首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This study describes the developmental expression of three neurotrophins, brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3) and neurotrophin (NT-4) in the rat auditory brain-stem using immunohistochemistry. At postnatal day 0 (PND 0), neurotrophins expression was virtually absent from all auditory nuclei in the brainstem, even though some positive neurons were observed in the mesencephalic trigeminal nucleus at this age. However, BDNF, NT-3 and NT-4 positive neurons were observed in most brainstem auditory nuclei by PND 6. At the following stages, there was a general increase in the intensity of the neurotrophins immunoreactivity and BDNF labeling was particularly prominent in most cochlear nucleus neurons. A differential pattern of staining emerged in cochlear nucleus subdivisions, with more intense staining present in the ventral part. The superior olivary complex nuclei followed a similar pattern of BDNF staining compared to the cochlear nucleus. In the adult, BDNF heavily labeled most neurons of the superior olivary nuclei and moderately labeled neurons of the inferior colliculus (IC). NT-3 and NT-4 showed a similar pattern of staining in most auditory brainstem nuclei. The first staining was observed by PND 6 in some neuronal cell bodies. NT-3 and NT-4 immunoreactivity increased in the following stages and in the adult moderate labelings were observed in most neurons of the cochlear nucleus, the superior olivary nuclei and the IC. These results show that neurotrophins are expressed 1 week before the onset of hearing and the increase of their expressions correlate with the appearance of sound-evoked activity in the system. The temporal distribution of neurotrophins does not correlate with neuronal birth, axonal outgrowth or the formation of connection in the auditory structures, suggesting a role primarily in the maintenance and/ or modulation of postnatal and adult functions.  相似文献   

2.
3.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side. J. Comp. Neurol. 404:271–283, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

4.
The firing pattern of auditory neurons is determined in part by the type of voltage-sensitive potassium channels expressed. The expression patterns for two high-threshold potassium channels, Kv3.1 and Kv3.3, that differ in inactivation properties were examined in the rat auditory system. The positive activation voltage and rapid deactivation kinetics of these channels provide rapid repolarization of action potentials with little effect on action potential threshold. In situ hybridization experiments showed that Kv3.3 mRNA was highly expressed in most auditory neurons in the rat brainstem, whereas Kv3.1 was expressed in a more limited population of auditory neurons. Notably, Kv3.1 mRNA was not expressed in neurons of the medial and lateral superior olive and a subpopulation of neurons in the ventral nucleus of the lateral lemniscus. These results suggest that Kv3.3 channels may be the dominant Kv3 subfamily member expressed in brainstem auditory neurons and that, in some auditory neurons, Kv3.1 and Kv3.3 may coassemble to form functional channels. The localization of Kv3.1 protein was examined immunohistochemically. The distribution of stained somata and neuropil varied across auditory nuclei and correlated with the distribution of Kv3.1 mRNA-expressing neurons and their terminal arborizations, respectively. The intensity of Kv3.1 immunoreactivity varied across the tonotopic map in the medial nucleus of the trapezoid body with neurons responding best to high-frequency tones most intensely labeled. Thus, auditory neurons may vary the types and amount of K(+) channel expression in response to synaptic input to subtly tune their firing properties.  相似文献   

5.
Voltage-gated potassium channels play an important role in shaping membrane properties that underlie neurons' discharge patterns and the ways in which they transform their input. In the auditory system, low threshold potassium currents such as those created by Kv1.1 subunits contribute to precise phaselocking and to transient onset responses that provide time markers for temporal features of sounds. The purpose of the present study was to compare information about the distribution of neurons expressing the KV 1.1 in the brainstem auditory nuclei with the distribution of neurons with known functional properties in the auditory system of the big brown bat, Eptesicus fuscus. We used immunocytochemistry and light microscopy to look at the distribution of Kv1.1 subunits in the brainstem auditory nuclei. There was prominent expression in cell types known to contain high levels of Kv1.1 in other species and known to respond to auditory signals with high temporal precision. These included octopus cells and spherical bushy cells of the cochlear nucleus and principal neurons of the medial nucleus of the trapezoid body. In addition, we found high levels of Kv1.1 in neurons of the columnar subdivision of the ventral nucleus of the lateral lemniscus and in ventral periolivary cell groups. Neurons with high levels of Kv1.1 were differentially distributed in the intermediate nucleus of the lateral lemniscus and in the inferior colliculus, suggesting that these structures contain functionally distinct cell populations, some of which may be involved in high-precision temporal processing.  相似文献   

