首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the basic spatio-temporal gait measures of 898 primary school-aged children (5–13 years) and 82 young adults (18–27 years). Participants completed 6–8 walks at preferred speed along a GAITRite walkway whilst barefoot and whilst wearing athletic shoes or runners. Outcome measures (non-normalized and normalized) were gait speed, cadence, step and stride length, support base, single and double support, stance duration, foot angle and associated symmetry measures. Non-normalized measures of speed, step and stride length, support base and foot angle increased with age whereas cadence reduced. Normalized measures remained unchanged with age in children whereas the young adults (both conditions) exhibited a 2.3% reduction in single support, a 5.1% increase in double support and a 2.6% increase in stance duration (p < 0.0001). For the entire sample, shoes increased walking speed by 8 cm s−1, step length by 5.5 cm, stride length by 11.1 cm and base of support by 0.5 cm. In contrast, foot angle and cadence reduced by 0.1° and 3.9 steps min−1 respectively. Shoes increased both double support (1.6%) and stance time (0.8%), whereas single support reduced by 0.8%. Symmetry remained unaffected by age. On average, measures of step and stride symmetry (combining both conditions) fell around 0.7 cm, whereas measures of symmetry for step and stance time, single and double support fell around 0.6%. Footwear significantly affected gait (p < 0.0001). Gait may not be mature by age 13. Gait is symmetrical in healthy children and young adults but may change with pathology.  相似文献   

2.
Backward walking (BW) is an inherent component of mobility and function in daily activities, particularly indoors, when it is more likely that a person is barefoot. No studies to date have compared the spatio-temporal characteristics of BW with and without shoes in elderly individuals.This study compared spatio-temporal measures of BW and forward walking (FW) among elderly individuals while barefoot or wearing shoes. Forty-seven elderly individuals (13 men and 34 women, 76.7 ± 7.7 years of age) were evaluated. Participants were requested to walk at a comfortable, self-selected pace across the GAITRite® walkway for three trials under each of four conditions: walking forward (FW) and BW wearing their own comfortable low-heeled walking shoes and FW and BW walking without shoes. Gait speed, stride length and cadence were significantly reduced in BW versus FW, with an increase in double limb support (DLS), both with and without shoes. Barefoot BW resulted in significantly increased gait speed and cadence, and decreased DLS compared to BW with shoes. BW stride length was not affected by footwear. While barefoot FW was also associated with a significant increase in cadence and decrease in DLS time compared to walking with shoes, it decreased stride length and had no detrimental effect on gait speed. Assessment of the spatio-temporal parameters of walking barefoot and with shoes during FW and BW can contribute to our understanding of the ability of elderly individuals to adapt to changing walking conditions, and should be included in the assessment of functional mobility of elderly individuals.  相似文献   

3.
BackgroundGait stability and variability measures in barefoot and shod locomotion are frequently investigated in younger but rarely in older adults. Moreover, most studies examine gait measures in laboratory settings instead of real-life settings.Research questionsHow are gait stability and variability parameters affected by footwear compared to barefoot walking in younger and older adults as well as under indoor vs. outdoor conditions?MethodsHealthy younger (<35 years) and older adults (>65 years) participated in the randomised within-subject study design. Participants conducted consecutive 25 m walking trials barefoot and with standardised footwear inside and outside. Inertial measurement units were mounted on the participant’s foot and used to calculate local dynamic stability (LDS), velocity and minimal toe clearance (MTC), stride length and stride time, including variabilities for these parameters. Linear mixed models were calculated.ResultsData of 32 younger (17 female, 15 male, age: 30 ± 4 years) and 42 older participants (24 female, 18 male, age: 71 ± 4 years) were analysed. MTC variability was higher in shod conditions compared to barefoot (p = 0.048) and in outdoor conditions (p < 0.001). LDS was different between age groups (p < 0.001). Gait velocity and MTC were higher in shod and outdoor conditions (both p < 0.001). Stride length and time were higher in shod conditions (both p < 0.001) and different between outdoor vs. indoor (longer stride length and shorter stride time outdoor, both (p < 0.001) as well as age groups (shorter stride length (p < 0.021) and stride time in older adults (p < 0.001).SignificanceResults suggest that gait stability and variability in older and younger adults are acutely affected by footwear vs. barefoot and indoor vs. outdoor walking conditions, indicating a high adaptiveness of these parameters to different experimental conditions. Consequently, future studies should be careful with generalising results obtained under certain conditions. Findings stress the clinical potential of barefoot walking.  相似文献   

