首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe, rare autosomal recessive disorder caused by variants in the heparan‐α‐glucosaminide N‐acetyltransferase (HGSNAT) gene which result in lysosomal accumulation of heparan sulfate. We analyzed clinical presentation, molecular defects and their haplotype context in 78 (27 novel) MPSIIIC cases from 22 countries, the largest group studied so far. We describe for the first time disease‐causing variants in the patients from Brazil, Algeria, Azerbaijan, and Iran, and extend their spectrum within Canada, Colombia, Turkey, and the USA. Six variants are novel: two missense, c.773A>T/p.N258I and c.1267G>T/p.G423W, a nonsense c.164T>A/p.L55*, a splice‐site mutation c.494?1G>A/p.[P165_L187delinsQSCYVTQAGVRWHHLGSLQALPPGFTPFSYLSLLSSWNC,P165fs], a deletion c.1348delG/p.(D450fs) and an insertion c.1479dupA/p.(Leu494fs). The missense HGSNAT variants lacked lysosomal targeting, enzymatic activity, and likely the correct folding. The haplotype analysis identified founder mutations, p.N258I, c.525dupT, and p.L55* in the Brazilian state of Paraiba, c.493+1G>A in Eastern Canada/Quebec, p.A489E in the USA, p.R384* in Poland, p.R344C and p.S518F in the Netherlands and suggested that variants c.525dupT, c.372?2G>A, and c.234+1G>A present in cis with c.564‐98T>C and c.710C>A rare single‐nucleotide polymorphisms, have been introduced by Portuguese settlers in Brazil. Altogether, our results provide insights into the origin, migration roots and founder effects of HGSNAT disease‐causing variants, and reveal the evolutionary history of MPSIIIC.  相似文献   

3.
Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched‐chain α‐keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched‐chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient‐derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho‐E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients’ clinical phenotype. Based on these results, a protein‐rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention.  相似文献   

4.
Mucopolysaccharidosis IVA (MPS IVA; OMIM #253000) is caused by the deficiency of N‐acetylgalactosamine‐6‐sulfate sulfatase (GALNS), a lysosomal enzyme involved in the catabolism of keratan and chondroitin sulfate. In this study, we examined biochemical and genetic data from 6 Korean patients presenting with classic MPS IVA by measuring GALNS activity in peripheral blood leukocytes and skin fibroblasts. We initially identified Korean patients with MPS IVA by clinical, biochemical, and genetic analyses. We performed PCR‐direct sequencing to identify molecular defects of the GALNS gene in patients and assessed the mutational statuses of family members as well as 50 healthy unrelated subjects. In silico analyses were performed to check for novel mutations. The mean age of the six female patients was 8.0 ± 5.2 years (range: 2–17 years), and were all found to have severe reductions of GALNS enzyme. A total of 12 mutant alleles were identified, corresponding to 7 different mutations. Five novel mutations were c.218A>G (p.Y73C), c.451C>A (p.P151T), c.725C>G (p.S242C), c.752G>A (p.R251Q), and c.1000C>T (p.Q334X). Two other mutations were c.1156C>T (p.R386C) and c.1243‐1G>A. Two mutations, c.451C>A and c.1000C>T, accounted for 58% of all mutations in this sample. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Cytochrome P450 CYP2B6 is a highly polymorphic enzyme that metabolizes numerous drugs, pesticides, and environmental toxins. Sequence analysis of a Rwandese population identified eight functionally uncharacterized nonsynonymous variants c.329G>T (p.G110V), c.341T>C (p.I114T), c.444G>T (p.E148D), c.548T>G (p.V183G), c.637T>C (p.F213L), c.758G>A (p.R253H), c.835G>C (p.A279P), and c.1459C>A (p.R487S), and five novel alleles termed CYP2B6*33 to CYP2B6*37 were assigned. Recombinant expression in COS‐1 cells and functional characterization using the antidepressant bupropion and the antiretroviral efavirenz (EFV) as substrates demonstrated complete or almost complete loss‐of‐function for variants p.G110V, p.I114T, p.V183G, and p.F213L, whereas p.E148D, p.R253H, p.A279P, and p.R487S variants were functional. The data were used to assess the predictive power of eight online available functional prediction programs for amino‐acid changes. Although none of the programs correctly predicted the functionality of all variants, substrate docking simulation analyses indicated similar conformational changes by all four deleterious mutations within the enzyme's active site, thus explaining lack of enzymatic function for both substrates. Because low‐activity alleles of CYP2B6 are associated with impaired EFV metabolism and adverse drug response, these results are of potential utility for personalized treatment strategies in HIV/AIDS therapy.  相似文献   