6.
The lateral superior olive and medial superior olive give rise to pathways that terminate in the dorsal nucleus of the lateral lemniscus and central nucleus of the inferior colliculus. In most mammals, neurons in both the medial and lateral superior olives are binaural, but in the mustached bat most neurons in the medial superior olive are monaural. The aims of this study were to determine how the inputs to the medial superior olive contribute to its monaurality and to determine whether the ascending projections from the lateral and medial superior olives overlap or rema in segregated at their targets. Injections of two different tracers were placed in tonotopically matched areas of the lateral and medial superior olives in the same animal. Retrograde transport from injections in the medial superior olive labeled spherical cells in the contralateral anteroventral cochlear nucleus and principal cells in the ipsilateral medial nucleus of the trapezoid body. Few cells were labeled in ipsilateral cochlear nucleus. Anterograde transport resulted in tonotopically specific distributions of label with the same laterality as in nonecholocating mammals. In the dorsal nucleus of the lateral lemniscus, label from the lateral and medial superior olives largely overlapped. In the inferior colliculus, label from the two sources overlapped in the high and low frequency ranges, but in the frequency range around 60 kHz, label from the medial superior olive extended more dorsally than that from the lateral superior olive. These results indicate that projections of the lateral and medial superior olives overlap extensively at their targets. © 1995 Willy-Liss, Inc.  相似文献   

7.
In the adult brain, expression of the growth associated protein GAP-43 may serve as an indicator of synaptic remodeling. We have studied localization and time course of the re-expression of GAP-43 following deafening through cochlear ablation. As a consequence of unilateral cochlear lesioning, a substantial increase in the expression of GAP-43 was observed in the neuropil of all subnuclei of the ipsilateral cochlear nuclear complex. This expression of GAP-43 occurred in well-defined fibers and boutons. In the ventral cochlear nuclei, boutons immunoreactive for GAP-43 were often localized on cell bodies. However, they were found only on selected subpopulations of cochlear nucleus neurons, i.e., on cell bodies containing glutamate or calretinin immunoreactivity, but apparently not on GABAergic neurons. Olivocochlear neurons must have been axotomized by the operation. Following cochlear ablation, a dramatic re-expression of GAP-43 occurred in cell bodies of the ipsilateral lateral superior olive but not in the ventral nucleus of the trapezoid body. Position and number of these cells suggested that most, if not all, of them serve the lateral olivocochlear bundle. However, although axon collaterals are given off by certain types of olivocochlear neurons, a direct involvement of the immunoreactive cell bodies in the emergence of GAP-43 in the cochlear nucleus is not obvious. A transient rise of GAP-43 immunoreactivity that could not be attributed to axotomized neurons was observed in the contralateral dorsal cochlear nucleus and in the ipsilateral inferior colliculus. Given the functional significance attributed to GAP-43, we conclude that the sudden loss of spiral ganglion cells leads to a reactive synaptogenesis in complex patterns across several auditory brainstem nuclei. J. Comp. Neurol. 382:116-138, 1997. © 1997 Wiley-Liss Inc.  相似文献   

