首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
OBJECTIVE: To analyze cellular mechanisms of bone erosion in gout. METHODS: Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) from patients with gout were analyzed for the presence of osteoclast precursors. Fixed tophus and bone samples were analyzed by immunohistochemistry. Mechanisms of osteoclastogenesis were studied by culturing murine preosteoclast RAW 264.7 cells, bone marrow stromal ST2 cells, and human synovial fibroblasts with monosodium urate monohydrate (MSU) crystals. RESULTS: PBMCs from patients with severe erosive gout had the preferential ability to form osteoclast-like cells in culture with RANKL and monocyte colony-stimulating factor (M-CSF). The number of PBMC-derived tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells strongly correlated with the number of tophi (r = 0.6296, P = 0.630). Patients with severe erosive and tophaceous gout also had higher circulating concentrations of RANKL and M-CSF. Furthermore, greater numbers of TRAP-positive multinucleated cells were cultured from SFMCs derived from gouty knee effusions than from paired PBMCs (P = 0.004). Immunohistochemical analysis demonstrated numerous multinucleated cells expressing osteoclast markers within tophi and at the interface between soft tissue and bone. MSU crystals did not directly promote osteoclast formation from RAW 264.7 cells in vitro. However, MSU crystals inhibited osteoprotegerin gene and protein expression in ST2 cells and human synovial fibroblasts, without significantly altering RANKL gene expression. Conditioned medium from ST2 cells cultured with MSU crystals promoted osteoclast formation from RAW 264.7 cells in the presence of RANKL. CONCLUSION: Chronic tophaceous and erosive gout is characterized by enhanced osteoclast development. These data provide a rationale for the study of osteoclast-targeted therapies for the prevention of bone damage in chronic gout.  相似文献   

3.
4.
Receptor activator of nuclear factor-kappaB ligand (RANKL)-induced signals play critical roles in osteoclast differentiation and function. SB203580, an inhibitor of p38 MAPK, blocked osteoclast formation induced by 1alpha,25-dihydroxyvitamin D(3) and prostaglandin E(2) in cocultures of mouse osteoblasts and bone marrow cells. Nevertheless, SB203580 showed no inhibitory effect on RANKL expression in osteoblasts treated with 1alpha,25-dihydroxyvitamin D(3) and prostaglandin E(2). RANKL-induced osteoclastogenesis in bone marrow cultures was inhibited by SB203580, suggesting a direct effect of SB203580 on osteoclast precursors, but not on osteoblasts, in osteoclast differentiation. However, SB203580 inhibited neither the survival nor dentine-resorption activity of osteoclasts induced by RANKL. Lipopolysaccharide (LPS), IL-1, and TNFalpha all stimulated the survival of osteoclasts, which was not inhibited by SB203580. Phosphorylation of p38 MAPK was induced by RANKL, IL-1, TNFalpha, and LPS in osteoclast precursors but not in osteoclasts. LPS stimulated phosphorylation of MAPK kinase 3/6 and ATF2, upstream and downstream signals of p38 MAPK, respectively, in osteoclast precursors but not in osteoclasts. Nevertheless, LPS induced degradation of IkappaB and phosphorylation of ERK in osteoclasts as well as in osteoclast precursors. These results suggest that osteoclast function is induced through a mechanism independent of p38 MAPK-mediated signaling.  相似文献   

5.
6.
The increase of osteoclast activation and formation is mainly involved in the development of the osteolytic bone lesions that characterize multiple myeloma (MM) patients. The mechanisms by which myeloma cells induce bone resorption have not been clear for many years. Recently, new evidence has elucidated which factors are critically involved in the activation of osteoclastic cells in MM. The potential role of the critical osteoclastogenic factor, the receptor activator of NF-kappaB ligand (RANKL), and its soluble antagonist osteoprotegerin (OPG) in the activation of bone resorption in MM is summarized in this review. It has been demonstrated that human MM cells induce an imbalance in the bone marrow environment of the RANKL/OPG ratio in favor of RANKL that triggers the osteoclast formation and activation leading to bone destruction. The direct production of the chemokine macrophage inflammatory protein-1 alpha (MIP-1alpha) by myeloma cells, in combination with the RANKL induction in BM stromal cells in response to myeloma cells, are critical in osteoclast activation and osteoclastogenesis.  相似文献   

