首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The minimal three-test battery of the International Conference on Harmonization guideline has been in use since 1997 for the development of new pharmaceuticals (ICH, 1997). After a 10-year experience of this core battery in regulatory genotoxicity testing, everywhere the time has come for reflection about what was learned from this experience. Different aspects of genotoxicity testing are currently being debated under different organizations (HESI, 2006; IWGT, 2007; Kirkland et al., 2007). The main concerns are to develop relevant strategies and adequate complementary tests to the minimal battery, appropriate for each specific case to assess risk for humans when in vitro positive results or findings in rodent bioassays for carcinogenicity are found. In this article, an example of an in-house decision tree is shown, with some options which can contribute to the current reflections. Additionally, tools built for early genotoxicity are presented.  相似文献   

2.
Early screening of drug candidates for genotoxicity typically includes an analysis for mutagenicity in bacteria and for clastogenicity in cultured mammalian cells. In addition, in recent years, an early assessment of photogenotoxicity potential has become increasingly important. Also, for screening purposes, expert computer systems can be used to identify structural alerts. In cases where structural alerts are identified, mutagenicity testing limited to bacteria can be conducted. The sequence of computer-aided analysis and limited testing using bacteria allows for screening a comparatively large number of drug candidates. In contrast, considerably more resources, in terms of supplies, technical time, and the amount of a test substance needed, are required when screening for clastogenic activity in mammalian cells. In addition, the relatively large percentage of false positive results for rodent carcinogenicity associated with clastogenicity assays is of considerable concern. As a consequence, mammalian cell-based alternatives to clastogenicity assays are needed for early screening of mammalian genotoxicity. The comet assay is a relatively fast, simple, and sensitive technique for the analysis of DNA damage in mammalian cells. This assay seems especially useful for screening purposes because false positives associated with excessive toxicity appear to occur less frequently, only relatively small amounts of a test compound are needed, and certain steps of the test procedure can be automated. Therefore, the in vitro comet assay is proposed as an alternative to cytogenetic assays in early genotoxicity/photogenotoxicity screening of drug candidates.  相似文献   

3.
Based on new scientific developments and experience of the regulation of chemical compounds, a working group of the Gesellschaft fuer Umweltmutationsforschung (GUM), a German-speaking section of the European Environmental Mutagen Society, proposes a simple and straightforward approach to genotoxicity testing. This strategy is divided into basic testing (stage I) and follow-up testing (stage II). Stage I consists of a bacterial gene mutation test plus an in vitro micronucleus test, therewith covering all mutagenicity endpoints. Stage II testing is in general required only if relevant positive results occur in stage I testing and will usually be in vivo. However, an isolated positive bacterial gene mutation test in stage I can be followed up with a gene mutation assay in mammalian cells. If this assay turns out negative and there are no compound-specific reasons for concern, in vivo follow-up testing may not be required. In those cases where in vivo testing is indicated, a single study combining the analysis of micronuclei in bone marrow with the comet assay in appropriately selected tissues is suggested. Negative results for both end points in relevant tissues will generally provide sufficient evidence to conclude that the test compound is nongenotoxic in vivo. Compounds which were recognized as in vivo somatic cell mutagens/genotoxicants in this hazard identification step will need further testing. In the absence of additional data, such compounds will have to be assumed to be potential genotoxic carcinogens and potential germ cell mutagens.  相似文献   

4.
The in vitro micronucleus test is commonly used in the early stages of pharmaceutical development as a predictive tool for the regulatory mouse lymphoma assay or in vitro chromosome aberration test. The accumulated data from this assay leads to the suggestion that it could be used as an alternative to the chromosome aberration test or the mouse lymphoma assay in the regulatory genotoxicity battery. In this paper, we present the results of the in vitro micronucleus test on L5178Y mouse lymphoma cells with 25 compounds from Servier research and have compared these results to those obtained in the genotoxicity regulatory battery. All the negative compounds were also negative in the in vitro micronucleus assay. Among the 14 positive compounds, two of them, positive in the mouse lymphoma assay, were found negative in the in vitro micronucleus test. However, this apparent discordance was likely to be due to cytotoxicity- or high concentration-related false positive responses in the mouse lymphoma assay. In addition, we confirmed that the in vitro micronucleus assay is useful for detecting aneugens, especially, when cells in metaphasis and multinucleated cells are also scored and when cells are allowed to recover after the long treatment. On this series of compounds, the in vitro micronucleus assay showed high sensitivity and possibly a better specificity than the mouse lymphoma assay. Thus, the in vitro micronucleus assay was shown to be at least as adequate as the mouse lymphoma assay or the in vitro chromosome aberration test to be used in the standard genotoxicity battery.  相似文献   

