首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone deacetylases (HDACs) mediate epigenetic mechanisms implicated in a broad range of central nervous system dysfunction, including neurodegenerative diseases and neuropsychiatric disorders. [11C]Martinostat allows in vivo quantification of class I/IIb HDACs and may be useful for the quantification of drug–occupancy relationship, facilitating drug development for disease modifying therapies. The present study reports a radiosynthesis of [11C]martinostat using [11C]methyl triflate in ethanol, as opposed to the originally described synthesis using [11C]methyl iodide and DMSO. [11C]Methyl triflate is trapped in a solution of 2 mg of precursor 1 dissolved in anhydrous ethanol (400 μl), reacted at ambient temperature for 5 min and purified by high-performance liquid chromatography; 1.5–1.8 GBq (41–48 mCi; n = 3) of formulated [11C]martinostat was obtained from solid-phase extraction using a hydrophilic–lipophilic cartridge in a radiochemical yield of 11.4% ± 1.1% (nondecay corrected to trapped [11C]MeI), with a molar activity of 369 ± 53 GBq/μmol (9.97 ± 1.3 Ci/μmol) at the end of synthesis (40 min) and validated for human use. This methodology was used at our production site to produce [11C]martinostat in sufficient quantities of activity to scan humans, including losses incurred from decay during pre-release quality control testing.  相似文献   

2.
A method to prepare [1‐11C]propyl iodide and [1‐11C]butyl iodide from [11C]carbon monoxide via a three step reaction sequence is presented. Palladium mediated formylation of ethene with [11C]carbon monoxide and hydrogen gave [1‐11C]propionaldehyde and [1‐11C]propionic acid. The carbonylation products were reduced and subsequently converted to [1‐11C]propyl iodide. Labelled propyl iodide was obtained in 58±4% decay corrected radiochemical yield and with a specific radioactivity of 270±33 GBq/µmol within 15 min from approximately 12 GBq of [11C]carbon monoxide. The position of the label was confirmed by 13C‐labelling and 13C‐NMR analysis. [1‐11C]Butyl iodide was obtained correspondingly from propene and approximately 8 GBq of [11C]carbon monoxide, in 34±2% decay corrected radiochemical yield and with a specific radioactivity of 146±20 GBq/µmol. The alkyl iodides were used in model reactions to synthesize [O‐propyl‐1‐11C]propyl and [O‐butyl‐1‐11C]butyl benzoate. Propyl and butyl analogues of etomidate, a β‐11‐hydroxylase inhibitor, were also synthesized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the radiosynthesis of 3‐[11C]methylthiophene, chosen as a model reaction for the preparation of heteroaromatic methylthienyl compounds. Labelling was performed from the corresponding lithiothiophene derivative and [11C]methyl iodide as the alkylating agent in THF at ?78°C. The conditions used were the following: (1) trapping for 2–3 min at ?78°C of the [11C]methyl iodide in the THF solution containing the freshly prepared 3‐lithiothiophene; (2) Hydrolysis of the reaction mixture by adding 0.5 ml of the HPLC mobile phase and (3) HPLC purification. 3‐[11C]Methylthiophene ([11C]‐ 1 ) was collected in high yield as the unique peak of the HPLC radiochromatogram. Non‐reacted [11C]methyl iodide was not present. Typically, 50–60 mCi (1.85–2.22 GBq) of 3‐[11C]methylthiophene ([11C]‐ 1 ) were obtained within 20 min of radiosynthesis (including HPLC purification) with specific radioactivities ranging from 0.6 to 1.0 Ci/μmol (22.2–37.0 GBq/μmol) starting from 180 to 200 mCi (6.66–7.40 GBq) of [11C]CO2 (10 μA, 10 min (6000 μC) irradiation). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A method is presented for preparing [1‐11C]ethyl iodide from [11C]carbon monoxide. The method utilizes methyl iodide and [11C]carbon monoxide in a palladium‐mediated carbonylation reaction to form a mixture of [1‐11C]acetic acid and [1‐11C]methyl acetate. The acetates are reduced to [1‐11C]ethanol and subsequently converted to [1‐11C]ethyl iodide. The synthesis time was 20 min and the decay‐corrected radiochemical yield of [1‐11C]ethyl iodide was 55 ± 5%. The position of the label was confirmed by 13C‐labelling and 13C‐NMR analysis. [1‐11C]Ethyl iodide was used in two model reactions, an O‐alkylation and an N‐alkylation. Starting with approximately 2.5 GBq of [11C]carbon monoxide, the isolated decay‐corrected radiochemical yields for the ester and the amine derivatives were 45 ± 0.5% and 25 ± 2%, respectively, based on [11C]carbon monoxide. Starting with 10 GBq of [11C]carbon monoxide, 0.55 GBq of the labelled ester was isolated within 40 min with a specific radioactivity of 36 GBq/µmol. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
A method and an apparatus for preparing [11C]methyl iodide from [11C]methane and iodine in a single pass through a non‐thermal plasma reactor has been developed. The plasma was created by applying high voltage (400 V/31 kHz) to electrodes in a stream of helium gas at reduced pressure. The [11C]methane used in the experiments was produced from [11C]carbon dioxide via reduction with hydrogen over nickel. [11C]methyl iodide was obtained with a specific radioactivity of 412 ± 32 GBq/µmol within 6 min from approximately 24 GBq of [11C]carbon dioxide. The decay corrected radiochemical yield was 13 ± 3% based on [11C]carbon dioxide at start of synthesis. [11C]Flumazenil was synthesized via a N‐alkylation with the prepared [11C]methyl iodide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Carbon‐11‐labelled (S)‐5‐methoxymethyl‐3‐[6‐(4,4,4‐trifluorobutoxy)benzo[d]isoxazol‐3‐yl]oxazolidin‐2‐[11C]‐one ([11C]SL25.1188), a promising reversibly binding radiotracer for imaging central monoamine oxidase B, was rapidly prepared via an intramolecular cyclization reaction in an automated one‐pot procedure directly from [11C]CO2, thereby precluding the use of [11C]COCl2. Formulated [11C]SL25.1188 was isolated in 12 ± 1% uncorrected radiochemical yield, based on starting [11C]CO2, with a specific activity of 37 ± 2 GBq/µmol at the end of synthesis (30 min; n = 3). Radiochemical and enantiomeric purities were both >99%. The methodology described herein offers an efficient production of [11C]SL25.1188 at ambient temperature and is suitable for human imaging studies.  相似文献   

7.
PBR111 (2‐(6‐chloro‐2‐(4‐(3‐fluoropropoxy)phenyl)imidazo[1,2‐a]pyridin‐3‐yl)‐N,N‐diethylacetamide) is a novel, reported, high‐affinity and selective ligand for the translocator protein (18 kDa). PBR111 has been labelled with fluorine‐18 (half‐life: 109.8 min) using our Zymate‐XP robotic system. The process involves (A) a simple one‐step tosyloxy‐for‐fluorine nucleophilic aliphatic substitution (performed at 165°C for 5 min in DMSO using K[18F]F‐Kryptofix®222 and 6.8–7.6 µmol of the corresponding tosylate as precursor for labelling) followed by (B) C‐18 PrepSep cartridge pre‐purification and (C) semi‐preparative HPLC purification on a Waters Symmetry® C‐18. Up to 4.8 GBq (130 mCi) of [18F]PBR111 could be obtained with specific radioactivities ranging from 74 to 148 GBq/µmol (2–4 Ci/µmol) in 75–80 min (HPLC purification and SepPak®‐based formulation included), starting from a 37.0 GBq (1.0 Ci) [18F]fluoride batch. Overall non‐decay‐corrected isolated yields were 8–13% (13–21% decay‐corrected). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
