首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The supratrigeminal region (Vsup) is important for coordination of smooth jaw movement. However, little is known about the synaptic connections of the Vsup premotoneurons with the trigeminal motor neurons. In the present study, we examined axon terminals of Vsup premotoneurons in the contralateral trigeminal motor nucleus (Vmo) by a combination of anterograde tracing with cholera toxin B–horseradish peroxidase (CTB‐HRP), postembedding immunohistochemistry for the amino acid transmitters glutamate, GABA, and glycine, and electron microscopy. Tracer injections resulted in anterograde labeling of axon terminals of the Vsup premotoneurons in the motor trigeminal nucleus (Vmo). The labeled boutons in Vmo exhibited immunoreactivity for glutamate, GABA, or glycine: glutamate‐immunopositive boutons (69%) were more frequently observed than GABA‐ or glycine‐immunopositive boutons (19% and 12%, respectively). Although most labeled boutons (97%) made synaptic contacts with a single postsynaptic dendrite, a few glutamate‐immunopositive boutons (3%) showed synaptic contact with two dendrites. No labeled boutons participated in axoaxonic synaptic contacts. Most labeled boutons (78%) were presynaptic to dendritic shafts, and the remaining 22% were presynaptic to somata or primary dendrites. A large proportion of GABA‐ or glycine‐immunopositive boutons (40%) were presynaptic to somata or primary dendrites, whereas most glutamate‐immunopositive boutons (86%) were presynaptic to dendritic shafts. These results indicate that axon terminals of Vsup premotoneurons show simple synaptic connection with Vmo neurons. This may provide the anatomical basis for the neural information processing responsible for jaw movement control. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
In order to study the morphological characteristics and terminating patterns of the neurons of the trigeminal mesencephalic nucleus (Vme), 55 masseteric neurons in Vme in the rat were stained by intracellular injection of horseradish peroxidase (HRP). Labeled cells were distributed throughout the nucleus. These neurons were divided into three types: uni- or pseudounipolar (type A, n = 43), bipolar (type B, n = 5), and multipolar cells (type C, n = 7). Each type was further divided into two subtypes according to the largest diameter of the perikarya (type a greater than or equal to 30 microns, type b less than 30 microns). The central processes of type Aa neurons projected to the following three groups of target nuclei: 1) nuclei functioning as interneurons, including supratrigeminal nucleus (Vsup), intertrigeminal nucleus (Vint), juxta-trigeminal region (Vjux), and parvicellular nucleus of the pontomedullary reticular formation (PcRF); 2) motor nuclei, including the trigeminal motor nucleus (Vmo), accessory facial nucleus (NVIIacs), accessory abducens nucleus (NVIacs), and a small number of labeled axons in the oculomotor nucleus and trochlear nucleus; 3) sensory nuclei, including the dorsomedial part of the principal trigeminal sensory nucleus (Vpdm) and the dorsomedial part of subnucleus oralis of the trigeminal spinal nucleus (Vodm). Labeled processes were dense in the Vsup, Vmo, and Vpdm. The proprioceptive pathway of the fifth nerve is discussed. Direct projections from type Aa neurons of Vme to the Vpdm and dorsolateral part of the Vsup contribute to conduction of the proprioceptive information from spindles of masticatory muscle to the contralateral thalamus in the rat. Different axon morphology, distribution, terminal branch density, and terminating patterns of type Aa neurons were noted in different functional groups of the projecting nuclei, especially in the Vsup, Vmo, and Vpdm. The highest terminal branching density, the most extensive distribution, and two different types of branching patterns (claw-like and comb-like) were observed in Vsup. Selective distribution and single-beaded or "Y"-shaped terminal branches were observed in Vmo. In the Vppdm the axonal branches were sparser than in the Vsup or Vmo, and had an arrangement like the branches of a weeping willow tree. These characteristics of anatomical organization might be related to the function of each projecting nucleus.  相似文献   

3.