5.
Assessing cancer risk for human pharmaceuticals is important because drugs are taken at pharmacologically active doses and often on a chronic basis. Epidemiologic studies on patient populations have limited value because of the long latency period for most cancers and because these studies lack sensitivity. The Center for Drug Evaluation and Research (CDER) of the U.S. Food and Drug Administration relies on short-term surrogate assays (genetic toxicology studies) to assess risk to patients involved in clinical trials and on rodent carcinogenicity studies to assess cancer risk for drug approval. Unlike some other agencies that typically perform quantitative risk assessments on chemical pollutants or pesticide products, CDER does not perform such quantitative extrapolations. Rather, the evaluation of risk is the result of an integrated assessment of what is known about the drug, and risk is considered in the context of the clinical benefit. Mode of action of carcinogenesis and thresholds for effects are important considerations. The results of carcinogenicity studies of approved products are published in the drug labeling and individual clinicians balance risk and benefit in making prescribing decisions.  相似文献   

6.
Nanoparticles are small-scale substances (<100 nm) with unique properties and, thus, complex exposure and health risk implications. This symposium review summarizes recent findings in exposure and toxicity of nanoparticles and their application for assessing human health risks. Characterization of airborne particles indicates that exposures will depend on particle behavior (e.g., disperse or aggregate) and that accurate, portable, and cost-effective measurement techniques are essential for understanding exposure. Under many conditions, dermal penetration of nanoparticles may be limited for consumer products such as sunscreens, although additional studies are needed on potential photooxidation products, experimental methods, and the effect of skin condition on penetration. Carbon nanotubes apparently have greater pulmonary toxicity (inflammation, granuloma) in mice than fine-scale carbon graphite, and their metal content may affect toxicity. Studies on TiO2 and quartz illustrate the complex relationship between toxicity and particle characteristics, including surface coatings, which make generalizations (e.g., smaller particles are always more toxic) incorrect for some substances. These recent toxicity and exposure data, combined with therapeutic and other related literature, are beginning to shape risk assessments that will be used to regulate the use of nanomaterials in consumer products.  相似文献   

7.
Nanotechnology has the potential to dramatically improve the effectiveness of a number of existing consumer and industrial products and could have a substantial impact on the development of new products ranging from disease diagnosis and treatment to environmental remediation. The broad range of possible nanotechnology applications could lead to substantive changes in industrial productivity, economic growth, and international trade. A continuing evaluation of the human health implications of exposure to nanoscale materials will be essential before the commercial benefits of these materials can be fully realized. The purpose of this article is to review the human health implications of exposure to nanoscale materials in the context of a toxicological risk evaluation, the current scope of U.S. Federal research on nanoscale materials, and selected toxicological studies associated with nanoscale materials to note emerging research in this area.  相似文献   

8.
Risk assessment in the environmental health sciences focuses on understanding the nature of environmental exposures and the potential harm posed by those exposures which in turn is determined by the perturbation of biological pathways and the individual's susceptibility to damage. While there are extensive research efforts ongoing in these areas, progress in each is currently slowed by technological limitations including comprehensive assessment of multiple exposures in real time and dynamic assessment of biological response with high temporal and quantitative resolution. This Forum article discusses recent technological innovations capitalizing on the emergent properties of nanoscale materials and their potential adaptation to improving individual exposure assessment, determination of biological response, and environmental remediation. The ultimate goal is to raise the environmental health science community's awareness of these possibilities and encourage the development of improved strategies for assessing risk and improving public health.  相似文献   