7.
Otsuka E  Kato Y  Hirose S  Hagiwara H 《Endocrinology》2000,141(8):3006-3011
Osteoclasts are bone-resorbing multinucleated cells. Tartrate-resistant acid phosphatase-positive (TRAP-positive) mononuclear and multinucleated cells, which are osteoclast-like cells (OCLs), were formed as a result of the coculture of mouse bone marrow cells and clonal stromal ST2 cells in the presence of 1alpha,25-dihydroxy-vitamin D3. Removal of ascorbic acid from the culture medium prevented the formation of TRAP-positive OCLs. Addition of ascorbic acid to the medium formed TRAP-positive OCLs, and the effect of ascorbic acid was dose-dependent. When we examined the level of messenger RNA (mRNA) for osteoclast differentiation factor (RANKL/ODF) in ST2 cells, we found that ascorbic acid caused an approximately 5-fold increase in the level of this mRNA. The half-life of the mRNA was unaffected by ascorbic acid. To characterize the mechanism of action of ascorbic acid, we investigated the relationship between formation of TRAP-positive OCLs and formation of the collagen matrix. Inhibitors of the formation of collagen triple helices blocked both the formation of TRAP-positive OCLs and the expression of the mRNA for RANKL/ODF in response to ascorbic acid. Our findings suggest that ascorbic acid might be essential for osteoclastogenesis and might induce the formation of TRAP-positive OCLs via induction of the synthesis of RANKL/ODF that is somehow mediated by the extracellular matrix.  相似文献   

8.
Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced osteoclastic bone resorption. In the present study, potential roles of OPG in osteoclast differentiation were examined using a mouse coculture system of calvarial osteoblasts and bone marrow cells prepared from OPG-deficient mice. In the absence of bone-resorbing factors, no osteoclasts were formed in cocultures of wild-type (+/+) or heterozygous (+/-) mouse-derived osteoblasts with bone marrow cells prepared from homozygous (-/-) mice. In contrast, homozygous (-/-) mouse-derived osteoblasts strongly supported osteoclast formation in the cocultures with homozygous (-/-) bone marrow cells, even in the absence of bone-resorbing factors. Addition of OPG to the cocultures with osteoblasts and bone marrow cells derived from homozygous (-/-) mice completely inhibited spontaneously occurring osteoclast formation. Adding 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] to these cocultures significantly enhanced osteoclast differentiation. In addition, bone-resorbing activity in organ cultures of fetal long bones derived from homozygous (-/-) mice was markedly increased, irrespective of the presence and absence of bone-resorbing factors, in comparison with that from wild-type (+/+) mice. Osteoblasts prepared from homozygous (-/-), heterozygous (+/-), and wild-type (+/+) mice constitutively expressed similar levels of RANKL messenger RNA, which were equally increased by the treatment with 1alpha,25(OH)2D3. When homozygous (-/-) mouse-derived osteoblasts and hemopoietic cells were cocultured, but direct contact between them was prevented, no osteoclasts were formed, even in the presence of 1alpha,25(OH)2D3 and macrophage colony-stimulating factor. These findings suggest that OPG produced by osteoblasts/stromal cells is a physiologically important regulator in osteoclast differentiation and function and that RANKL expressed by osteoblasts functions as a membrane-associated form.  相似文献   

9.
Osteoclasts are hemopoietic cells that participate in bone resorption and remodeling. Receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) are critical for development of osteoclasts. The Toll-like receptor (TLR) family shares some of the downstream signaling with RANK. The TLR4 ligand, lipopolysaccharide (LPS), is reported to accelerate bone lysis; however, signaling via TLRs has never been reported to induce osteoclastogenesis without RANKL. In this study we showed that significant numbers of mature osteoclasts were generated from protein tyrosine phosphatase Src homology 2-domain phosphatase-1-defective Hcph(me-v)/Hcph(me-v) (me(v)/me(v)) bone marrow cells in the presence of M-CSF and LPS without addition of RANKL in culture. This M-CSF plus LPS-induced osteoclastogenesis was not inhibited by an anti-TNFalpha antagonistic antibody or by osteoprotegerin, a decoy receptor for RANKL. The replacement of RANKL by TLR ligands only occurred with LPS. Other ligands, a peptidoglycan for TLR2 or an unmethylated CpG oligonucleotide for TLR9, did not support osteoclast generation. The osteoclast precursors as well as RANKL-responsive osteoclast precursors were present in the Kit-positive cell-enriched fraction of bone marrow cells. Although me(v)/me(v) bone marrow cells required a comparable concentration of RANKL or TNFalpha as wild-type cells for the initiation of osteoclastogenesis, the numbers of multinucleated osteoclasts in me(v)/me(v) bone marrow cultures were significantly increased by the equivalent dose of RANKL or TNFalpha in the presence of M-CSF. These results indicate that a defect of Src homology 2-domain phosphatase-1 function not only accelerates physiological osteoclast development by RANKL/RANK, but also acquires a novel pathway for osteoclastogenesis by LPS.  相似文献   