Projections from physiologically identified jaw-muscle spindle afferents onto trigeminothalamic neurons were studied in the rat. Trigeminothalamic neurons were identified by means of retrograde transport of horseradish peroxidase from the ventroposteromedial nucleus of the thalamus. Labeled neurons were found contralaterally in the supratrigeminal region (Vsup), the trigeminal principal sensory nucleus, the ventrolateral part of the trigeminal subnucleus oralis, the spinal trigeminal subnuclei interpolaris and caudalis, the reticular formation, and an area ventral to the trigeminal motor nucleus (Vmo) and medial to the trigeminal principal sensory nucleus (AVM). Jaw-muscle spindle afferents were physiologically identified by their increased firing during stretehing of the jaw muscles and intracellularly injected with biotinamide. Axon collaterals and boutons from jaw-muscle spindle afferents were found in Vmo; Vsup; the dorsomedial part of the trigeminal principal sensory nucleus (Vpdm); the dorsomedial part of the spinal trigeminal subnuclei oralis, interpolaris (Vidm) and caudalis; the parvicellular reticular formation (PCRt); and the mesencephalic trigeminal nucleus. Trigeminothalamic neurons in Vsup, Vpdm, Vidm, PCRt, and AVM were associated with axon collaterals and boutons from intracellularly stained jaw-muscle spindle afferents. Trigeminothalamic neurons in Vsup, Vpdm, Vidm, and PCRt were closely apposed by one to 14 intracellularly labeled boutons from jaw-muscle spindle afferents, suggesting a powerful input to some trigeminothalamic neurons. These data demonstrate that muscle length and velocity feedback from jaw-muscle spindle afferents is projected to the contralateral thalamus via multiple regions of the trigeminal system and implicates these pathways in the projection of trigeminal proprioceptive information to the cerebral cortex. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Neural pathways conveying proprioceptive feedback from the jaw muscles were studied in rats by combining retrograde and intracellular neuronal labeling. Initially, horseradish peroxidase was iontophoresed unilaterally into the trigeminal motor nucleus (Vmo). Two days later, 1-5 jaw-muscle spindle afferent axons located in the mesencephalic trigeminal nucleus were physiologically identified and intracellularly stained with biotinamide. Stained mesencephalic trigeminal jaw-muscle spindle afferent axon collaterals and boutons were predominantly distributed in the supratrigeminal region (Vsup), Vmo, dorsomedial trigeminal principal sensory nucleus (Vpdm), parvicellular reticular formation (PCRt), alpha division of the parvicellular reticular formation (PCRtA), and dorsomedial portions of the spinal trigeminal subnuclei oralis (Vodm), and interpolaris (Vidm). Numerous neurons retrogradely labeled with horseradish peroxidase from the trigeminal motor nucleus were found bilaterally in the PCRt, PCRtA, Vodm, and Vidm. Retrogradely labeled neurons were also present contralaterally in the Vsup, Vpdm, Vmo, peritrigeminal zone, and bilaterally in the dorsal medullary reticular field. Putative contacts between intracellularly stained mesencephalic trigeminal jaw-muscle spindle afferent boutons and trigeminal premotor neurons retrogradely labeled with horseradish peroxidase were found in the ipsilateral Vodm, PCRtA, and PCRt, as well as the contralateral Vsup, Vmo, Vodm, PCRt, and PCRtA. Thus, multiple disynaptic jaw-muscle spindle afferent-motoneuron circuits exist. These pathways are likely to convey long-latency jaw-muscle stretch reflexes and may contribute to stiffness regulation of the masticatory muscles.  相似文献   

5.
Intra-axonal recording and horseradish peroxidase (HRP) injection techniques were employed to define the response properties of periodontal mechanoreceptive afferents originating from the trigeminal mesencephalic nucleus (Vmes) and their morphological characteristics. The periodontal Vmes neurons were classified into two types: slowly adapting (SA) and fast adapting (FA) types. The central terminals of 7 SA and 4 FA afferents were recovered for detailed analyses. The whole profile of SA and FA neurons were unipolar in shape and their cell bodies were located in the dorsomedial parts of the Vmes. The united (U) fiber traveled caudally from the soma to the dorsolateral aspect of the trigeminal motor nucleus (Vmo), where it split into the peripheral (P) and C fibers with a T- or Y-shaped appearance. The P fiber joined the trigeminal sensory or motor tract. The C fiber descended caudally within Probst's tract. All 3 stem fibers issued main collaterals. The main collaterals of all neurons examined formed terminal arbors in the supratrigeminal nucleus (Vsup) and all but two SA neurons projected to the intertrigeminal region (Vint), while the projections to other nuclei of the trigeminal motor nucleus (Vmo), juxtatrigeminal region (Vjux), main sensory nucleus (Vp) and oral nucleus (Vo.r) differed between SA and FA afferents and between neurons of the same type. The SA and FA neurons were classified into three and two subgroups, respectively. The major differences in central projections between the two types were that all the FA neurons projected to the Vp or Vo.r but none of SA type and this relation was reversed in the projection to the Vjux, and that more than half of SA neurons projected to Vmo but only one FA neuron to the Vmo. The Vmes neurons which sent their collaterals into the Vmo had the P fiber passing through the tract of the trigeminal motor nerve. The average size of somata and mean diameters of U fibers and main collaterals from C fiber were significantly larger in SA neurons than FA neurons. The average size of fiber varicosities became smaller in the following nuclei, Vmo, Vsup, Vp, Vint and Vo.r, but not significant between the two functional types. The functional role of the periodontal Vmes afferents to jaw reflexes was discussed particularly with respect to their central projection sites in the brainstem nuclei.  相似文献   

6.