8.
The ascending projections to the lateral lemniscal nuclei and the inferior colliculus were investigated in the albino rat by using Fluoro‐Gold, either alone or in combination with other retrograde tract tracers. Injections were made into the central nucleus of the inferior colliculus (ICC), the dorsal nucleus of the lateral lemniscus (DNLL), the intermediate nucleus of the lateral lemniscus (INLL), or the ventral nucleus of the lateral lemniscus (VNLL). The ICC receives both ipsilateral and contralateral projections from the DNLL and the lateral superior olive, major ipsilateral projections from the INLL, VNLL, medial superior olive, and superior paraolivary nucleus, and major contralateral projections from both dorsal and ventral cochlear nucleus. The DNLL receives a similar pattern of projections from the auditory lower brainstem nuclei. The INLL, in contrast, receives its major projections from the ipsilateral VNLL, lateral superior olive, medial superior olive, superior paraolivary nucleus, and medial nucleus of the trapezoid body, but does not receive a heavy projection from the contralateral lateral superior olive. It receives a major contralateral projection from the ventral cochlear nucleus, but a much lighter projection from the contralateral dorsal cochlear nucleus. The VNLL receives projections from the ipsilateral medial nucleus of the trapezoid body and the contralateral ventral cochlear nucleus, but does not receive projections from the medial or lateral superior olives, the superior paraolivary nucleus, or the dorsal cochlear nucleus. Thus, the three primary subdivisions of the rat's lateral lemniscus can be distinguished from each other on the basis of their distinctive projection patterns. J. Comp. Neurol. 512:573–593, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Anatomical and electrophysiological evidence suggests that serotonin alters the processing of sound in the auditory brainstem of many mammalian species. The Mexican free‐tailed bat is a hearing specialist, like other microchiropteran bats. At the same time, many aspects of its auditory brainstem are similar to those in other mammals. This dichotomy raises an interesting question regarding the serotonergic innervation of the bat auditory brainstem: Is the serotonergic input to the auditory brainstem similar in bats and other mammals, or are there specializations in the serotonergic innervation of bats that may be related to their exceptional hearing capabilities? To address this question, we immunocytochemically labeled serotonergic fibers in the brainstem of the Mexican free‐tailed bat, Tadarida brasiliensis. We found many similarities in the pattern of serotonergic innervation of the auditory brainstem in Tadarida compared with other mammals, but we also found two striking differences. Similarities to staining patterns in other mammals included a higher density of serotonergic fibers in the dorsal cochlear nucleus and in granule cell regions than in the ventral cochlear nucleus, a high density of fibers in some periolivary nuclei of the superior olive, and a higher density of fibers in peripheral regions of the inferior colliculus compared with its core. The two novel features of serotonergic innervation in Tadarida were a high density of fibers in the fusiform layer of the dorsal cochlear nucleus relative to surrounding layers and a relatively high density of serotonergic fibers in the low‐frequency regions of the lateral and medial superior olive. J. Comp. Neurol. 435:78–88, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

10.
Parvalbumin (PV), calretinin (CR), and calbindin (CB) are calcium-binding proteins which are presumably involved in the regulation of the intracellular calcium concentration. Within the rat auditory system, CB is transiently expressed in several nuclei during the period of synapse refinement, indicating a specific function of CB during development, yet little is known in this regard about PV and CR. In order to gather more information about calcium-binding proteins during development, we analyzed the spatiotemporal distribution of PV and CR in the rat auditory brainstem using immunocytochemistry. In the adult, PV was heavily present in somata and neuropil of all nuclei and in fibers of all tracts. CR was found in somata of the cochlear nucleus and peripheral aspects of the inferior colliculus as well as in fibers extending into the superior olivary complex and the nuclei of the lateral lemniscus. The developmental expression of PV was characterized by a relatively late appearance in somata (at postnatal day 8), followed by a rapid increase to adult levels. In contrast, CR immunoreactivity was already strong two days before birth, yet the number and intensity of labeled neurons subsequently decreased and CR disappeared almost completely in the superior olivary complex, nuclei of the lateral lemniscus, and central aspects of the inferior colliculus. These data, together with those on CB, show that CR, CB, and PV are sequentially expressed during auditory brainstem development. They also suggest that the presence of the three proteins can be correlated with definite developmental stages. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Transneuronal transport in the auditory system of the squirrel monkey and the arctic ground squirrel was studied after implantation of tritiated protein or glycoprotein precursors into the ampulla of a single semicircular duct. In both species, essentially the same pattern of transneuronal transport extended beyond the cochlear nuclei to the central nucleus of the inferior colliculus (CNIC), after survival periods ranging from 9 to 33 days. Animals displayed dense labeling over nearly all auditory receptors, nearly all portions of the spiral ganglion and throughout the cochlear nuclei (CN). Labeled fibers, mainly in the ventral acoustic stria, terminated over the ipsilateral lateral superior olive (LSO) and the lateral aspect of medial superior olive (MSO). Fibers continuing medially, decussated in an orderly manner, and terminated over the opposite medial nucleus of the trapezoid body (MNTB) and medial aspect of MSO. Labeled fibers projecting into the opposite lateral lemniscus (LL) terminated in the ventral nucleus of the lateral lemniscus (VNLL) and the CNIC. Fibers, but few terminals, were noted over the dorsal nucleus of the LL. The ipsilateral LL contained comparatively few labeled fibers, but sparse terminations occurred over portions of VNLL and CNIC. No transport of [3H]precursors was noted in the peripheral nuclei of the inferior colliculus or in the medial geneculate body on either side. Massive transport via the contralateral LL and the profuse terminals in the opposite CNIC suggested transneuronal transport via secondary and higher order auditory fibers. Although the largest number of fibers in the contralateral LL probably arose from the cochlear nuclei, higher order fibers also may have arisen from the ipsilateral LSO and the contralateral MSO and VNLL. Small numbers of fibers in both species descended from the region of the superior olivary complex (SOC) ventral to the facial motor nucleus. In the ground squirrel, scant auditory projections were traced into the opposite cochlear nuclei. Tritiated precursors in the endolymph passed most readily from labyrinth to cochlea, and transneuronal transport was more extensive in the auditory pathways than in the vestibular system at comparable times. Centrally transported [3H]fucose was cleared more promptly than [3H]proline in monkeys.  相似文献   

