that GR-LI is present in the parvocellular part of the PVN but not in its magnocellular portion. Virtually every parvocellular neuron in the PVN containing one of the above mentioned peptides was also positive for GR, with the exception of SOM neurons, of which only about two thirds showed detectable levels of GR-LI. All TH-positive, presumably dopamine neurons in the PVN were GR-positive. In the arcuate nucleus all TH- and NPY-positive neurons as well as a large proportion of the SOM- and NT-immunoreactive neurons contained GR-LI. The results indicate that in the PVN, in addition to the CRF neurons, certain peptidergic neurons in the parvocellular part of the PVN, without any established role in the control of ACTH synthesis and release, may also be under glucocorticoid control. This seems to be the case also for most arcuate neurons.  相似文献   

18.
Xia Y  Krukoff TL 《Neuroscience》2003,121(1):219-231
The paraventricular nucleus (PVN) of the hypothalamus is a key site for regulating neuroendocrine and autonomic activities. To study the role of the PVN activation in brain inflammation-induced autonomic/endocrine responses, lipopolysaccharide (LPS; 0.5 or 5 microg) was administered i.c.v. and rats were killed 1, 3 or 6 h after the injection. I.c.v. LPS-0.5 microg did not cause changes in mean arterial pressure (MAP) over 6 h, whereas LPS-5 micro induced a temporary decrease in MAP approximately 30 min after the injection. LPS at either dose increased heart rate. Whereas induction of Fos-like immunoreactivity was confined to the dorsal medial parvocellular division (mpd) of the PVN with the lower dose, labeling was found throughout the PVN with the higher dose. At 3 h, LPS-5 microg also stimulated increases in arginine vasopressin (AVP) heteronuclear RNA levels in the posterior magnocellular and dorsal parvocellular divisions of the PVN at 3 h, and activation of catecholaminergic neurons in the hypothalamus and brainstem. Increases in tyrosine hydroxylase (TH) mRNA levels were found in the locus coeruleus at 6 h. LPS at both doses elevated plasma ACTH levels and corticotropin-releasing factor gene expression in the mpd of the PVN. I.c.v. LPS induced IL-1beta mRNA in the meninges and ventricular ependymal lining at 1 h, and in the periventricular PVN at 3 h. Induction of IL-1beta mRNA was found in the lung at 1 h, and a significant increase in plasma LPS binding protein occurred at 3 h.These findings suggest that PVN activation induced by the lower dose of LPS is related primarily to increases in activity of the HPA axis, whereas the higher dose of LPS more widely activates autonomic regulatory centers including the PVN and also stimulates changes in sympathetic output and hypothalamic AVP synthesis. Activation of the PVN by i.c.v. LPS likely occurs through both central and systemic routes. Differential neuronal activation in the PVN is functionally related to autonomic/endocrine responses elicited by brain inflammation.  相似文献   

19.
The effects of dopamine on spontaneous excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs) in three different classes of neurones within the optic lobe of cuttlefish were investigated using whole-cell voltage clamp techniques in a slice preparation. The neuronal types were centrifugal and amacrine neurones, located in the inner granular cell layer, and medullar interneurones, located within the central medulla of the optic lobes. The results demonstrate that bath application of dopamine (50 microM) reversibly reduced both the frequency and amplitude of sEPSCs and of sIPSCs in these optic lobe neurones. The inhibitory effects of DA were dose-dependent and neither D1- nor D2-like receptors appear to be implicated, but probably D4-like receptors are involved in these actions. By pre-applying tetrodotoxin (TTX, 0.5 microM), to block action potential-dependent EPSCs and IPSCs, it is shown that dopamine has no effect on the amplitude, frequency or decay time constant of the mEPSCs or mIPSCs. The results are the first to identify a specific physiological action of dopamine on cephalopod brain activity, they indicate that this effect is probably presynaptic to the specific classes of cells recorded from, and they provide information on the pharmacological profile of the receptors involved. The widespread inhibitory effect of dopamine on the activity of cuttlefish optic lobe neurones is discussed in the context of comparable data from vertebrate preparations and the actions of other neuromodulators in the cuttlefish brain.  相似文献   

20.
Within the rat paraventricular nucleus of the hypothalamus two types of neurons have been distinguished based on morphological appearance, i.e., parvocellular and magnocellular neurons. The parvocellular neurons play a key role in regulating the activity of the hypothalamo-pituitary-adrenal axis, which is activated, e.g., after stress exposure. These neurons receive humoral negative feedback via the adrenal hormone corticosterone but also neuronal inhibitory input, either directly or transsynaptically relayed via GABAergic interneurons. In the present study we examined to what extent the neuronal GABAergic input is influenced by the humoral signal. To this end, miniature inhibitory postsynaptic currents (mIPSCs) were recorded in parvo- and magnocellular neurons of adrenalectomized rats, which lack corticosterone, and in sham-operated controls. Under visual control neurons in coronal slices containing the paraventricular nucleus were designated as putative parvocellular or magnocellular neurons: the former were located in the medial part of the nucleus and displayed a small fusiform soma; the latter were mostly located in the lateral part and were recognized by their large round soma. Compared with putative magnocellular neurons, parvocellular neurons generally exhibited a lower membrane capacitance, lower mIPSC frequency, and smaller mIPSC amplitude. Following adrenalectomy, the mIPSC frequency was significantly enhanced in parvo- but not magnocellular neurons. Other properties of the cells were not affected. In a second series of experiments we examined whether the increase in mIPSC frequency was due to the absence of corticosterone or caused by other effects related to adrenalectomy. The data support the former explanation since implantation of a corticosterone releasing pellet after adrenalectomy fully prevented the change in mIPSC frequency. We conclude that, in the absence of humoral negative feedback, local GABAergic input of parvocellular neurons in the paraventricular nucleus is enhanced. This may provide a compensatory mechanism necessary for maintaining controllable network activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号