10.
Angiogenesis and bone remodeling are closely associated, and vascular endothelial cells may have potential roles for osteoclastic bone resorption. We examined whether clonal endothelial cells established from bone, aorta and brain of Balb/c mice influenced osteoclast-like cell formation in vitro. As low as 1% conditioned media of those endothelial cells inhibited osteoclast-like cell formation in bone marrow cultures induced by 1,25-dihydroxyvitamin D3, and did so in spleen cell cultures in the presence of soluble receptor activator of nuclear factor-kappaB ligand (RANKL), M-CSF and prostaglandin E2. The level of osteoprotegerin (OPG), a decoy receptor for RANKL, secreted by endothelial cells was not high enough to inhibit osteoclastogenesis. These observations suggest that endothelial cells derived from various tissues secrete factor(s) that inhibits precursors to differentiate into osteoclasts even in the presence of optimal stimulators for osteoclastogenesis. Hence, endothelial cells in bone may inhibit recruitment of fresh osteoclasts, and those in tissues other than bone may be involved in prohibiting ectopic osteoclastogenesis.  相似文献   

11.
Receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) produced by osteoblasts/stromal cells are involved as positive and negative regulators in osteoclast formation. Three independent signals have been proposed to induce RANKL expression in osteoblasts/stromal cells: vitamin D receptor-, cAMP-, and gp130-mediated signals. We previously reported that intracellular calcium-elevating compounds such as ionomycin, cyclopiazonic acid, and thapsigargin induced osteoclast formation in cocultures of mouse bone marrow cells and primary osteoblasts. Increases in calcium concentration in culture medium also induced osteoclast formation in cocultures. Treatment of primary osteoblasts with these compounds or with high calcium medium stimulated the expression of both RANKL and OPG messenger RNAs (mRNAs). 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-tetra(acetoxymethyl)ester, an intracellular calcium chelator, suppressed both ionomycin-induced osteoclast formation in cocultures and expression of RANKL and OPG mRNAs in primary osteoblasts. Phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, also stimulated osteoclast formation in these cocultures and the expression of RANKL and OPG mRNAs in primary osteoblasts. Protein kinase C inhibitors such as calphostin and staurosporin suppressed ionomycin- and PMA-induced osteoclast formation in cocultures and expression of RANKL and OPG mRNAs in primary osteoblasts. Ionomycin stimulated RANKL mRNA expression in ST2 and MC3T3-G2/PA6 cells, but not in MC3T3-E1 or NIH-3T3 cells. These effects were closely correlated with osteoclast formation in response to ionomycin in cocultures with these stromal cell lines. OPG strongly inhibited osteoclast formation induced by calcium-elevating compounds and PMA in cocultures, suggesting that RANKL expression in osteoblasts is a rate-limiting step for osteoclast induction. Forskolin, an activator of cAMP signals, also stimulated osteoclast formation in cocultures. Forskolin enhanced RANKL mRNA expression but suppressed OPG mRNA expression in primary osteoblasts. These results suggest that the calcium/protein kinase C signal in osteoblasts/stromal cells is the fourth signal for inducing RANKL mRNA expression, which, in turn, stimulates osteoclast formation.  相似文献   