12.
Neuron survival and axonal regeneration become severely limited during early postnatal development. In conjunction with our recent organotypic analysis of regeneration in the auditory midbrain, we wished to determine whether neurotrophins could serve as a trophic substance during the postnatal period. Therefore, the current study examines the development of three neurotrophin receptor tyrosine kinases (TrkA, TrkB, and TrkC) in the gerbil auditory brainstem. Immunoreactivity to TrkA, the nerve growth-factor receptor, was observed in nonneuronal cells during the first two postnatal weeks. In the cochlear nucleus of mature animals, however, there was a TrkA-positive neuronal subpopulation. In contrast, immunoreactivity to TrkB and TrkC (the receptors for brain-derived neurotrophic factor and neurotrophin-3, respectively) displayed a widespread distribution in the auditory brainstem. At postnatal day 0, TrkB and TrkC staining was virtually absent from auditory nuclei, although immunopositive neurons were present in the mesencephalic trigeminal nucleus. By postnatal day 7, TrkB- and TrkC-positive neurons were present in most brainstem auditory nuclei. At postnatal day 15, TrkB immunoreactivity was observed throughout the inferior colliculus (IC), the cochlear nucleus, the medial and lateral nuclei of the trapezoid body, and the lateral superior olive, whereas TrkC labeled only a subpopulation of neurons within the central nucleus of the IC. The TrkB immunoreactivity was present on both neuronal somata and dendrites, whereas TrkC was generally restricted to cell bodies. At postnatal day 30, TrkB immunostaining was observed on most neurons of the 1C. The medial and lateral nuclei of the trapezoid body displayed extremely strong TrkB staining, followed by the cochlear nucleus. In contrast, the TrkC immunostaining was decreased dramatically by postnatal day 21. Observations at the ultrastructural level confirmed a neuronal localization of TrkB and TrkC. Immunostaining for both receptors was restricted largely to the postsynaptic density of synaptic profiles in both dendrites and somata. In summary, this study illustrates a differential pattern of immunoreactivity between three neurotrophin receptors during development. The general increase of TrkB expression is well correlated with the onset of sound-evoked activity in this system, and its synaptic localization suggests that it may be involved in the modulation or maintenance of postsynaptic physiology. © 1996 Wiley-Liss, Inc.  相似文献   