4.
《Gait & posture》2014,39(4):730-734
The division of gait into cycles is crucial for identifying deficits in locomotion, particularly to monitor disease progression or rehabilitative recovery. Initial contact (IC) events are often used to separate movement into repetitive cycles yet automatic methods for IC identification in pathological gait are limited in both number and capacity. The aim of this work was to develop a more precise algorithm in IC detection. A projected heel markers distance (PHMD) algorithm is presented here and compared for accuracy to the high pass algorithm (HPA) in IC identification. Kinematic gait data from two clinical cohorts were analyzed and processed automatically for IC detection: (1) unilateral total hip arthroplasty (THA) patients (n = 27) and (2) cerebral palsy pediatric (CPP) patients (n = 20). IC events determined by the two algorithms were benchmarked against the IC events detected manually and from force plates. The PHMD method detected 96.6% IC events in THA patients and 99.1% in CPP patients with an average error of 5.3 ms and 18.4 ms. The HPA method detected 99.1% IC events in THA patients and 97.3% IC events in CPP patients, with an average error of 57.5 ms and 10.2 ms. PHMD identified no superfluous IC events, whereas 51.5% of all THA IC and 47.6% of CPP IC were superfluous events requiring manual deletion with HPA. With the superior comparison against the current gold standard, the PHMD algorithm appears valid for a wide spectrum of clinical data sets and allows for precise, fully automatic processing of kinematic gait data without additional sensors, triggers, or force plates.  相似文献   

5.

Objectives

Load reduction is an important consideration in conservative management of tendon overuse injuries such as Achilles tendinopathy. Previous research has shown that the use of rocker shoes can reduce the positive ankle power and plantar flexion moment which might help in unloading the Achilles tendon. Despite this promising implication of rocker shoes, the effects on hip and knee biomechanics remain unclear. Moreover, the effect of wearing rocker shoes on different running strike types is unexplored. The aim of this study was to investigate biomechanics of the ankle, knee and hip joints and the role of strike type on these outcomes.

Design

Randomized cross-over study.

Methods

In this study, 16 female endurance runners underwent three-dimensional gait analysis wearing rocker shoes and standard shoes. We examined work, moments, and angles of the ankle, knee and hip during the stance phase of running.

Results

In comparison with standard shoes, running with rocker shoes significantly (p < 0.001) reduced the positive (16%), and negative (32%) work at the ankle joint. Plantar flexion moment peak and impulse were also reduced by 11% and 12%, respectively. Reduction in these variables was almost two times larger for midfoot strikers than for rearfoot strikers. At the knee joint running with rocker shoes significantly increased the positive work (14%), extension moment peak (6%), and extension moment impulse (12%).

Conclusions

These findings indicate that although running with rocker shoes might lower mechanical load on the Achilles tendon, it could increase the risk of overuse injuries of the knee joint.  相似文献   

6.
The aim of this study was to utilise one-dimensional statistical parametric mapping to compare differences between biomechanical and electromyographical waveforms in runners when running in barefoot or shod conditions.Fifty habitually shod runners were assessed during overground running at their current 10-km race running speed. Electromyography, kinematics and ground reaction forces were collected during these running trials. Joint kinetics were calculated using inverse dynamics. One-dimensional statistical parametric mapping one sample t-test was conducted to assess differences over an entire gait cycle on the variables of interest when barefoot or shod (p < 0.05).Only sagittal plane differences were found between barefoot and shod conditions at the knee during late stance (18–23% of the gait cycle) and swing phase (74–90%); at the ankle early stance (0–6%), mid-stance (28–38%) and swing phase (81–100%). Differences in sagittal plane moments were also found at the ankle during early stance (2, 4–5%) and knee during early stance (5–11%). Condition differences were also found in vertical ground reaction force during early stance between (3–10%).An acute bout of barefoot running in habitual shod runners invokes temporal differences throughout the gait cycle. Specifically, a co-ordinative responses between the knee and ankle joint in the sagittal plane with a delay in the impact transient peak; onset of the knee extension and ankle plantarflexion moment in the shod compared to barefoot condition was found. This appears to affect the delay in knee extension and ankle plantarflexion during late stance. This study provides a glimpse into the co-ordination of the lower limb when running in differing footwear.  相似文献   