Previous studies indicate that the trigeminal motor nucleus (Vmo) and supratrigeminal nucleus (Vsup) receive direct projections from muscle spindle (MS) and periodontal ligament (PL) afferents. The aim of the present study is to examine the ultrastructural characteristics of the two kinds of afferent in both nuclei using the intracellular horseradish peroxidase (HRP) injection technique in the cat. Our observations are based on complete or near-complete reconstructions of 288 MS (six fibers) and 69 PL (eight fibers) afferent boutons in Vmo, and of 93 MS (four fibers) and 188 PL (four fibers) afferent boutons in Vsup. All the labeled boutons contained spherical synaptic vesicles and were presynaptic to neuronal elements, and some were postsynaptic to axon terminals containing pleomorphic, synaptic vesicles (P-endings). In Vmo neuropil, MS afferent boutons were distributed widely from soma to distal dendrites, but PL afferent boutons predominated on distal dendrites. Most MS afferent boutons (87%) formed synaptic specialization(s) with one postsynaptic target while some (13%) contacting two or three dendritic profiles; PL afferents had a higher number of boutons (43%) contacting two or more dendritic profiles. A small but significant number of MS afferent boutons (12%) received contacts from P-endings, but PL afferent boutons (36%) received three times as many contacts from P-endings as MS afferents. In Vsup neuropil, most MS (72%) and PL (87%) afferent boutons formed two contacts presynaptic to one dendrite and postsynaptic to one P-ending, and their participation in synaptic triads was much more frequent than in Vmo neuropil. The present study indicates that MS and PL afferent terminals have a distinct characteristic in synaptic arrangements in Vmo and Vsup and provides evidence that the synaptic organization of primary afferents differs between the neuropils containing motoneurons and their interneurons. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The innervation of the trigeminal motor nucleus by serotonergic fibers with cell bodies in the raphe nuclei pallidus and obscurus suggests that activation of this pathway may alter the excitability of trigeminal motoneurons. Thus, we recorded intracellular responses from cat jaw-closing (JC) and jaw-opening (JO) α-motoneurons evoked by raphe stimulation and used a combination of intracellular staining of horseradish peroxidase (HRP) and immunohistochemistry at the light and electron microscopic levels to examine the distribution of contacts made by serotonin (5-HT)-immunoreactive boutons on the two motoneurons types. Electrical stimulation applied to the nucleus raphe pallidus-obscurus complex induced a monosynaptic excitatory postsynaptic potential (EPSP) in JC (masseter) α-motoneurons and an EPSP with an action potential in JO (mylohyoid) α-motoneurons. The EPSP rise-times (time to peak) and half widths were significantly longer in the JC than in the JO motoneurons. The EPSPs were suppressed by systemic administration of methysergide (2 mg/kg). Six JC and seven JO α-motoneurons were well stained with HRP. Contacts were seen between 5-HT-immunoreactive boutons and the motoneurons. The JC motoneurons received a significantly larger number of the contacts than did the JO motoneurons. The contacts were distributed widely in the proximal three-fourths of the dendritic tree of JC motoneurons but were distributed on more proximal dendrites in the JO motoneurons. At the electron microscopic level, synaptic contacts made by 5-HT-immunoreactive boutons on motoneurons were identified. The present study demonstrated that JC motoneurons receive stronger 5-HT innervation, and this correlates with the fact that raphe stimulation caused larger EPSPs among these neurons than among JO motoneurons. J. Comp. Neurol. 