9.
1,3-Butadiene (BD) is carcinogenic in mice and rats, with mice being considerably more sensitive than rats. Urine metabolites are 1, 2-dihydroxybutyl mercapturic acid (DHBMA) and a mixture of monohydroxy-3-butenyl mercapturic acids (MHBMA). The reactive metabolite 1,2-epoxy-3-butene forms 1- and 2-hydroxy-3-butenyl valine adducts in hemoglobin (MHBVal). The objectives of the study were (1) to compare the suitability of MHBMA, DHBMA, and MHBVal as biomarkers for low levels of exposure to BD, and (2) to explore relative pathways of metabolism of BD in humans for comparison with mice and rats, which is important in relation to cancer risk assessment in man. Analytical methods of measuring MHBMA, DHBMA, and MHBVal were modified and applied in 2 studies to workers engaged in the manufacture and use of BD. Airborne BD concentrations were assessed by personal air monitoring. MHBMA in urine was more sensitive for monitoring recent exposures to BD when compared to DHBMA and could measure 8-h time weighted average exposures as low as 0.13 ppm. Relatively high natural background levels in urine restricted the sensitivity of DHBMA. The origin of this background is currently unknown. The measurement of MHBVal adducts in hemoglobin was a sensitive method for monitoring cumulative exposures to BD at or above 0.35 ppm. Statistically significant relationships were found between urinary MHBMA and DHBMA concentrations, between either of these variables and 8-h airborne BD levels and between MHBVal adducts and average airborne BD levels over 60 days. The data on biomarkers demonstrated a much higher rate of hydrolytic metabolism of 1,2-epoxy-3-butene in humans compared to mice and rats, which was reflected in a much higher DHBMA/(DHBMA + MHBMA) ratio and in much lower levels of MHBVal in humans. Assuming a genotoxic mechanism, the data of this study, coupled with other published data on DNA and hemoglobin binding in mice and rats, suggest that the cancer risk for man from exposure to BD is expected to be less than for the rat and much less than for the mouse.  相似文献   

10.
Advances in the technology of human cell and tissue culture and the increasing availability of human tissue for laboratory studies have led to the increased use of in vitro human tissue models in toxicology and pharmacodynamics studies and in quantitative modeling of metabolism, pharmacokinetic behavior, and transport. In recognition of the potential importance of such models in toxicological risk assessment, the Society of Toxicology sponsored a workshop to evaluate the current status of human cell and tissue models and to develop consensus recommendations on the use of such models to improve the scientific basis of risk assessment. This report summarizes the evaluation by invited experts and workshop attendees of the current status of such models for prediction of human metabolism and identification of drug-drug interactions, prediction of human toxicities, and quantitative modeling of pharmacokinetic and pharmaco-toxicodynamic behavior. Consensus recommendations for the application and improvement of current models are presented.  相似文献   

11.
Turbine fuels are often the only aviation fuel available in most of the world. Turbine fuels consist of numerous constituents with varying water solubilities, volatilities and toxicities. This study investigates the toxicity of the water soluble fraction (WSF) of JP-4 using the Standard Aquatic Microcosm (SAM). Multivariate analysis of the complex data, including the relatively new method of nonmetric clustering, was used and compared to more traditional analyses. Particular emphasis is placed on ecosystem dynamics in multivariate space.The WSF is prepared by vigorously mixing the fuel and the SAM microcosm media in a separatory funnel. The water phase, which contains the water-soluble fraction of JP-4 is then collected. The SAM experiment was conducted using concentrations of 0.0, 1.5 and 15% WSF. The WSF is added on day 7 of the experiments by removing 450 ml from each microcosm including the controls, then adding the appropriate amount of toxicant solution and finally bringing the final volume to 3 L with microcosm media. Analysis of the WSF was performed by purge and trap gas chromatography. The organic constituents of the WSF were not recoverable from the water column within several days of the addition of the toxicant. However, the impact of the WSF on the microcosm was apparent. In the highest initial concentration treatment group an algal bloom ensued, generated by the apparent toxicity of the WSF of JP-4 to the daphnids. As the daphnid populations recovered the algal populations decreased to control values. Multivariate methods clearly demonstrated this initial impact along with an additional oscillation seperating the four treatment groups in the latter segment of the experiment. Apparent recovery may be an artifact of the projections used to describe the multivariate data. The variables that were most important in distinguishing the four groups shifted during the course of the 63 day experiment. Even this simple microcosm exhibited a variety of dynamics, with implications for biomonitoring schemes and ecological risk assessments.  相似文献   