12.
We developed a mouse bone marrow culture system to examine the process of osteoclast-like multinucleated cell formation from its progenitors. When mouse marrow cells were cultured for 8 days with 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3, 10(-10) to 10(-7) M] or human PTH (1-34) (25-100 ng/ml), tartrate-resistant acid phosphatase (TRACP)-positive multinucleated cells formed. No TRACP-positive multinucleated cells appeared in the absence of these hormones. 1 alpha,25-(OH)2D3 and PTH also increased the number of the clusters of TRACP-positive mononuclear cells. Time course studies showed that these TRACP-positive mononuclear cell clusters appeared before the formation of TRACP-positive multinucleated cells, suggesting that the TRACP-positive mononuclear cells are precursors of the multinucleated cells. Salmon calcitonin markedly inhibited the formation of TRACP-positive multinucleated cells but not TRACP-positive mononuclear cell clusters induced by 1 alpha,25-(OH)2D3 or PTH. TRACP-positive mononuclear cells and multinucleated cells were rarely stained for nonspecific esterase, but some mononuclear cells were positively stained for both nonspecific esterase and TRACP. More that 90% of the TRACP-positive mononuclear cell clusters and multinucleated cells were found near colonies of alkaline phosphatase-positive mononuclear cells (possibly osteoblasts). When marrow mononuclear cells were cultured on sperm whale dentine slices in the presence of 1 alpha,25-(OH)2D3 or PTH, numerous resorption lacunae were formed. These results suggest that 1) TRACP-positive multinucleated cells formed in response to osteotropic hormones in mouse marrow cultures satisfy most of the criteria of osteoclasts, and 2) osteoblasts may play an important role in osteoclast formation.  相似文献   

13.
Recent investigations have demonstrated that macrophage inhibitory protein 1alpha (MIP-1alpha) plays a critical role in haematopoiesis. In part, MIP-1alpha limits the differentiation of early haematopoietic cells, thereby ensuring that sufficient quantities of blood precursors are available to meet haematopoietic demands. MIP-1alpha is produced by cells of the marrow microenvironment (marrow stromal cells) in response to a variety of stimuli, including interleukin 1beta (IL-1beta) and tumour necrosis factor alpha (TNF-alpha). Our recent investigations demonstrated that normal human osteoblast-like cells (HOBs) maintain the early phenotype of haematopoietic precursors, like other members of the bone marrow stroma. Although the precise molecular mechanisms for these observations have not been determined, the production of MIP-1alpha remains one such possibility. In the present study, we investigated whether cells of the osteoblast lineage under basal, IL-1beta and/or TNF-alpha stimulation produce MIP-1alpha. We observed that IL-1beta and TNF-alpha stimulated HOBs and human osteosarcoma cells to rapidly express MIP-1alpha mRNA and to secrete large quantities of the protein. MIP-1alpha mRNA and protein was not, however, detected under basal conditions. Perhaps more importantly, enriched human CD34+ bone marrow cells in co-culture may be capable of stimulating the expression of MIP-1alpha mRNA by HOBs in vitro. These findings suggest that human osteoblast-like cells may produce MIP-1alpha in vivo to support haematopoiesis at sites where osteoblasts and haematopoietic cells are closely associated.  相似文献   

14.
15.
Accumulating evidence indicates that menaquinone-4 (MK-4), a vitamin K(2) with four isoprene units, inhibits osteoclastogenesis in murine bone marrow culture, but the reason for this inhibition is not yet clear, especially in human bone marrow culture. To clarify the inhibitory mechanism, we investigated the differentiation of colony-forming-unit fibroblasts (CFU-Fs) and osteoclasts in human bone marrow culture, to learn whether the enhancement of the differentiation of CFU-Fs from progenitor cells might relate to inhibition of osteoclast formation. Human bone marrow cells were grown in alpha-minimal essential medium with horse serum in the presence of MK-4 until adherent cells formed colonies (CFU-Fs). Colonies that stained positive for alkaline phosphatase activity (CFU-F/ALP(+)) were considered to have osteogenic potential. MK-4 stimulated the number of CFU-F/ALP(+) colonies in the presence or absence of dexamethasone. The stimulation was also seen in vitamin K(1) treatment. These cells had the ability to mineralize in the presence of alpha-glycerophosphate. In contrast, both MK-4 and vitamin K(1) inhibited 1,25 dihydroxyvitamin D(3)-induced osteoclast formation and increased stromal cell formation in human bone marrow culture. These stromal cells expressed ALP and Cbfa1. Moreover, both types of vitamin K treatment decreased the expression of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor (RANKL/ODF) and enhanced the expression of osteoprotegerin/osteoclast inhibitory factor (OPG/OCIF) in the stromal cells. The effective concentrations were 1.0 microM and 10 microM for the expression of RANKL/ODF and OPG/OCIF respectively. Vitamin K might stimulate osteoblastogenesis in bone marrow cells, regulating osteoclastogenesis through the expression of RANKL/ODF more than through that of OPG/OCIF.  相似文献   