384:443–455, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Protrusion and retraction of the tongue are essential components of such orofacial behaviors as mastication, respiration, and swallowing. Stimulation of the medial branch of the hypoglossal nerve yields tongue protrusion, while stimulation of the lateral branch yields tongue retraction in rat. We exploited the transsynaptic transport capabilities of pseudorabies virus to determine specific circuits that innervate protruder and retractor muscles of the rat tongue. Each group of muscles is innervated by distinct populations of hypoglossal motoneurons: caudal ventral and ventrolateral motoneurons form the largest proportion of those innervating protruders, whereas rostral dorsal motoneurons innervate retractors. Our primary finding was differential innervation of protruder and retractor motoneurons by premotoneurons in the lateral tegmental field: premotoneurons innervating protruder motoneurons were more ventral and ventromedial than those innervating retractor motoneurons. In addition, protruder motoneurons received projections from the ipsilateral lateral parabrachial nucleus but not spinal trigeminal nucleus or medial and ventral subnuclei of the solitary tract; the converse was true for retractor motoneurons. These results suggest segregation of functional networks that control hypoglossal motoneurons. The dorsal medulla, in or around the solitary tract, contains neurons specific to retractor motoneurons, and the region ventrolateral to the hypoglossal nucleus contains circuitry specific to protruder motoneurons. Common innervation of medial and lateral branch motoneurons is provided by premotoneurons in the raphe and gigantocellular reticular formation of the medial medulla. The midline medullary nuclei with diverse projections may coordinate complex behavior or modulate general motoneuron excitability, whereas the lateral reticular formation, with anatomically discrete projections, may control motoneurons that contribute to distinct orofacial behaviors. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The morphology of single neurons in the trigeminal mesencephalic nucleus (Vmes) that innervate periodontal ligament was studied in cats by the method of intraaxonal injection of horseradish peroxidase (HRP). Two kinds of Vmes neurons were distinguished on the basis of differences in axon profile and its central projection. The first type of Vmes neurons was unipolar in shape and its axon was divided into united (U), peripheral (P), and central axons (C). The U axon traveled caudally within the Vmes from the soma to the dorsolateral aspect of trigeminal motor nucleus (Vmo), where it split into the P and C axons with a T-shaped appearance. The P axon joined the spinal trigeminal tract across the trigeminal principal nucleus and ran within the tract and sensory root to exit the brainstem. The C axon traveled caudally within Probst's tract. All 3 axons issued axon collaterals. Axon collaterals from the U, P and the proximal C axons sent their terminal branches into the supra (Vsup) and intertrigeminal regions (Vint). Most axon collaterals from the C axon sent their terminal branches into the juxtatrigeminal regions (Vjuxta). The second type of Vmes neurons was bipolar and issued P and C axons. The C axon ran a short distance in the Vmes to leave the Vmes, and then it traveled caudolaterally in the rostrodorsomedial aspect of the Vmo. Finally, it entered in the Vmo and traveled caudally in the dorsolateral subdivision of the nucleus to its rostrocaudal mid-level. The C axon gave off massive axon collaterals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Horseradish peroxidase (HRP) was injected into the somata located in the rostrodorsomedial part (Vo.r) of the trigeminal nucleus oralis; an axonal projection to the trigeminal motor nucleus (Vmo) was demonstrated in two Vo.r neurons. The two neurons differed in their morphological and functional properties. The first Vo.r neuron responded to stimulation of low-threshold mechanoreceptors and its stem axon gave off massive axon collaterals that issued terminal branches to the dorsolateral subdivision of Vmo, Vo.r, and the medial and lateral parts of the lower brainstem reticular formation. The second Vo.r neuron was activated by stimulation of the tooth pulp or lingual nerve at twice longer latency than that of the first neuron. This stem axon was divided into two main ascending and one descending branches, and one of the main ascending branches was further bifurcated into two branches. The main non-bifurcated ascending branch gave off 4 collaterals, two of which sent terminal branches into the dorsolateral subdivision of Vmo and others into the Vo.r and juxta-trigeminal regions. The somato-dendroarchitectonic differences were also described in the two Vo.r neurons stained.  相似文献   

11.