12.
Considerable media attention has recently been given to novel applications for products that contain nanoscale materials. These products could have utility in several industries that market consumer products, including textiles, sporting equipment, cosmetics, consumer electronics, and household cleaners. Some of the purported benefits of these products include improved performance, convenience, lower cost, as well as other desirable features, when compared to the conventional products that do not contain nanoscale materials. Although there are numerous likely consumer advantages from products containing nanoscale materials, there is very little information available regarding consumer exposure to the nanoscale materials in these products or any associated risks from these exposures. This paper seeks to review a limited subset of products that contain nanoscale materials, assess the available data for evaluating the consumer exposures and potential hazards associated with these products, and discuss the capacity of U.S. regulatory agencies to address the potential risks associated with these products.  相似文献   

13.
The National Toxicology Program (NTP) has over 25 years of experience in the design, performance, and interpretation of assays for identifying carcinogenic hazards to humans. Through the years we have examined alternative assays and adjunct assays to the standard rodent cancer bioassay including batteries of genetic toxicity tests and genetically modified mouse models. As our collective understanding of carcinogenesis advances, toxicologists and regulatory scientists will at some point begin to rely on mechanism-based biological observations rather than the two-year rodent bioassay to predict human cancer hazards. The goal of the NTP Vision for the 21st Century is to develop the science base that will advance the use of mechanism-based biological observations, eventually providing a replacement for disease-specific toxicology models in the protection of public health.  相似文献   

14.
Significant advancements have been made toward the use of all relevant scientific information in health risk assessments. This principle has been set forth in risk-assessment guidance documents of international agencies including those of the World Health Organization's International Programme on Chemical Safety, the U.S. Environmental Protection Agency, and Health Canada. Improving the scientific basis of risk assessment is a leading strategic goal of the Society of Toxicology. In recent years, there has been a plethora of mechanistic research on modes of chemical toxicity that establishes mechanistic links between noncancer responses to toxic agents and subsequent overt manifestations of toxicity such as cancer. The research suggests that differences in approaches to assessing risk of cancer and noncancer toxicity need to be resolved and a common broad paradigm for dose-response assessments developed for all toxicity endpoints. In November 1999, a workshop entitled "Harmonization of Cancer and Noncancer Risk Assessment" was held to discuss the most critical issues involved in developing a more consistent and unified approach to risk assessment for all endpoints. Invited participants from government, industry, and academia discussed focus questions in the areas of mode of action as the basis for harmonization, common levels of adverse effect across toxicities for use in dose-response assessments, and scaling and uncertainty factors. This report summarizes the results of those discussions. There was broad agreement, albeit not unanimous, that current science supports the development of a harmonized set of principles that guide risk assessments for all toxic endpoints. There was an acceptance among the participants that understanding the mode of action of a chemical is ultimately critical for nondefault risk assessments, that common modes of action for different toxicities can be defined, and that our approach to assessing toxicity should be biologically consistent.  相似文献   