13.
This study determined if an asymmetric hearing loss, due to unilateral cochlear ablation, could induce the regulation of intracellular AMPA receptors in brain stem auditory nuclei. In young adult guinea pigs, the high-affinity specific binding of [(3)H]AMPA was measured in the cochlear nucleus (CN), the superior olivary complex (SOC), and the auditory midbrain at 2-147 postlesion days. After correction for tissue shrinkage, changes in specific binding relative to that in age-matched unlesioned controls were interpreted as altered numbers and/or activity of intracellular AMPA receptors. In the CN, transient elevations and/or deficits in binding were evident in most regions, which usually recovered by 147 days. However, persistently deficient binding was evident ipsilaterally in the anterior part of the anteroventral CN (AVCNa). In the SOC, transient elevations in binding were evident at 2 days in the medial limb of the lateral superior olive (LSOmed) and the medial superior olive. Between 7 and 147 days, most SOC nuclei exhibited transient, temporally synchronized postlesion deficits in binding. However, late in the survival period, deficits persisted ipsilaterally in the LSOmed and the lateral (LSOlat) limb of the lateral superior olive. In the midbrain, transient elevations and/or deficits in binding were evident in the dorsal nucleus of the lateral lemniscus as well as in the central and dorsal nucleus of the inferior colliculus. A persistent deficit was evident in the intermediate nucleus of the lateral lemniscus. The findings implied that auditory neurons contain regulatory mechanisms that control the numbers and/or activity of intracellular AMPA receptors. Regulation was induced by cochlear nerve destruction and probably by changes in the excitation of glutamatergic neurons. Many of the regulatory changes were transient, except in the ipsilateral AVCNa and LSO, where postlesion downregulations were persistent. The downregulation in the ipsilateral AVCNa was probably induced directly by the loss of cochlear nerve endings. However, other regulatory changes may have been induced by signals carried on pathways emerging from the ipsilateral CN and on centrifugal auditory pathways.  相似文献   

14.
To investigate the corticofugal modulation of acoustic information ascending through the auditory pathway of the rat, immunohistochemical techniques were used to study the functional expression of Fos protein in neurons. With auditory stimulation at different frequencies, Fos expression in the medial geniculate body (MGB), inferior colliculus (IC), superior olivary complex, and cochlear nucleus was examined, and the extent of Fos expression on the two sides was compared. Strikingly, we found densely Fos-labeled neurons in all divisions of the MGB after both presentation of an auditory stimulus and administration of a gamma-aminobutyric acid type A (GABA(A)) antagonist (bicuculline methobromide; BIM) to the auditory cortex. The location of Fos-labeled neurons in the ventral division (MGv) after acoustic stimulation at different frequencies was in agreement with the known tonotopic organization. That no Fos-labeled neurons were found in the MGv with acoustic stimuli alone suggests that the transmission of ascending thalamocortical information is critically governed by corticofugal modulation. The dorsal (DCIC) and external cortices (ECIC) of the IC ipsilateral to the BIM-injected cortex showed a significantly higher number of Fos-labeled neurons than the contralateral IC. However, no difference in the number of Fos-labeled neurons was found between the central nucleus of the IC on either side, indicating that direct corticofugal modulation occurs only in the ECIC and DCIC. Further investigations are needed to assess the functional implications of the morphological differences observed between the descending corticofugal projections to the thalamus and the IC.  相似文献   

15.
The octavolateral sensory systems in teleost fish comprise at least four distinct hair-cell sensory modalities which are processed separately within the CNS. Two of these modalities, the mechanosensory lateral line system and the eighth nerve auditory system, have been implicated in the animal's ability to detect and localize underwater vibrations. Distinct mechanosensory lateral line and auditory nuclei are present within the torus semicircularis, the midbrain homologue of the inferior colliculus. The present study utilized horseradish peroxidase tracing techniques to delineate those areas of the lower brainstem which are involved in auditory as opposed to mechanosensory lateral line processes. The primary mechanosensory nucleus of the medulla, n. medialis, projects directly to the optic tectum and to the mechanosensory nucleus of the torus semicircularis. Nucleus medialis receives input from primary lateral line nerve fibers as well as from a number of sites within the CNS: n. praeeminentialis pars ventralis, and the eminentia granularis and lobus caudalis of the cerebellum. The n. praeeminentialis itself receives a descending input from the mechanosensory nucleus of the torus semicircularis. These mechanosensory lateral line pathways are parallel to, but distinct from, those of the electrosensory lateral line system. Auditory signals reach the midbrain via an entirely separate route. The octaval nerve terminates in a column of five medullary nuclei. Of these, only the anterior and descending octaval nuclei maintain a direct but sparse projection to the auditory nucleus of the midbrain. The bulk of the auditory input to the midbrain involves a newly described medullary nucleus, the medial auditory nucleus of the medulla. This nucleus receives input from the descending octaval nucleus and projects bilaterally to the auditory nucleus of the torus semicircularis. It is suggested that the medial auditory nucleus of the medulla is homologous to portions of the superior olivary complex of other vertebrates.  相似文献   