Brain stem projections to the facial nucleus of the rat   总被引:1,自引:0,他引:1  
Horseradish peroxidase was injected into the medial and lateral columns of the facial nucleus of the rat. Following medial injections, cells were labelled by retrograde transport in the ipsilateral spinal trigeminal nucleus (caudalis) both medial vestibular nuclei, contralateral midbrain reticular formation and nucleus of the lateral lemniscus. The periaqueductal grey, interstitial nucleus and nucleus of Darkschewitch were also labelled ipsilaterally. Injections into the lateral column of the facial nucleus labelled the spinal trigeminal nucleus (oralis) and parabrachial nuclei ipsilaterally and the Darkschewitch and red nuclei contralaterally.  相似文献   

12.
Little is known about physiology and morphology of motoneurons and spindle afferents innervating the temporalis and on synaptic connections made between the two. The present study was aimed at investigating the above issues at the light microscopic level by using the intracellular recording and horseradish peroxidase or biotinamide labeling techniques and by the use of succinylcholine (SCh) for the classification of spindle afferents in the cat. Temporalis motoneurons had dendritic trees that ranged from a spherical form to an egg-shaped form. The shape deformation was more prominent for the dendritic trees made by motoneurons located closer to the nuclear border. No axon collaterals of the motoneurons were detected. On the basis of the values for the dynamic index after SCh infusion, temporalis spindle afferents were classified into two populations: presumptive groups Ia and II. The spindle afferents terminated mainly in the supratrigeminal nucleus (Vsup), region h, and the dorsolateral subdivision (Vmo.dl) of the trigeminal motor nucleus (Vmo). The proportion of group Ia afferent terminals was lower in the Vsup than that of group II afferents. In the Vmo.dl, the proportion of group Ia afferent terminals was nearly even throughout the nucleus, but that of group II afferent terminals increased in the more outlying regions. The proportion of terminal distribution in the central region of Vmo.dl was higher for group Ia than group II. The frequency of contacts (presumptive synapses) made by a single spindle afferent on a motoneuron was higher for group Ia than group II. The present study provided evidence that the central organization of spindle afferent neurons is different between groups Ia and II.  相似文献   

13.
Detailed knowledge of the inhibitory input to trigeminal motoneurons is needed to understand better the central mechanisms of jaw movements. Here a quantitative analysis of terminals contacting somata of jaw-closing (JC) and jaw-opening (JO) alpha-motoneurons, and of JC gamma-motoneurons, was performed by use of serial sectioning and postembedding immunogold cytochemistry. For each type of motoneuron, the synaptic boutons were classified into four groups, i.e., immunonegative boutons or boutons immunoreactive to glycine only, to gamma-aminobutyric acid (GABA) only, or to both glycine and GABA. The density of immunolabeled boutons was much higher for the alpha- than for the gamma-motoneurons. In the alpha-motoneuron populations, the immunolabeled boutons were subdivided into one large group of boutons containing glycine-like immunoreactivity only, one group of intermediate size harboring both glycine- and GABA-like immunoreactivity, and a small group of boutons containing GABA-like immunoreactivity only. The percentage of immunolabeled boutons was higher for JC than JO alpha-motoneurons, the most pronounced difference being observed for glycine-like immunoreactivity. In contrast, on the somatic membrane of gamma-motoneurons, the three types of immunoreactive bouton occurred at similar frequencies. These results indicate that trigeminal motoneurons are strongly and differentially controlled by premotoneurons containing glycine and/or GABA and suggest that these neurons play an important role for the generation of masticatory patterns.  相似文献   

14.
The projection from the vestibular and perihypoglossal nuclei to the spinal trigeminal and lateral reticular nuclei has been studied in cats where the wheat germ agglutinin-horseradish peroxidase complex has been used as a retrograde tracer. All injections were made at the level of the caudal pole of the inferior olive. The medial and descending vestibular, and the perihypoglossal nuclei were found to project to the spinal trigeminal nucleus. The projection to the lateral reticular nucleus reaches its medial-most part only, and originates in the lateral vestibular nucleus. The lateral part of the reticular formation also appears to be the target for some vestibular efferent fibres, mainly from the descending vestibular nucleus. The retrogradely labelled cells within the medial and descending vestibular nuclei are of all sizes and distributed throughout their entire territory. Certain observations furthermore indicate that the fibres reaching the lateral reticular nucleus are collaterals only from the vestibulospinal tract. The projections are bilateral. The observations confirm and extend previous observations on the afferent projections to the spinal trigeminal and lateral reticular nuclei.  相似文献   

15.