6.
7.
Development of pseudoexon exclusion therapies by antisense modification of pre-mRNA splicing represents a type of personalized genetic medicine. Here we present the cellular antisense therapy and the cell-based splicing assays to investigate the effect of two novel deep intronic changes c.1957–898A>G and c.1957–920C>A identified in the methylmalonyl–coenzyme A (CoA) mutase (MUT) gene. The results show that the nucleotide change c.1957–898A>G is a pathological mutation activating pseudoexon insertion and that antisense morpholino oligonucleotide (AMO) treatment in patient fibroblasts leads to recovery of MUT activity to levels 25 to 100% of control range. On the contrary, the change c.1957–920C>A, identified in two fibroblasts cell lines in cis with c.1885A>G (p.R629G) or c.458T>A (p.D153V), appears to be a rare variant of uncertain clinical significance. The functional analysis of c.1885A>G and c.458T>A indicate that they are the disease-causing mutations in these two patients. The results presented here highlight the necessity of scanning the described intronic region for mutations in MUT-affected patients, followed by functional analyses to demonstrate the pathogenicity of the identified changes, and extend previous work of the applicability of the antisense approach in methylmalonic aciduria (MMAuria) for a novel intronic mutation. Hum Mutat 30:1–7, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

8.
Mutational analysis of the GNPTAB gene was performed in 46 apparently unrelated patients with mucolipidosis IIα/β or IIIα/β, characterized by the mistargeting of multiple lysosomal enzymes as a consequence of a UDP-GlcNAc-1-phosphotransferase defect. The GNPTAB mutational spectrum comprised 25 distinct mutant alleles, 22 of which were novel, including 3 nonsense mutations (p.Q314X, p.R375X, p.Q507X), 5 missense mutations (p.I403T, p.C442Y, p.C461G, p.Q926P, p.L1001P), 6 microduplications (c.749dupA, c.857dupA, c.1191_1194dupGCTG, c.1206dupT, c.1331dupG, c.2220_2221dupGA) and 8 microdeletions (c.755_759delCCTCT, c.1399delG, c.1959_1962delTAGT, c.1965delC, c.2550_2554delGAAAA, c.3443_3446delTTTG, c.3487_3490delACAG, c.3523_3529delATGTTCC). All micro-duplications/deletions were predicted to result in the premature termination of translation. A novel exonic SNP (c.303G>A; E101E) was identified which is predicted to create an SFRS1 (SF2/ASF) binding site that may be of potential functional/clinical relevance. This study of mutations in the GNPTAB gene, the largest yet reported, extends our knowledge of the mutational heterogeneity evident in MLIIα/β/MLIIIα/β. © 2009 Wiley-Liss, Inc.  相似文献   

9.
Lynch syndrome is associated with germline mutations in DNA mismatch repair (MMR) genes. Up to 30% of DNA changes found are variants of unknown significance (VUS). Our aim was to assess the pathogenicity of eight MLH1 VUS identified in patients suspected of Lynch syndrome. All of them are novel or not previously characterized. For their classification, we followed a strategy that integrates family history, tumor pathology, and control frequency data with a variety of in silico and in vitro analyses at RNA and protein level, such as MMR assay, MLH1 and PMS2 expression, and subcellular localization. Five MLH1 VUS were classified as pathogenic: c.[248G>T(;)306G>C], c.[780C>G;788A>C], and c.791‐7T>A affected mRNA processing, whereas c.218T>C (p.L73P) and c.244G>A (p.T82A) impaired MMR activity. Two other VUS were considered likely neutral: the silent c.702G>A variant did not affect mRNA processing or stability, and c.974G>A (p.R325Q) did not influence MMR function. In contrast, variant c.25C>T (p.R9W) could not be classified, as it associated with intermediate levels of MMR activity. Comprehensive functional assessment of MLH1 variants was useful in their classification and became relevant in the diagnosis and genetic counseling of carrier families. Hum Mutat 33:1576–1588, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
11.
Familial renal glucosuria (FRG) is characterized by persistent glucosuria despite normal serum glucose and the absence of overt tubular dysfunction. Variants in solute carrier family 5 (sodium–glucose cotransporter), member 2 (SLC5A2) have been reported in FRG patients. However, the functional and expression‐related consequences of such variants have been scarcely investigated. In the current study, we studied five FRG families and identified six missense mutations, including four novel variants (c.1051T>C/.(C351R), c.1400T>C/p.(V467A), c.1420G>C/p.(A474P), c.1691G>A/p.(R564Q); RNA not analyzed) and two variants that had been previously reported (c.294C>A/p.(F98L), c.736C>T/p.(P246S); RNA not analyzed). The probands were either heterozygous or compound heterozygous for SLC5A2 variants and had glucosuria of 5.9%–19.6 g/day. Human 293 cells were transfected with plasmid constructs to study the expression and function of SLC5A2 variants in vitro. Western blotting revealed that the expression levels of SLC5A2–351R‐GFP, SLC5A2–467A‐GFP, SLC5A2–474P‐GFP, and SLC5A2–564Q‐GFP were significantly decreased compared with wild‐type SLC5A2‐GFP (37%–55%). Confocal microscopy revealed that three variants (c.1400T>C, c.1420G>C, c.1691G>A) resulted in a loss of the punctate membrane pattern typical of wild‐type SLC5A2. All variants had a significantly lower transport capacity in than the wild‐type control. The current study provides a starting point to further investigate the molecular mechanism of SLC5A2 in FRG families and provides functional clues for antidiabetes drugs.  相似文献   