15.
1,1-Dichloroethane (DCE) is a solvent that is often found as a contaminant of drinking water and a pollutant at hazardous waste sites. Information on its short- and long-term toxicity is so limited that the U.S. EPA and ATSDR have not established oral reference doses or minimal risk levels for the volatile organic chemical (VOC). The acute oral LD(50) in male Sprague-Dawley (S-D) rats was estimated in the present study to be 8.2 g/kg of body weight (bw). Deaths appeared to be due to CNS depression and respiratory failure. In an acute/subacute experiment, male S-D rats were given 0, 1, 2, 4, or 8 g DCE/kg in corn oil by gavage for 1, 5, or 10 consecutive days. The animals were housed in metabolism cages for collection of urine and sacrificed for blood and tissue sampling 24 h after their last dose. There were decreases in body weight gain and relative liver weight at all dosage levels, as well as increased renal nonprotein sulfhydryl levels at 2 and 4 g/kg after 5 and 10 days. Elevated serum enzyme levels, histopathological changes, and abnormal urinalyses were not manifest. For the subchronic study, adult male S-D rats were gavaged with 0.5, 1, 2, or 4 g DCE/kg 5 times weekly for up to 13 weeks. Animals receiving 4 g/kg exhibited pronounced CNS depression, with more than one-half dying by week 11. The 2-g/kg rats exhibited moderate CNS depression. One 2-g/kg rat died during week 6. There were very few manifestations of organ damage in animals that succumbed or in survivors at any dosage level. Decreases in bw gain and transient increases in enzymuria were noted at 2 and 4 g/kg. Serum enzyme levels and blood urea nitrogen were not elevated, nor were glycosuria or proteinuria present. Chemically induced histological changes were not seen in the liver, kidney, lung, brain, adrenal, spleen, stomach, epididymis, or testis. Hepatic microsomal cytochrome P450 experiments revealed that single, high oral doses of DCE did not alter total P450 levels, but did induce CYP2E1 levels and activity and inhibit CYP1A1 activity. These effects were reversible and regressed with repeated DCE exposure. There was no apparent progression of organ damage during the 13-week subchronic study, nor appearance of adverse effects not seen in the short-term exposures. One g/kg orally (po) was found to be the acute, subacute, and subchronic LOAEL for DCE, under the conditions of this investigation. In each instance, 0.5 g/kg was the NOAEL.  相似文献   

16.
Large granular lymphocyte leukemia (LGLL) is a common fatal disease in aging F344 rats. The current understanding of rat LGLL and a search for mechanistic data/correlations to human leukemia were examined with the goal of improving evaluation of the LGLL endpoint in cancer bioassays as it relates to human cancer risk assessments. The exact cell of origin of the F344 rat LGLL is not fully resolved, although natural killer (NK) cell characteristics were demonstrated in most, if not all cases. Similarities between rat LGLL and a rare human NK-LGLL exist, invalidating claims of no human counterpart, although the underlying etiopathogenesis may be different. There is insufficient data to establish a mode of action of chemical-induced rat LGLL. Evaluation of the National Toxicology Program database revealed only 34 substances (out of over 500 studied) that were possibly associated with increased incidences of LGLL. Of these, only five produced definitive LGLL effects in both sexes; the remaining 29 produced single sex responses and/or only "equivocal" associations with LGLL. Trends of increasing background/variability in LGLL incidence and its modulation by extraneous factors (e.g., corn oil gavage) are key confounders in interpretation. Given that LGLL is a common tumor in control F344 rats, interpretations of bioassays can be improved by increasing the statistical stringency (e.g., p<0.01 over traditional p<0.05), as an indicator of possible carcinogenic effects, but that alone would be insufficient evidence for declaring treatment-related increases. Thus, it was concluded that the evaluation of possible chemically related increases in rat LGLL utilize a "weight-of-evidence" approach.  相似文献   