In the ketamine/urethane anesthetized guinea pig, electromyographic (EMG) responses of the anterior digastric muscle were studied when loci within the lower brainstem were microejected with lidocaine (2%) during rhythmical jaw movements (RJMs) evoked by repetitive electrical stimulation of the masticatory area of the cortex. The area investigated was between the trigeminal motor nucleus (Mot V) and the rostral pole of the inferior olive. Microejections of lidocaine, contralateral to the cortical stimulus site, into the ventral-medial portion of Mot V where digastric motoneurons are known to be located, resulted in reduction or complete abolishment of the digastric EMG activity ipsilateral to the ejection with no effective change in mean cycle duration (CD) or mean percent normalized integrated amplitude of the contralateral digastric EMG. Microejections of lidocaine, contralateral to the cortical stimulus site, into the ponto-medullary reticular formation in areas that included portions of the caudal nucleus pontis caudalis (PnC), nucleus gigantocellularis (GC), medial nucleus parvocellularis (PCRt), and dorsal paragigantocellularis (dPGC), in most cases produced a bilateral reduction in the mean normalized integrated amplitude and a bilateral increase in the mean cycle duration. In these sites, the bilateral increase in mean cycle duration of digastric EMG bursts was also associated with a significant increase of coefficient of variation in CD. In many cases, microejection of lidocaine completely abolished rhythmical digastric activity, bilaterally. HRP injections into Mot V were performed to determine the locations of trigeminal premotoneurons and their relationship to effective lidocaine sites for rhythmical jaw movement suppression. Retrogradely labeled cells were found mainly in the mesencephalic nucleus of V; trigeminal principal and spinal V sensory nuclei, bilaterally; and within the intermediate and lateral regions of reticular formation, bilaterally. No labeling was found in the medial reticular formation, including the nucleus gigantocellularis and dorsal paragigantocellularis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Horseradish peroxidase (HRP) was used to identify parts of the presumptive neural pathway for gill cover erection, a behavioral display pattern performed by Siamese fighting fish (Betta splendens) during aggressive interactions. Motor, motor integration and sensory areas were identified in the medulla and mesencephalon. Motor neurons of the dilator operculi muscle, the effector muscle for gill cover erection, are located in the lateral and medial parts of the caudal trigeminal motor nucleus. Iontophoretic injections of HRP into the lateral trigeminal motor nucleus resulted in labeled cell bodies in two motor areas (medial part of the trigeminal motor nucleus, anterior part of the motor nucleus of cranial nerve IX-X), two parts of the reticular formation (medial and inferior reticular areas), and two nuclei of the octavolateralis system (nucleus medialis, magnocellular octaval nucleus). The HRP injections in the medial part of the caudal trigeminal motor nucleus resulted in labeled cells in the lateral part of the nucleus and in the medial reticular nucleus. Discrete injections of HRP into nucleus medialis revealed a strong axonal projection that terminated in the torus semicircularis. The medial reticular area and both of the octavolateralis nuclei received projections from their contralateral counterparts. Connections between motor areas, and between parts of the reticular formation, may coordinate the performance of gill cover erection with other behavioral patterns used during aggressive display. Connections with the octavolateralis system may provide information on the strength of an opponent's tail beats via the lateral-line system, as well as vestibular information about the fish's own orientation during aggressive display. The organization of inputs to the trigeminal motor nucleus in Betta, a perciform fish, was found to differ from that reported in the common carp, a cypriniform fish. These differences may underlie the different behavioral capabilities of the two groups of fish.  相似文献   

17.
A direct projection from rat mesencephalic trigeminal nucleus (Vme) neurons to the hypoglossal nucleus (XII) motoneurons was studied using a double labeling method of anterogradely biotinylated dextran amine (BDA) tracing combined with retrogradely horseradish peroxidase (HRP) transport at both light and electron microscopic levels. BDA was iontophoresed unilaterally into the caudal Vme, and 7 days later HRP was injected into the ipsilateral tongue to label hypoglossal motoneurons. The BDA-labeled fibers were seen descended along Probst' tract and were traced to the caudal medulla. In this course, the fibers gave off axon collaterals bearing varicosities in the trigeminal motor nucleus (Vmo), the parvicellular reticular formation (PCRt), the dorsomedial portions of the subnuclei of oralis (Vodm) and interpolaris (Vidm) and in the XII ipsilaterally. The labeling of terminals was most dense in the PCRt at the levels of caudal pons and rostral medulla, which displayed a "dumbbell-shaped" form in the transverse planes. In the XII, labeled terminals were distributed mainly in the dorsal compartment of the nucleus. One hundred sixty-eight appositions made by BDA-labeled terminals on HRP-labeled motoneurons were seen in the dorsal compartment (71%) and in the lateral subcompartment (24%) of the ventral XII. Under electron microscopy BDA-labeled boutons containing clear, spherical synaptic vesicles were found to form synaptic contacts with the somata and dendrites of hypoglossal motoneurons with asymmetric specializations. The present study provides new evidence that the trigeminal proprioceptive afferent neurons terminate in the XII and make synaptic contacts with their motoneurons.  相似文献   

18.