12.
De novo mutations in SYNGAP1, which codes for a RAS/RAP GTP‐activating protein, cause nonsyndromic intellectual disability (NSID). All disease‐causing point mutations identified until now in SYNGAP1 are truncating, raising the possibility of an association between this type of mutations and NSID. Here, we report the identification of the first pathogenic missense mutations (c.1084T>C [p.W362R], c.1685C>T [p.P562L]) and three novel truncating mutations (c.283dupC [p.H95PfsX5], c.2212_2213del [p.S738X], and (c.2184del [p.N729TfsX31]) in SYNGAP1 in patients with NSID. A subset of these patients also showed ataxia, autism, and a specific form of generalized epilepsy that can be refractory to treatment. All of these mutations occurred de novo, except c.283dupC, which was inherited from a father who is a mosaic. Biolistic transfection of wild‐type SYNGAP1 in pyramidal cells from cortical organotypic cultures significantly reduced activity‐dependent phosphorylated extracellular signal‐regulated kinase (pERK) levels. In contrast, constructs expressing p.W362R, p.P562L, or the previously described p.R579X had no significant effect on pERK levels. These experiments suggest that the de novo missense mutations, p.R579X, and possibly all the other truncating mutations in SYNGAP1 result in a loss of its function. Moreover, our study confirms the involvement of SYNGAP1 in autism while providing novel insight into the epileptic manifestations associated with its disruption.  相似文献   

13.
Conventional next‐generation sequencing methods, used in most gene panels, cannot separate maternally and paternally derived sequence information of distant variants. In recessive diseases, two or more equally plausible causative variants with unsolved phase information prevent accurate molecular diagnosis. In reality, close relatives might be unavailable for segregation analysis. Here, we utilized whole genome linked‐read sequencing to assign variants to haplotypes in two patients with inherited retinal dystrophies. Patient 1 with macular dystrophy had variants c.3442T>C, p.(Cys1148Arg), c.4209G>T, p.(Glu1403Asp), and c.1182C>T, p.(Cys394=) in CRB1, and Patient 2 with nonsyndromic retinitis pigmentosa had c.1328T>A, p.(Val443Asp) and c.3032C>G, p.(Ser1011*) in AHI1. The relatives were not available for genotyping. Using whole genome linked‐read sequencing we phased the variants to haplotypes providing genetic background for the retinal dystrophies. In future, when the price of sequencing methods that provides long‐read data decreases and their read‐depth and accuracy increases, they are probably considered the primary or adjunctive sequencing methods in genetic testing, allowing the immediate collection of phase information and thus obviating the need for the carrier testing and segregation analysis.  相似文献   

14.
We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by nonhomologous‐end joining (NHEJ) and homologous recombination, respectively, lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered, and mutations in patients with features resembling NBS were described. Here we report on five patients from four families of different ethnic origin with the NBS‐like phenotype. Sequence analysis of the NHEJ1 gene in a patient of Spanish and in a patient of Turkish origin identified homozygous, previously reported mutations, c.168C>G (p.Arg57Gly) and c.532C>T (p.Arg178Ter), respectively. Two novel, paternally inherited truncating mutations, c.495dupA (p.Asp166ArgfsTer20) and c.526C>T (p.Arg176Ter) and two novel, maternal genomic deletions of 1.9 and 6.9 kb of the NHEJ1 gene, were found in a compound heterozygous state in two siblings of German origin and in one Malaysian patient, respectively. Our findings confirm that patients with NBS‐like phenotypes may have mutations in the NHEJ1 gene including multiexon deletions, and show that considerable clinical variability could be observed even within the same family. Hum Mutat 31:1059–1068, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
HFM1 is a meiosis‐specific gene and expressed in germ‐line tissues. More recently, evidence has indicated that variations in HFM1 gene could be causative for primary ovarian insufficiency (POI), also known as premature ovarian failure. The aim of this study was to investigate the association between HFM1 gene variants and sporadic POI in Chinese women. A total of 138 POI patients and 316 healthy controls (matched for ethnic background, sex, and age of the patients) were recruited in this study. We screened the entire HFM1 coding region by direct sequencing in all subjects and identified six variants of HFM1 gene in POI group, namely c.148G>A/p.Glu50Lys, c.1241A>C/p.His414Pro, c.2325C>A/p.Phe775Leu, c.3367T>C/p.Ser1123Pro, c.3580C>T/p.Arg1194Cys, and c.1686‐1G>C. The variation rate of HFM1 in POI group is significantly higher than control group (p < 0.01). The p.His414Pro and p.Arg1194Cys were predicted to be probably damaging to the HFM1 protein function, while p.Glu50Lys, p.Phe775Leu and p.Ser1123Pro mutants might not have any deleterious effect on the structure or function of the protein by online predictors. Taken together, our data suggested that HFM1 gene might be associated with primary ovarian insufficiency in Chinese population.  相似文献   