17.
A toxicokinetic model is proposed to predict the time evolution of malathion and its metabolites, mono- and dicarboxylic acids (MCA, DCA) and phosphoric derivatives (dimethyl dithiophosphate [DMDTP], dimethyl thiophosphate [DMTP], and dimethyl phosphate [DMP]) in the human body and excreta, under a variety of exposure routes and scenarios. The biological determinants of the kinetics were established from published data on the in vivo time profiles of malathion and its metabolites in the blood and urine of human volunteers exposed by intravenous, oral, or dermal routes. In the model, body and excreta compartments were used to represent the time varying amounts of each of the following: malathion, MCA, DCA, DMDTP, DMTP, and DMP. The dynamic of intercompartment exchanges was described mathematically by a differential equation system that ensured conservation of mass at all times. The model parameters were determined by statistically adjusting the explicit solution of the differential equations to the experimental human data. Simulations provide a close approximation to kinetic data available in the published literature. When simulating a dermal exposure to malathion, the main route of entry for workers, the model predicts that it takes an average of 11.8 h to recover half of the absorbed dose of malathion eventually excreted in urine as metabolites, compared to 3.2 h following an intravenous injection and 4.0 h after oral administration. This shows that following a dermal exposure, the absorption rate governs the urinary excretion rate of malathion metabolites because the dermal absorption rate is much slower than biotransformation and renal clearance processes. The model served to establish biological reference values for malathion metabolites in urine since it allows links to be made between the absorbed dose of malathion and the time course of cumulative amounts of metabolites excreted in urine. From the no-observed-effect level (NOEL) of 0.61 micromol/kg/day derived from the data of Moeller and Rider (1962), the model predicts corresponding biological reference values for MCA, DCA, and phosphoric derivatives of 44, 13, and 62 nmol/kg, respectively, in 24-h urine samples. The latter were used to assess the health risk of workers exposed to malathion in botanical greenhouses, starting from urinary measurements of MCA and DCA metabolites.  相似文献   

18.
The benchmark dose (BMD) method has been recommended to replace the no-observed-adverse-effect-level (NOAEL) approach in health risk assessment of chemical substances. In the present article, developments in BMD analysis from continuous experimental data are proposed. The suggested approach defines the BMD as the dose at which the slope of the S-shaped dose-response relationship changes the most in the low-dose region. This dose resides in a region where the sensitivity to chemical exposure may start to change noticeably. It is shown that the response (defined as a percent change relative to the magnitude, or size, of response) corresponding to the dose where the slope changes the most depends on the geometrical shape of the dose-response curve; the response becomes lower as the curve becomes more asymmetrical and threshold-like in the low-dose region. Given a symmetrical case, described by the Hill function, the response associated with the critical dose level becomes 21% (defined as a percent change relative to the magnitude, or size, of response). According to a limiting case of asymmetry and threshold-like characteristics, reflected by a Gompertz curve, the response corresponding to the dose of interest becomes as low as 7.3% (defined as a percent change relative to the magnitude, or size, of response). Use of a response in the range of 5-10% when estimating the BMD conservatively accounts for uncertainties associated with the proposed strategy, and may be appropriate in a risk assessment point of view. The present investigation also indicated that a BMD defined according to the suggested procedure may be estimated more precisely relative to BMDs defined under other approaches for continuous data.  相似文献   

19.
20.
To improve data availability in health risk assessment of chemicals and fill information gaps there is a need to facilitate the use of non‐standard toxicity studies, i.e. studies not conducted according to any standardized toxicity test guidelines. The purpose of this work was to propose criteria and guidance for the evaluation of reliability and relevance of non‐standard in vivo studies, which could be used to facilitate systematic and transparent evaluation of such studies for health risk assessment. Another aim was to propose user friendly guidance for reporting of non‐standard studies intended to promote an improvement in reporting of studies that could be of use in risk assessment. Requirements and recommendations for the design and execution of in vivo toxicity studies were identified from The Organisation for Economic Co‐operation and Development (OECD) test guidelines, and served as basis for the data evaluation criteria and reporting guidelines. Feedback was also collected from experts within the field of toxicity testing and risk assessment and used to construct a two‐tiered framework for study evaluation, as well as refine the reporting guidelines. The proposed framework emphasizes the importance of study relevance and an important aspect is to not completely dismiss studies from health risk assessment based on very strict criteria for reliability. The suggested reporting guidelines provide researchers with a tool to fulfill reporting requirements as stated by regulatory agencies. Together, these resources provide an approach to include all relevant data that may fill information gaps and reduce scientific uncertainty in health risk assessment conclusions, and subsequently also in chemical policy decisions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号