16.
Ascorbic acid (AA) plays a key role in the regulation of differentiation and activation of osteoclast (OCL). It was reported that AA might induce the formation of OCL in cocultures of mouse bone marrow cells and ST2 cells, but it is not clear whether AA has a direct impact on the OCL precursors. The purpose of this study was to examine the effect of AA on the differentiation of OCL precursor RAW264.7 cells, cultured with receptor-activated nuclear factor kappaB ligand (RANKL). The results showed that AA remarkably inhibited the cell proliferation at a higher concentration and RANKL alone is sufficient for osteoclastogenesis. The expression of carbonic anhydrase (CAII) mRNA and protein, the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), and the percentage area of resorption lacunae induced by RANKL were decreased when AA was added to the cultures. The results demonstrate that AA inhibits RANKL-induced differentiation of OCL precursor cells into mature OCL and reduces the formation of bone resorption pits in vitro.  相似文献   

17.
Bone destruction is a hallmark of multiple myeloma, and recent studies demonstrated a strong interdependence between tumor progression and bone resorption. Increased bone resorption as a major characteristic of multiple myeloma is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activator of NF-kappaB ligand (RANKL) and decreasing osteoprotegerin (OPG) expression within the bone marrow microenvironment, thereby stimulating the central pathway for osteoclast formation and activation. In addition, they produce the chemokines MIP-1alpha, MIP-1beta and SDF-1alpha, which also increase osteoclast activity. Furthermore, myeloma cells suppress osteoblast function by the secretion of osteoblast inhibiting factors, e.g. Dickkopf (DKK)-1. The resulting bone destruction releases several cytokines, which in turn promote myeloma cell growth. Therefore, the inhibition of bone resorption could stop this vicious circle and not only decrease myeloma bone disease, but also the tumor progression. Preclinical studies provided strong evidence that the suppression of the osteoclast activity using bisphosphonates, RANKL blockade or inhibition of MIP-1alpha or MIP-1beta is effective both in reducing myeloma bone disease and tumor growth and therefore may offer an important treatment strategy in multiple myeloma.  相似文献   

18.
OBJECTIVE: We previously reported that human OA subchondral bone osteoblasts could be discriminated into two subpopulations identified by their levels of endogenous production (low [L] or high [H]) of PGE(2). Here, we investigated the OPG and RANKL expression levels, the histologic analysis of the subchondral bone as well as the osteoclast differentiation effect of osteoblasts on normal and both OA subpopulations (L and H), and further examined on the L OA osteoblasts the modulation of bone remodelling factors on the OPG and RANKL levels, as well as on the resorption activity. METHODS: Gene expression was determined using real-time PCR, PGE2 and OPG levels by specific ELISA, and membranous RANKL by flow cytometry. Histological observation of the subchondral bone was performed on human knee specimens. Osteoclast differentiation and formation was assayed by using the pre-osteoclastic cell line RAW 264.7. OPG and RANKL modulation on L OA osteoblasts was monitored following treatment with osteotropic factors, and the resorption activity was studied by the co-culture of differentiated PBMC/osteoblasts. RESULTS: Human OA subchondral bone osteoblasts expressed less OPG than normal. Compared to normal, RANKL gene expression levels were increased in L OA and decreased in H OA cells. The OPG/RANKL mRNA ratio was significantly diminished in L OA compared to normal or H OA (p<0.02, p<0.03), and markedly increased in H OA compared to normal. Inhibition of endogenous PGE(2) levels by indomethacin markedly decreased the ratio of OPG/RANKL on the H OA. In contrast to H OA osteoblasts, L OA cells induced a significantly higher level of osteoclast differentiation and formation (p<0.05).Histological analysis showed a reduced subchondral bone on the L OA and an increased bone mass on the H OA compared to normal. Treatment of L OA osteoblasts with osteotropic factors revealed that the OPG/RANKL mRNA expression ratio was significantly reduced by vitamin D(3) and significantly increased by TNF-alpha, PTH and PGE(2), while IL-1Beta demonstrated no effect. OPG protein levels showed similar profiles. No true effect was noted on membranous RANKL upon treatment with IL-1Beta, PGE(2) and PTH, but a significant increase was observed with vitamin D3 and TNF-alpha. The resorption activity of the L OA cells was significantly inhibited by all treatments except IL-1Beta, with maximum effect observed with vitamin D(3) and PGE(2). CONCLUSION: OPG and RANKL levels, and consequently the OPG/RANKL ratio, differed according to human OA subchondral bone osteoblast classification; it is decreased in L and increased in H OA. These findings, in addition to those showing that L OA osteoblasts have a reduced subchondral bone mass and induce a higher level of osteoclast differentiation, strongly suggest that the metabolic state of the L OA osteoblasts favours bone resorption.  相似文献   