7.
《Gait & posture》2015,41(4):730-734
The division of gait into cycles is crucial for identifying deficits in locomotion, particularly to monitor disease progression or rehabilitative recovery. Initial contact (IC) events are often used to separate movement into repetitive cycles yet automatic methods for IC identification in pathological gait are limited in both number and capacity. The aim of this work was to develop a more precise algorithm in IC detection. A projected heel markers distance (PHMD) algorithm is presented here and compared for accuracy to the high pass algorithm (HPA) in IC identification. Kinematic gait data from two clinical cohorts were analyzed and processed automatically for IC detection: (1) unilateral total hip arthroplasty (THA) patients (n = 27) and (2) cerebral palsy pediatric (CPP) patients (n = 20). IC events determined by the two algorithms were benchmarked against the IC events detected manually and from force plates. The PHMD method detected 96.6% IC events in THA patients and 99.1% in CPP patients with an average error of 5.3 ms and 18.4 ms. The HPA method detected 99.1% IC events in THA patients and 97.3% IC events in CPP patients, with an average error of 57.5 ms and 10.2 ms. PHMD identified no superfluous IC events, whereas 51.5% of all THA IC and 47.6% of CPP IC were superfluous events requiring manual deletion with HPA. With the superior comparison against the current gold standard, the PHMD algorithm appears valid for a wide spectrum of clinical data sets and allows for precise, fully automatic processing of kinematic gait data without additional sensors, triggers, or force plates.  相似文献   

8.

Objectives

To determine the effect of a combination of a minimalist shoe and increased cadence on measures of patellofemoral joint loading during running in individuals with patellofemoral pain.

Design

Within-participant repeated measures with four conditions presented in random order: (1) control shoe at preferred cadence; (2) control shoe with +10% cadence; (3) minimalist shoe at preferred cadence; (4) minimalist shoe with +10% cadence.

Methods

Fifteen recreational runners with patellofemoral pain ran on an instrumented treadmill while three-dimensional motion capture data were acquired. Peak patellofemoral joint stress, joint reaction force, knee extensor moment and knee joint angle during the stance phase of running were calculated. One-way repeated measures ANOVA was used to compare the control condition (1) to the three experimental conditions (2–4).

Results

Running in a minimalist shoe at an increased cadence reduced patellofemoral stress and joint reaction force on average by approximately 29% (p < 0.001) compared to the control condition. Running in a minimalist shoe at preferred cadence reduced patellofemoral joint stress by 15% and joint reaction force by 17% (p < 0.001), compared to the control condition. Running in control shoes at an increased cadence reduced patellofemoral joint stress and joint reaction force by 16% and 19% (p < 0.001), respectively, compared to the control condition.

Conclusions

In individuals with patellofemoral pain, running in a minimalist shoe at an increased cadence had the greatest reduction in patellofemoral joint loading compared to a control shoe at preferred cadence. This may be an effective intervention to modulate biomechanical factors related to patellofemoral pain.  相似文献   

9.
BackgroundThere remains a substantial lack of evidence to support the use of foot orthoses as a conservative treatment option for idiopathic toe walking (ITW). Encouraging heel contact during gait is one of the primary goals of most interventions in paediatric ITW.Research QuestionDoes the combined treatment of high-top boots and orthoses increase the number of heel contacts during gait and change spatio-temporal gait parameters?MethodsThis within subject designed randomised controlled trial recruited fifteen children diagnosed with ITW (n = 10 males). They were fitted with bilateral custom made rigid contoured carbon fibre foot orthoses placed inside high-top boots. To analyze the effect of this treatment, heel contacts and spatio-temporal parameters measured by an 8.3 m Gaitrite® mat were compared to barefoot walking and shod walking.ResultsAn immediate increase in heel contact (p = 0.021) was observed in the combined treatment only. Gait changes included a large increase in stride time in the combined treatment condition compared to barefoot walking (p = 0.006). This was associated with a decrease in the percentage of swing phase in the gait cycle (p < 0.010), an increase in stance phase (p < 0.010) and an increase in double support time (p < 0.001).SignificanceThese results suggest the hardness and thickness of the shoe and stiffness of the orthosis midsole may lead to improved local dynamic stability and foot position awareness with increased sensory feedback provided through the entire length of the foot. Further research is indicated to validate this treatment option on long term outcomes in this population group.  相似文献   