[11C]Hydroxyurea has been successfully labelled using [11C]carbon monoxide at low concentration. The decay‐corrected radiochemical yield was 38±3%, and the trapping efficiency of [11C]carbon monoxide in the order of 90±5%. This synthesis was performed by a rhodium‐mediated carbonylation reaction starting with azidotrimethylsilane and the rhodium complex being made in situ by chloro(1,5‐cyclooctadiene)rhodium(I) dimer ([Rh(cod)Cl]2) and 1,2‐bis(diphenylphosphino)ethane (dppe). (13C)Hydroxyurea was synthesized using this method and the position of the labelling was confirmed by 13C‐NMR. In order to perform accurate LC–MS identification, the derivative 1‐hydroxy‐3‐phenyl[11C]urea was synthesized in a 35±4% decay‐corrected radiochemical yield. After 13 µA h bombardment and 21 min synthesis, 1.6 GBq of pure 1‐hydroxy‐3‐phenyl[11C]urea was collected starting from 6.75 GBq of [11C]carbon monoxide and the specific radioactivity of this compound was in the order of 686 GBq/µmol (3.47 nmol total mass). [11C]Hydroxyurea could be used in conjunction with PET to evaluate the uptake of this anticancer agent into tumour tissue in individual patients. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐[methyl11C]thymine ([11C]FMAU) [11C]‐ 1 was synthesised via a palladium‐mediated Stille coupling reaction of 1‐(2′‐deoxy‐2′‐fluoro‐β‐D‐arabinofuranosyl)‐5‐(trimethylstannyl)uracil 2 with [11C]methyl iodide in a one‐pot procedure. The reaction conditions were optimized by screening various catalysts and solvents, and by altering concentrations and reaction temperatures. The highest yield was obtained using Pd2(dba)3 and P(o‐tolyl)3 in DMF at 130°C for 5 min. Under these conditions the title compound [11C]‐ 1 was obtained in 28±5% decay‐corrected radiochemical yield calculated from [11C]methyl iodide (number of experiments=7). The radiochemical purity was >99% and the specific radioactivity was 0.1 GBq/μmol at 25 min after end of bombardment. In a typical experiment 700–800 MBq of [11C]FMAU [11C]‐ 1 was obtained starting from 6–7 GBq of [11C]methyl iodide. A mixed 11C/13C synthesis to yield [11C]‐ 1 /(13C)‐ 1 followed by 13C‐NMR analysis was used to confirm the labelling position. The labelling procedure was found to be suitable for automation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Positron emission tomography has increased the demand for new carbon‐11 radiolabeled tracers and building blocks. A promising radiolabeling synthon is [11C]benzyl iodide ([11C]BnI), because the benzyl group is a widely present functionality in biologically active compounds. Unfortunately, synthesis of [11C]BnI has received little attention, resulting in limited application. Therefore, we investigated the synthesis in order to significantly improve, automate, and apply it for labeling of the dopamine D2 antagonist [11C]clebopride as a proof of concept. [11C]BnI was synthesized from [11C]CO2 via a Grignard reaction and purified prior the reaction with desbenzyl clebopride. According to a one‐pot procedure, [11C]BnI was synthesized in 11 min from [11C]CO2 with high yield, purity, and specific activity, 52 ± 3% (end of the cyclotron bombardment), 95 ± 3%, and 123 ± 17 GBq/µmol (end of the synthesis), respectively. Changes in the [11C]BnI synthesis are reduced amounts of reagents, a lower temperature in the Grignard reaction, and the introduction of a solid‐phase intermediate purification. [11C]Clebopride was synthesized within 28 min from [11C]CO2 in an isolated decay‐corrected yield of 11 ± 3% (end of the cyclotron bombardment) with a purity of >98% and specific activity (SA) of 54 ± 4 GBq/µmol (n = 3) at the end of the synthesis. Conversion of [11C]BnI to product was 82 ± 11%. The reliable synthesis of [11C]BnI allows the broad application of this synthon in positron emission tomography radiopharmaceutical development. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Oseltamivir phosphate (Tamiflu ® ) is an anti‐influenza drug approved in many countries. Recently, in Japan, adverse effects on the central nervous system have been reported in younger patients administrated with Tamiflu. As a tool for elucidating the relationship between Tamiflu and its adverse effects, 11C‐labeled oseltamivir was synthesized through a two‐step reaction involving [11C]acetylation with [1‐11C]acetyl chloride. Starting from approximately 37.0 GBq of [11C]CO2, 1.2–1.8 GBq (n=5) of [11C]oseltamivir was obtained at the end of synthesis (EOS) 36–39 min after the end of bombardment. Radiochemical purity and specific activity were greater than 98% and 2.7–6.3 GBq/µmol at EOS, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In order to perform in vivo imaging of the NR2B NMDA receptor system by positron emission tomography, a NR2B selective NMDA receptor antagonist has been labelled with carbon‐11 (half‐life: 20 min). N‐[4‐(4‐fluorobenzyl)piperidin‐1‐yl]‐N′‐(2‐oxo‐1,3‐dihydrobenzimidazol‐5‐yl)oxamide has been described demonstrating high affinity and selectivity for the NR2B receptors (IC50 of 5 nM in [3H]Ro‐25,6981 binding assay). The labelling precursor and the reference compound were synthesized by coupling the 4‐(4‐fluorobenzyl)piperidine with the corresponding oxalamic acid. The reaction of [11C]phosgene with phenylenediamine precursor led the formation of the [11C]benzimidazolone ring present on the ligand. The labelling occurred in THF or acetonitrile and the decay corrected radiochemical yield was 30–40% from the produced [11C]methane. HPLC purification and formulation led to 2.6–3.7 GBq (70–100 mCi) of radioligand within 30–35 min. The specific radioactivity was 72–127 GBq/µmol (2–3.4 Ci/µmol) at the end of synthesis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Essential hypertension occurs in approximately 25% of the adult population and one cause of hypertension is primary aldosteronism. Targeting the angiotensin II AT1 receptor using PET and an appropriate tracer may offer a diagnostic method for adrenocortical tissue. This report describes the synthesis of the selective AT1 receptor antagonist [carboxyl11C]eprosartan 10, 4‐[2‐butyl‐5‐((E)‐2‐carboxy‐3‐thiophen‐2‐yl‐propenyl)‐imidazol‐1‐ylmethyl]‐[carboxyl11C]benzoic acid, and its precursor (E)‐3‐[2‐butyl‐3‐(4‐iodo‐benzyl)‐3H‐imidazol‐4‐yl]‐2‐thiophen‐2‐ylmethyl‐acrylic acid 9. 11C‐carboxylation of the iodobenzyl moiety was performed using a palladium‐mediated reaction with [11C]carbon monoxide in the presence of tetra‐n‐butyl‐ammonium hydroxide in a micro‐autoclave using a temperature gradient from 25 to 140°C over 5 min. After purification by semipreparative HPLC, [carboxyl11C]eprosartan 10 was obtained in 37–54% decay‐corrected radiochemical yield (from [11C]carbon monoxide) with a radiochemical purity >95% within 35 min of the end of bombardment (EOB). A 5‐µAh bombardment gave 2.04 GBq of 10 (50% rcy from [11C]carbon monoxide) with a specific activity of 160 GBq µmol?1 at 34 min after EOB. Frozen‐section autoradiography shows specific binding in kidney, lung and adrenal cortex. In vivo experiments in rats demonstrate a high accumulation in kidney, liver and intestinal wall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Rhodium‐mediated carbonylation reaction was applied to synthesize diethyl [carbonyl11C]malonate using [11C]carbon monoxide at low concentration. The synthesis was performed starting with ethyl diazoacetate, ethanol