The morphology of functionally identified single axons of mesencephalic trigeminal neurons was studied in the cat by the method of intra-axonal injection of horseradish peroxidase (HRP). Each axon can be divided into united (U), peripheral (P) and central branches (C). The united axon (U) descends from its soma within the tract of the trigeminal mesencephalic nucleus to the dorsal aspect of the trigeminal motor nucleus (Vmo), where it splits into peripheral and descending central branches with a Y-shaped bifurcation. The peripheral axon (P) joins the motor root of the trigeminal nerve to exit the brainstem. The central axon (C) travels caudally within the juxtatrigeminal regions (or lateral reticular formation). All 3 branches issue axon collaterals that distribute terminal boutons within the dorsolateral subdivision of Vmo, supra- and intertrigeminal regions. Collaterals emanating from the central axon (C) except for its proximal segment travel ventrolaterally within the juxtatrigeminal regions, and send their terminal branches into the lateral boundaries adjacent to the spinal trigeminal nucleus. The trajectory of terminal branches distinguishes group Ia afferents from the possible group II afferents. The majority of terminal boutons are found to distribute in the supra- and intertrigeminal regions for group II afferent fibers and in the dorsolateral subdivision of Vmo for group Ia afferents.  相似文献   

19.
The distribution of GABAergic and glycinergic premotor neurons projecting to the trigeminal motor nucleus (Vm) was examined in the lower brainstem of the rat by a double labeling method combining retrograde axonal tracing with immunofluorescence histochemistry. After injection of the fluorescent retrograde tracer, tetramethylrhodamine dextran amine (TRDA), into the Vm unilaterally, neurons labeled with TRDA were seen ipsilaterally in the mesencephalic trigeminal nucleus, and bilaterally in the parabrachial region, the supratrigeminal and intertrigeminal regions, the reticular formation just medial to the Vm, the principal sensory and spinal trigeminal nuclei, the pontine and medullary reticular formation, especially the parvicellular part of the medullary reticular formation, the alpha part of the gigantocellular reticular nucleus, and the medullary raphe nuclei. Some of these neurons labeled with TRDA were found to display glutamic acid decarboxylase (the enzyme involved in GABA synthesis)-like or glycine-like immunoreactivity. Such double-labeled neurons were seen mainly in the supratrigeminal region, the reticular region adjacent to the medial border of the Vm, and the dorsal part of the lateral reticular formation of the medulla oblongata; a number of them were further scattered in the intertrigeminal region, the alpha part of the gigantocellular reticular nucleus, the nucleus raphe magnus, the principal sensory trigeminal nucleus, and the interpolar subnucleus of the spinal trigeminal nucleus. These neurons were considered to be inhibitory (GABAergic or glycinergic) neurons sending their axons to motoneurons in the Vm, or to local interneurons within and around the Vm. © 1996 Wiley-Liss, Inc.  相似文献   

20.
A study was made of the efferent fiber connections of the trigeminal nucleus caudalis in the marmoset monkey (Oedipomidas oedipus). Degeneration resulting from nucleus caudalis lesions in twelve animals was studied by the Nauta technique. Following lesions of the trigeminal nucleus caudalis, degeneration was present bilaterally in the medial reticular formation, medial and spinal lemnisci, ventral horn and nucleus cuneatus. Ipsilateral preterminal degeneration was observed in the intermediate, hypoglossal, supraspinal and retroambigualis nuclei, the trigeminal interpolaris, oralis and main sensory nuclei, and motor nuclei of V and VII cranial nerves. An ipsilateral intranuclear trigeminal path is described. Nucleus caudalis efferent connections with the thalamus are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号