10.
BackgroundAlthough human gait is typically studied in a laboratory environment, the findings of laboratory-based gait assessments are often applied to daily life scenarios. Assessing gait in varied conditions may offer a better understanding of the influence of environment on gait performance.Research questionsHow do spatiotemporal gait measures differ between indoor overground walking, outdoor walking, and treadmill walking in healthy adults? Do different walking environments exaggerate age-related alterations in gait performance in older compared to young adults?Methods30 young (18−30yrs) and 28 older adults (60−80yrs) completed four randomized conditions at their typical, comfortable walking pace: 1) 8 m of indoor walking, 2) continuous indoor walking, 3) treadmill walking, and 4) outdoor walking on a sidewalk. Wearable inertial sensors recorded gait data and the magnitudes and variability (in standard deviations) of the following gait measures were computed: cadence, percent double support, stride length (with sample entropy), and gait velocity.ResultsDespite the lack of significant univariate interactions between group and walking condition, significant main effects for condition and group were observed in both the magnitude and variability analyses. Treadmill walking resulted in a slower gait with shorter, less variable strides (p < .001), while walking outdoors resulted in faster gait with longer strides (p < .001) compared to other walking conditions. Stride length regularity was reduced when walking outdoors compared to treadmill walking (p = .019).SignificanceThe results showed that the effects of walking condition on gait measures were more dramatic than participant age, and gait performance differs between walking environments in both older and younger adults. Since daily life gait encompasses both tightly controlled and unconstrained, free-living walking, researchers and clinicians should use caution when generalizing gait performance across walking conditions. Measures of gait performance typically used in laboratory gait analyses may not adequately characterize daily life gait in indoor and outdoor environments.  相似文献   

11.
BackgroundNike ZoomX Vaporfly (NVF) improves running economy and performance. The biomechanical mechanisms of these shoes are not fully understood, although thicker midsoles and carbon fiber plates are considered to play an important role in the spring-like leg characteristics during running. Leg stiffness (kleg) in the spring-mass model has been commonly used to investigate spring-like running mechanics during running.Research questionDoes kleg during running differ between NVF and traditional (TRAD) shoes?MethodsEighteen male habitual forefoot and/or midfoot strike runners ran on a treadmill at 20 km/h with NVF and TRAD shoes, respectively. kleg, vertical oscillation of the center of mass (∆CoM), spatiotemporal parameters, and mechanical loading were determined.Resultskleg was 4.8% lower in the NVF shoe condition than in the TRAD condition, although no significant difference was observed. ∆CoM was not significantly different between shoe conditions. Spatiotemporal parameters and mechanical loading were also not significantly different between shoe conditions.SignificanceThe NVF shoe is well known as improving the running economy and running performance for the cause by characteristics of better spring function. Contrary to expectation, kleg and other parameters were not significantly different during running in the NVF compared to TRAD shoe at 20 km/h. These findings indicate that well-trained runners’ spring-like running mechanics would not alter even if wearing the NVF shoes.  相似文献   

12.
13.
Treadmills are appealing for gait studies, but some gait mechanics are disrupted during treadmill walking. The purpose of this study was to examine the effects of speed and treadmill walking on walking smoothness and rhythmicity of 40 men and women between the ages of 70-96 years. Gait smoothness was examined during overground (OG) and treadmill (TM) walking by calculating the harmonic ratio from linear accelerations measured at the level of the lumbar spine. Rhythmicity was quantified as the stride time standard deviation. TM walking was performed at two speeds: a speed matching the natural OG walk speed (TM-OG), and a preferred TM speed (PTM). A dual-task OG condition (OG-DT) was evaluated to determine if TM walking posed a similar cognitive challenge. Statistical analysis included a one-way Analysis of Variance with Bonferroni corrected post hoc comparisons and the Wilcoxon signed rank test for non-normally distributed variables. Average PTM speed was slower than OG. Compared to OG, those who could reach the TM-OG speed (74.3% of sample) exhibited improved ML smoothness and rhythmicity, and the slower PTM caused worsened vertical and AP smoothness, but did not affect rhythmicity. PTM disrupted smoothness and rhythmicity differently than the OG-DT condition, likely due to reduced speed. The use of treadmills for gait smoothness and rhythmicity studies in older adults is problematic; some participants will not achieve OG speed during TM walking, walking at the TM-OG speed artificially improves rhythmicity and ML smoothness, and walking at the slower PTM speed worsens vertical and AP gait smoothness.  相似文献   