and the rhodium complex being made in situ by chloro(1,5‐cyclooctadiene)rhodium(I) dimer ([Rh(cod)Cl]2) and 1,2‐bis(diphenylphosphino)ethane (dppe), and the reaction is assumed to proceed via a ketene intermediate. The isolated radiochemical yield was 20% (75% analytical radiochemical yield) and the trapping efficiency of [11C]carbon monoxide in the order of 85%. The specific radioactivity of this compound was measured at 127 GBq/µmol (7.28 nmol total mass) after 8 µAh bombardment and 35 min synthesis. The corresponding 13C‐labelled compound was synthesized using (13C)carbon monoxide to confirm the position of the carbonyl‐labelled atom by 13C‐NMR. Diethyl [carbonyl11C]malonate was further used in subsequent alkylation step using ethyl iodide and tetrabutylammonium fluoride to obtain diethyl diethyl [carbonyl11C]malonate in 50% analytical radiochemical yield. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The 11C‐labelling of the taxane derivative BAY 59‐8862 ( 1 ), a potent anticancer drug, was carried out as a module‐assisted automated multi‐step synthesis procedure. The radiotracer [11C]1 was synthesized by reacting [1‐11C]acetyl chloride ( 6 ) with the lithium salt of the secondary hydroxy group of precursor 3 followed by deprotection. After HPLC purification of the final product [11C]1 , its solid‐phase extraction, formulation and sterile filtration, the decay‐corrected radiochemical yield of [11C]1 was in the range between 12 and 23% (related to [11C]CO2; n=10). The total synthesis time was about 54 min after EOB. The radiochemical purity of [11C]1 was greater than 96% and the chemical purity exceeded 80%. The specific radioactivity was 16.8±4.7 GBq/µmol (n=10) at EOS starting from 80 GBq of [11C]CO2. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
[11C]MENET, a promising norepinephrine transporter imaging agent, was prepared by Suzuki cross coupling of 1 mg N‐t‐Boc pinacolborate precursor with [11C]CH3I in DMF using palladium complex generated in situ from Pd2(dba)3 and (o‐CH3C6H4)3P together with K2CO3 as the co‐catalyst, followed by deprotection with trifluoroacetic acid. This improved radiolabeling method provided [11C]MENET in high radiochemical yield at end of synthesis (EOS, 51 ± 3%, decay‐corrected from end of 11CH3I synthesis, n = 6), moderate specific activity (1.5–1.9 Ci/µmol at EOS), and high radiochemical (>98%) and chemical purity (>98%) in a synthesis time of 60 ± 5 min from the end of bombardment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
[2‐(3,4‐Dihydro‐1H‐isoquinolin‐2‐yl)‐pyridin‐4‐yl]‐dimethylamine, Ro‐647312 ( 1 ) represents a new novel class of NR1/2B subtype selective NMDA ligand. Ro‐647312 has been radiolabelled with carbon‐11 using [11C]methyl triflate from the nor‐methyl compound 2 . The reaction was performed in acetone as solvent using aqueous NaOH as base. Following HPLC purification [11C]Ro‐647312 ([11C]‐ 1 ) was obtained in 6.9–9.2% (n = 3) radiochemical yield decay‐corrected based on starting [11C]CO2, with specific radioactivity measured at the end of the radiosynthesis ranging from 1.0 to 3.5 Ci/µmol (37–129 GBq/µmol). Radiochemical and chemical purities were assessed as >99 and >95%, respectively. Following i.v. injection of [11C]‐ 1 in rat, the distribution of radioactivity was homogeneous in all brain structures and did not correlate with the known distribution of NR2B subunits. The radioactivity observed in plasma was also higher than any brain structure throughout the time course of the experiment. [11C]‐ 1 does not possess the required properties for imaging NMDA receptors using positron emission tomography. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Within a novel series of 2‐oxazolidinones developed in the past by Sanofi‐Synthélabo, SL25.1188 ((S)‐5‐methoxymethyl‐3‐[6‐(4,4,4‐trifluorobutoxy)benzo[d]isoxazol‐3‐yl]oxazolidin‐2‐one), a compound that inhibits selectively and competitively MAO‐B in human and rat brain (Ki values of 2.9 and 8.5 nM for MAO‐B, respectively, and ED50 (rat): 0.6 mg/kg p.o.), was considered an appropriate candidate for imaging this enzyme with positron emission tomography. SL25.1188 was labelled with carbon‐11 (T1/2: 20.38 min) in one chemical step using the following process: (i) reaction of [11C]phosgene with the corresponding ring‐opened precursor (1.2–2.5 mg) at 100°C for 2 min in dichloromethane (0.5 mL) followed by (ii) concentration to dryness of the reaction mixture and finally (iii) semi‐preparative HPLC purification on a Waters Symmetry® C18. A total of 300–500 MBq of [11C]SL25.1188 (>95% chemically and radiochemically pure) could be obtained within 30–32 min (Sep‐pak‐based formulation included) with specific radioactivities ranging from 50 to 70 GBq/µmol (3.5–7% decay‐corrected radiochemical yield, based on starting [11C]CH4). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
(R)‐(?)‐2‐[11C]Methoxy‐Nn‐propylnorapomorphine ([11C]MNPA ([11C]2)) is an agonist radioligand of interest for imaging D2/D3 receptors in vivo. Here we sought to develop an improved radiosynthesis of this radioligand. Reference 2 was synthesized in nine steps with an overall yield of about 5%, starting from codeine. Trimethylsilyldiazomethane proved to be a practical improvement in comparison to diazomethane in the penultimate methylation step. A protected precursor for radiolabeling ((R)‐(?)‐2‐hydroxy‐10,11‐acetonide‐Nn‐propylnoraporphine, 4) was prepared from (R)‐(?)‐2‐hydroxy‐Nn‐propylnorapomorphine (1) in 30% yield. [11C]2 was prepared from 4 via a two‐step one‐pot radiosynthesis. The first step, methylation of 4 with [11C]methyl triflate, occurred in quantitative radiochemical yield. The second step, deprotection of the catechol moiety with HCl and heat, yielded 60–90% of [11C]2 giving an overall incorporation yield from [11C]methyl triflate of 60–90%. In a typical run more than 1 GBq of [11C]2, was produced from carbon‐11 generated from a 10‐min proton irradiation (16 MeV; 35 µA) of nitrogen–hydrogen target gas. The radiochemical purity of [11C]2 was > 99% and specific radioactivity at the time of injection was 901±342 GBq/µmol (n=10). The total synthesis time was 35–38 min from the end of radionuclide production. The identity of [11C]2 was confirmed by comparing its LC‐MS/MS spectrum with those of reference 2 and (R)‐(?)‐10‐methoxy‐2,11‐dihydroxy‐Nn‐propylnoraporphine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
1,1′‐Methylene‐di‐(2‐naphthol) (ST1859), a candidate drug for the treatment of Alzheimer's disease, was radiolabelled with carbon‐11 with the aim to perform PET microdosing studies in humans. The radiosynthesis was automated in a commercial synthesis module (Nuclear Interface PET tracer synthesizer) and proceeded via reaction of [11C]formaldehyde with 2‐naphthol. [11C]formaldehyde was prepared by catalytic dehydrogenation of [11C]methanol (conversion yield: 48±11% (n = 19)) employing a recently developed silver‐containing ceramic catalyst. Starting from 69±3 GBq of [11C]carbon dioxide (n = 19), 4±1 GBq of [11C]ST1859 (decay‐corrected to the end of bombardment), readily formulated for intravenous administration, could be obtained in an average synthesis time of 38 min. The specific radioactivity of [11C]ST1859 at the end of synthesis exceeded 32 GBq/µmol. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号