16.
17.
SHORT syndrome (OMIM 269880) is a rare autosomal‐dominant disorder characterized by short stature, hyperextensibility of joints, hernias, ocular depression, ophthalmic anomalies (Rieger anomaly, posterior embryotoxon, glaucoma), teething delay, partial lipodystrophy, insulin resistance and facial dysmorphic signs. Heterozygous mutations in PIK3R1 were recently identified in 14 families with SHORT syndrome. Eight of these families had a recurrent missense mutation (c.1945C>T; p.Arg649Trp). We report on two unrelated patients with typical clinical features of SHORT syndrome and additional problems such as pulmonary stenosis and ectopic kidney. Analysis of PIK3R1 revealed the mutation c.1945C>T; p.Arg649Trp de novo in both patients. These two patients not only provide additional evidence that PIK3R1 mutations cause SHORT syndrome, but also broaden the clinical spectrum of this syndrome and further confirm that the amino acid exchange c.1945C>T; p.Arg649Trp is a hotspot mutation in this gene.  相似文献   

18.
In this study, three polymorphic sites in the HLA-G gene: −725C>G>T, −716T>G and 14bpindel were genotyped. Significant differences were found between patients and controls in the alleles and genotypes for −725C>G>T and in three-point haplotypes. We observed also a significant difference in the age of disease onset between patients positive and negative for 14bpins. The results suggest that single nucleotide polymorphisms in the promoter of the HLA-G gene (mainly −725C>G>T), and 14bpindel, or some genetic marker in tight linkage disequilibrium with them are associated with multiple sclerosis.  相似文献   

19.
Generalized pustular psoriasis (GPP) is a rare, potentially life threatening, and aggressive form of psoriasis, which is characterized by sudden onset with repeated episodic skin inflammation leading to pustule formation. Familial GPP is known to be caused by recessively inherited mutations in the IL36RN gene, which encodes interleukin 36 receptor antagonist (IL‐36Ra). In this article, we performed mutation analysis of the IL36RN gene in 14 Japanese patients with GPP, and identified mutations in two of these patients analyzed. One patient was compound heterozygous for mutations c.115+6T>C and c.368C>G (p.Thr123Arg), whereas the other carried compound heterozygous mutations c.28C>T (p.Arg10*) and c.115+6T>C in the IL36RN gene. Expression studies using total RNA from the patients’ skin revealed that the mutation c.115+6T>C resulted in skipping of exon 3, leading to a frameshift and a premature termination codon (p.Arg10Argfs*1). The protein structure analysis suggested that the missense mutation p.Thr123Arg caused misfolding and instability of IL‐36Ra protein. In vitro studies in cultured cells showed impaired expression of the p.Thr123Arg mutant IL‐36Ra protein, which failed to antagonize the IL‐36 signaling pathway. Our data further underscore the critical role of IL36RN in pathogenesis of GPP.  相似文献   

20.
Mutations of the human cationic trypsinogen gene (PRSS1) are frequently found in association with hereditary pancreatitis. The most frequent variants p.N29I and p.R122H are recognized as disease‐causing mutations. Three pseudogene paralogs in the human trypsinogen family, including trypsinogen 6 (PRSS3P2), carry sequence variations in exon 3 that mimic the p.R122H mutation. In routine genetic testing of patients with chronic pancreatitis, we identified in two unrelated individuals similar gene conversion events of 24–71 nucleotides length between exon 3 of the PRSS1 (acceptor) and PRSS3P2 (donor) genes. The converted allele resulted in three nonsynonymous alterations c.343T>A (p.S115T), c.347G>C (p.R116P), and c.365_366delinsAT (p.R122H). Functional analysis of the conversion triple mutant revealed markedly increased autoactivation resulting in high and sustained trypsin activity in the presence of chymotrypsin C. This activation phenotype was identical to that of the p.R122H mutant. In addition, cellular secretion of the triple mutant from transfected HEK 293T cells was increased about twofold and this effect was attributable to mutation p.R116P. Our observations confirm and extend the notion that recombination events between members of the trypsinogen family can generate high‐risk PRSS1 alleles. The pathogenic phenotype of the novel conversion is explained by a unique combination of increased trypsinogen activation and secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号