14.
BackgroundThe ability to walk at various speeds is essential to independence for older adults. Maintaining fast walking requires changes in spatial-temporal measures, increasing step length and/or decreasing step time. It is unknown how mobility affects the parameters that change between preferred and fast walking.Research QuestionHow does preferred walking performance and measures of strength and mobility relate to the approach (decreasing step time or increasing step length) older adults at risk for mobility disability use to maintain fast walking speeds?.MethodsPeak isokinetic dynamometry of knee and ankle and several mobility evaluations, including the Timed Up-and-Go, Short Physical Performance Battery, and Dynamic Gait Index, assessed mobility and strength in 57 participants, aged 65–80. Biomechanical gait analysis was used to analyze step length, step time, gait speed at preferred and fast gait speeds and ground reaction force during preferred walking. A score combining the differences between step length and time at fast and preferred speeds (Length-Time Difference) separated participants into two groups: (1) Length, representing a predominant increase in step length to walk fast and (2) Time, a predominant decrease in step time.ResultsThose who decreased step time to produce increased speed performed worse during repeated chair stands (p = .006) with no difference in isokinetic strength (p ≥ .15). During preferred walking, the Time group displayed increased propulsive impulse compared to the Length group (p = .007), despite no differences in preferred speed, step length, or time (p ≥ .50).SignificanceWhile kinetics of preferred walking differed between groups separated by Length-Time Difference, basic spatial-temporals of preferred walking did not in this homogenous population. Length-Time Difference relates to a common mobility assessment and could be easily calculated by clinicians to provide a quantitative and more sensitive measure of ambulatory performance.  相似文献   

15.
《Gait & posture》2014,39(1):243-246
Injurious falls associated with cell phone use during ambulation are increasingly common. Studies examining texting while walking suggest this task alters the attentional component of walking to the extent that safety may be compromised. Here, we quantified the extent to which frontal plane dynamic stability while walking was affected by the cognitive and physical demands of texting. Twenty experienced texters performed four, 10-min treadmill walking tasks at a self-selected velocity in random order: (1) normal walk (control), (2) walking while verbally performing mathematical calculations (cognitive demand), (3) walking while bimanually holding and looking directly at a phone (physical demand), and (4) walking while texting continuous mathematical calculations (cognitive and physical). We quantified the frontal plane minimum margin of stability (MOSmin), a measure that considers the position and normalized velocity of the center of mass with respect to the lateral border of the base of support was calculated over each 10-min walking period. Compared to the normal walking condition, the texting and phone holding conditions resulted in a small but significant (6%) increase in MOSmin (p = 0.005 and 0.026, respectively). Compared to normal walking, the effect of performing mathematical calculations on MOSmin was not significant (p = 0.80). These results suggest that frontal plane stability of experienced texters during controlled treadmill walking conditions can be affected by the physical, but not the cognitive demand of texting. This may represent a compensatory mechanism by the CNS to ensure stability in the event of an unexpected disturbance.  相似文献   

16.
BACKGROUND: Gait disorders caused by dementia have been associated with frontal lobe dysfunction. Dual-tasking is used to explore the involvement of cortical level in gait control. It has been shown that dual-task induced gait changes that could be related to (1) the efficiency of executive function, (2) the level of difficulty involved in the walking-associated task, or (3) the articulo-motor components comprised in the walking-associated task. A better understanding of dual-task related changes in demented subjects with frontal lobe dysfunction could help us to clarify the role of the frontal lobe in motor gait control. OBJECTIVE: To assess and compare the effects of two mental arithmetic tasks involving similar articulo-motor components but different level of difficulty on the mean values and coefficient of variation (CV) of stride time among demented older adults with impaired executive function. METHODS: The mean values and coefficients of variation of stride time were measured using a GAITRite-System among 16 demented older adults with impaired executive function while walking with and without forward counting (FC) and backward counting (BC). RESULTS: The mean values and CV of stride time were significantly higher under both dual-task conditions than during a simple walking task (p<0.05). The change in CV of stride time during BC was significantly higher when compared with the change during FC (p=0.015), whereas the change in mean value was not significant (p=0.056). There was no difference between the dual-task and single task condition as far the number of enumerated figures were concerned (p=0.678 for FC and p=0.069 for BC), but significantly fewer figures were enumerated while BC compared with FC (p<0.001). CONCLUSION: BC provoked more changes in gait parameters than FC with major modification in gait variability related to an inappropriate focusing of attention. These findings suggest that the CV may be a suitable criterion for the assessment of gait control.  相似文献   