16.
The efferent (olivocochlear) nerve supply to the cochlea is subdivided into a lateral and a medial innervation according to several criteria, e.g. locus of origin in the superior olivary complex and type of synaptic connections established in the organ of Corti. We have used a triple immunofluorescence colocalization approach to determine whether putative cholinergic neurons from the lateral innervation contain both metenkephalin and calcitonin gene-related peptide (CGRP), and whether those from the medial innervation also contain CGRP. About 80% of the choline acetyltransferase (ChAT)-like immunostained lateral efferent neurons within the lateral superior olive were CGRP- and metenkephalin-like immunostained. In the organ of Corti, colocalization of the three antigens within the inner spiral bundle was also found. This bundle contains the lateral efferent synapses, with the dendrites of the primary auditory neurons innervating the sensory inner hair cells. Most of the medial efferent neurons in the ventral nucleus of the trapezoid body were only immunoreactive for ChAT. However, in the rostral part of the nucleus, a minority of ChAT-like immunostained neurons were also CGRP-like immunostained. None of the ChAT-like immunostained medial efferent neurons presented metenkephalin-like immunostaining. In agreement with these brainstem data, partial colocalization of the ChAT- and CGRP-like immunostaining and a lack of metenkephalin immunoreactivity was noted below the sensory outer hair cells, which are the synaptic targets of medial efferent terminals in the organ of Corti. This distinction in the coexistence pattern of the two efferent innervations probably reflects distinct modes of action for acetylcholine in the cochlea. In one case, the effects of acetylcholine on the primary auditory neurons innervating the inner hair cells may require balanced modulation by metenkephalin and CGRP. In the other case, modulation of the effects of acetylcholine on the outer hair cells by neuropeptides would be less critical.  相似文献   

17.
Calbindin is a 28 kD calcium-binding protein found in neural tissue. Although its functional role in neurons is unknown, it has been proposed that calbindin is involved in intracellular buffering and could therefore influence temporal precision of neuronal firing. In the barn owl, calbindin-like immunoreactivity was found to be selectively present in brain stem auditory pathways used to process interaural time differences, but was absent from the interaural intensity pathway. The present study demonstrates calbindin immunoreactivity in the auditory brain stem of the chinchilla, a rodent with exceptionally good low-frequency hearing. In the superior olivary complex and periolivary areas, immunoreactivity was divided between neuropil labeling in the lateral and medial superior olives and dorsomedial periolivary nucleus, and labeling of the somata of the medial and ventral nuclei of the trapezoid body and anterolateral periolivary nucleus. Strong immunoreactivity was observed in the ventral and dorsal divisions of the ventral nucleus of lateral lemniscus somata and the ventral division's columnarly organized fiber plexus. The dorsal nucleus of the lateral lemniscus was void of immunoreactivity. Virtually all principal neurons of the sagulum showed darkly labeled somata surrounded by a densely labeled fiber plexus. Immunoreactivity in the inferior colliculus was primarily limited to the paracentral nuclei, with only an occasional labeled cell in the central nucleus. In conclusion, although selective labeling of calbindin in the mammalian auditory brain stem is impressive, no distinctive labeling of a functionally defined timing pathway was apparent as reported previously in the barn owl or electric fish.  相似文献   