19.
Mechanisms involved in bone resorption   总被引:4,自引:0,他引:4  
Udagawa N 《Biogerontology》2002,3(1-2):79-83
Osteoclasts, which are present only in bone, are multinucleated giant cells with the capacity to resorb mineralized tissues. These osteoclasts are derived from hemopoietic progenitors of the monocyte-macrophage lineage. Osteoblasts or bone marrow-derived stromal cells are involved in osteoclastogenesis through a mechanism involving cell-to-cell contact with osteoclast progenitors. Experiments on the osteopetrotic op/op mouse model have established that a product ofosteo blasts, macrophage colony-stimulating factor (M-CSF), regulates differentiation of osteoclast progenitors into osteoclasts. Recent discovery of osteoclast differentiation factor (ODF)/receptor activator of NF-κ Bligand (RANKL) allowed elucidation of the precise mechanism by which osteoblasts regulate osteoclastic bone resorption. Treatment of osteoblasts with bone-resorbing factors up-regulated expression of RANKL mRNA. In contrast, TNF α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the RANKL system. IL-1 also directly acts on mature osteoclasts as a potentiator of osteoclast activation. In addition, TGF-β super family members, such as bone morphogenetic proteins(BMPs) strikingly enhanced osteoclast differentiation from their progenitors and survival of mature osteoclasts induced by RANKL. These results suggest that BMP-mediated signals cross-communicate with RANKL-mediated ones in inducing osteoclast differentiation and function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Deficiency of osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL), in mice induces osteoporosis caused by enhanced bone resorption. Serum concentrations of RANKL are extremely high in OPG-deficient (OPG(-/-)) mice, suggesting that circulating RANKL is involved in osteoclastogenesis. RANKL(-/-) mice exhibit osteopetrosis, with the absence of osteoclasts. We examined the requirements for osteoclastogenesis using OPG(-/-) mice, RANKL(-/-) mice, and a system involving bone morphogenetic protein 2 (BMP-2)-induced ectopic bone formation. When collagen disks containing BMP-2 (BMP-2-disks) or vehicle were implanted into OPG(-/-) mice, osteoclast-like cells (OCLs) and alkaline phosphatase-positive OCLs appeared in BMP-2-disks but not the control disks. F4/80-positive osteoclast precursors were similarly distributed in both BMP-2- and control disks. Cells expressing RANKL were detected in the BMP-2-disks, and the addition of OPG to the disk inhibited OCL formation. Muscle cells in culture differentiated into alkaline phosphatase-positive cells in the presence of BMP-2 and accordingly expressed RANKL mRNA in response to PTH. This suggests that RANKL expressed by osteoblasts is a requirement for osteoclastogenesis. We then examined how osteoblasts are involved in osteoclastogenesis other than RANKL expression, using RANKL(-/-) mice. BMP-2- and control disks were implanted into RANKL(-/-) mice, which were injected with RANKL for 7 d. Many OCLs were observed in the BMP-2-disks and bone tissues but not the control disks. These results suggest that osteoblasts also play important roles in osteoclastogenesis through offering the critical microenvironment for the action of RANKL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号