17.
18.
The purpose of this study was to examine the effect of barefoot running on initial loading rate (LR), lower extremity joint kinematics and kinetics, and neuromuscular control in habitually shod runners with an emphasis on the individual response to this unfamiliar condition.Kinematics and ground reaction force data were collected from 51 habitually shod runners during overground running in a barefoot and shod condition. Joint kinetics and stiffness were calculated with inverse dynamics. Inter-individual initial LR variability was explored by separating individuals by a barefoot/shod ratio to determine acute responders/non-responders.Mean initial LR was 54.1% greater in the barefoot when compared to the shod condition. Differences between acute responders/non-responders were found at peak and initial contact sagittal ankle angle and at initial ground contact. Correlations were found between barefoot sagittal ankle angle at initial ground contact and barefoot initial LR.A large variability in biomechanical responses to an acute exposure to barefoot running was found. A large intra-individual variability was found in initial LR but not ankle plantar–dorsiflexion between footwear conditions. A majority of habitually shod runners do not exhibit previously reported benefits in terms of reduced initial LRs when barefoot. Lastly, runners who increased LR when barefoot reduced LRs when wearing shoes to levels similar seen in habitually barefoot runners who do adopt a forefoot-landing pattern, despite increased dorsiflexion.  相似文献   

19.
BackgroundThe biomechanics of barefoot and shod running are different for typically developing children but unknown for children with cerebral palsy (CP). Such differences may have implications for injury and performance.AimsThe primary aims of this study were to compare the lower limb biomechanics of barefoot and shod running in children with CP, and to determine whether any differences were the same in GMFCS levels I and II.MethodsThis cross-sectional study examined 38 children with CP (n = 24 (GMFCS) level I; n = 14 GMFCS II), running overground at 3 speeds (jog, run, sprint) in barefoot and shod conditions. Marker trajectories and force plate data were recorded, and lower limb kinematics, kinetics and spatiotemporal variables were derived. Differences between barefoot and shod running were analysed using linear mixed models.ResultsFor both GMFCS levels, barefoot running resulted in higher loading rates, but smaller impact peaks at all speeds. Barefoot running was associated with greater hip and knee power; less ankle dorsiflexion and hip flexion at initial contact, and less ankle and knee range of motion during stance, compared to shod running, at all speeds. Barefoot stride length was shortened, and cadence increased compared to shod during jogging and running but not sprinting. For GMFCS level I only, barefoot running involved a higher incidence of forefoot strike, greater ankle power generation and less hip range of motion during stance.SignificanceRunning barefoot may facilitate running performance by increasing power generation at the ankle in children with CP, GMFCS level I. Higher barefoot loading rates may have implications for performance and injury.  相似文献   

20.
BackgroundThe fractal dynamics of gait variability in people with Parkinson’s disease has been studied by applying the detrended fluctuation analysis (DFA) to short time series (<200 strides). However, DFA is sensitive to time series length, and it is unclear if DFA results from short time series are reliable and if they reflect the fractal dynamics of longer time series.Research questionIs DFA reliable when applied to short time series?MethodsWe applied DFA to stride time series from five 3-min trials and one 15-min trial in 12 people with Parkinson’s disease, 14 healthy older adults and 14 healthy young adults walking overground. Within each group, intraclass correlations (ICC 3,1) were performed to assess the reliability of i) the five 3-min trials together, ii) each 3-min trials to the 15-min trial, and iii) the first 150 strides from the 15-min trial to the full 15-min trial.ResultsOur three main findings are that 1) stride time α-DFA values are not consistent from trial-to-trial for short stride time series, 2) stride time α-DFA values from each 3-min trials are not consistent when compared to stride time α-DFA values from a 15-min trial, and 3) stride time α-DFA values from the first 150 strides of the 15-min trial are not consistent when compared to α-DFA values from the full 15-min trial.SignificanceOur results confirm that α-DFA values from 3-min walking trials are not reliable, and that they do not reflect the scale invariant properties of longer time series. This suggests that previous studies assessing the fractal dynamics of gait variability from about 3-min walking must be interpreted with caution. A major clinical implication is that DFA cannot be used to study gait in people unable to perform 500 strides continuously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号