18.
Fos-like immunoreactivity was used to study sound-induced activation of neurons in the auditory brainstem. Immunoreactivity was assayed with a polyclonal antibody to Fos. In response to 6-kHz tone bursts, the pattern of staining was a band of immunoreactive neurons positioned at the tonotopically appropriate position within the cochlear nucleus and the inferior colliculus. The band was narrow at low sound pressure levels but wider along the tonotopic axis at higher sound levels. In response to noise bursts, the pattern was broader and often extended throughout the auditory nuclei. Often within this broad pattern were “sub-bands” of immunostained neurons, interspersed with bands of unstained neurons. With increasing sound pressure levels above 35--55 dB, the number of Fos-like immunoreactive neurons increased for the cochlear nucleus, superior olivary complex, and inferior colliculus. In the cochlear nucleus and inferior colliculus, the stained cells were small, and hence their activity would be difficult to sample in electrophysiological studies. In the medial nucleus of the trapezoid body, the stained neurons had larger somata and other characteristics of principal cells. Anesthesia with Nembutal or Avertin, but not with ketamine or urethane, decreased the number of Fos-like immunoreactive neurons in the cochlear nucleus. The different anesthetics produced more variable results in the inferior colliculus. In anesthetized, monaurally stimulated animals, the presence of staining in the contralateral cochlear nucleus indicates that some Fos-like immunoreactivity may be mediated by descending or commissural systems. These observations indicate that Fos assays are useful for studying the pattern of neuronal activation in the auditory system and may also be useful in studying the descending auditory pathways. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Immediate éarly genes such as the proto-oncogene c- fos can be expressed in neurons following synaptic excitation by sensory stimulation. C- fos immunocytochemistry has subsequently been shown to be a very sensitive marking technique for neuronal activity. Here, antibodies against the c- fos protein product Fos were used to map the tonotopic organization in the auditory system of adult and developing rats. After stimulating adult rats with pure-tone pulses, bands of Fos-immunoreactive neurons revealed the frequency representation in seven brainstem nuclei: all three subdivisions of the cochlear nucleus, the lateral superior olive, the medial nucleus of the trapezoid body, the ventral nucleus of the trapezoid body, the rostral periolivary nucleus, the dorsal nucleus of the lateral lemniscus and the inferior colliculus. With the exception of the dorsal cochlear nucleus and the inferior colliculus, tonotopicity has not been previously demonstrated in the brainstem nuclei of the rat. During development two striking results were obtained. First, beginning at postnatal day 14 (i.e. ∼2 days after physiological hearing begins in rats), not only low but also high frequencies were able to induce strong Fos immunoreactivity, indicating that gradual recruitment of formerly unresponsive high-frequency sites does not occur in the rat. Second, a gradual age-related shift of the position of isofrequency bands was not seen in any of the nuclei, suggesting that changes in frequency-place code do not occur after 2 weeks postnatally. These results indicate that the rat's auditory brainstem nuclei achieve their adult-like tonotopic organization early on, implying a somewhat different developmental time course than is found in other mammalian species.  相似文献   

20.
The mammalian lateral superior olive (LSO) codes disparities in the intensity of the sound that reaches the two ears by integrating ipsilateral excitation and contralateral inhibition, but it remains unclear what particular neuron types convey acoustic information to the nucleus. It is also uncertain whether the known conspicuous morphofunctional differences and gradients along the tonotopic axis of the LSO relate to qualitative and/or quantitative regional differences in its afferents. To clarify these issues, we made small, single injections of the neuroanatomical tracer biotinylated dextran amine (BDA) into different tonotopic regions of the LSO of albino rats and analyzed the neurons labeled retrogradely in brainstem auditory nuclei. We demonstrate that the LSO is innervated tonotopically by four brainstem neuron types: spherical bushy cells and planar multipolar neurons of the ipsilateral ventral cochlear nucleus, principal neurons of the ipsilateral medial nucleus of the trapezoid body, and small multipolar neurons of the contralateral ventral nucleus of the trapezoid body. Unexpectedly, the proportion of labeled neurons of each type was virtually identical in all cases, thus indicating that all tonotopic regions of the LSO receive a similar combination of inputs. Even more surprisingly, our data also suggest that the representation of frequencies in the LSO differs from that of the nuclei that innervate it: compared to the latter nuclei, the LSO seems to possess a relatively larger portion of its volume devoted to processing frequencies in the lower‐middle part of the spectrum, and a relative smaller portion devoted to higher frequencies. J. Comp. Neurol. 524:2230–2250, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号