首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
2.
Certain nutrients, pharmacological agents and growth factors can stimulate pancreatic beta-cell proliferation; however, mitogenic signal transduction pathways in beta-cells have not been particularly well characterized. As a model system we have focussed on characterizing the signal transduction pathways immediately downstream of the IGF-I and GH receptors in beta-cells. The original idea was to gain an idea of important elements in mitogenic signaling pathways which might then be exploited to generate a marked increase in beta-cell proliferation. Such an approach could eventually reveal a means to increase the number of human pancreatic endocrine cells in vitro, in order to obtain an abundant source of beta-cells for routine transplantation therapy of type-I diabetes. However, in the course of our studies, we have also unveiled an unexpected insight into the pathogenesis of obesity-linked type-II diabetes. It has been observed that free fatty acids inhibit glucose- and glucose-dependent IGF-I/GH-induced beta-cell proliferation. We hypothesize that a gradual accumulation of intracellular fat in beta-cells during obesity can eventually lead to an inhibition of beta-cell mass expansion and hence failure to compensate for peripheral insulin resistance, so that type-II diabetes ensues.  相似文献   

3.
Type 1 and type 2 diabetes both result from inadequate production of insulin by the beta-cells of the pancreatic islet. Accordingly, strategies that lead to increased pancreatic beta-cell mass, as well as retained or enhanced function of islets, would be desirable for the treatment of diabetes. Although pancreatic beta-cells have long been viewed as terminally differentiated and irreversibly arrested, evidence now indicates that beta-cells can and do replicate, that this replication can be enhanced by a variety of maneuvers, and that beta-cell replication plays a quantitatively significant role in maintaining pancreatic beta-cell mass and function. Because beta-cells have been viewed as being unable to proliferate, the science of beta-cell replication is undeveloped. In the past several years, however, this has begun to change at a rapid pace, and many laboratories are now focused on elucidating the molecular details of the control of cell cycle in the beta-cell. In this review, we review the molecular details of cell cycle control as they relate to the pancreatic beta-cell. Our hope is that this review can serve as a common basis and also a roadmap for those interested in developing novel strategies for enhancing beta-cell replication and improving insulin production in animal models as well as in human pancreatic beta-cells.  相似文献   

4.
Diabetes is one of the fastest growing diseases worldwide, with an immense economic and health burden attached. It is now well accepted that a deficiency of functional insulin-producing pancreatic beta-cells is the main cause for all forms of diabetes. Several approaches are being taken to increase functional beta-cell mass. These include differentiation of new beta-cells from stem cells or progenitor cells, transdifferentiation of beta-cells from other mature cell types, as well as finding ways to enhance the function, proliferation, survival, and regeneration of preexisting beta-cells. This article enumerates on the role of parathyroid hormone-related protein (PTHrP) and its mode of action on pancreatic beta-cell function, proliferation, and survival in rodents as well as in human beta-cells. A further understanding of the mechanism of action of PTHrP and its role in the normal physiology and pathophysiology of the beta-cell will be important for its potential use in future as a therapeutic treatment for diabetes.  相似文献   

5.
Preservation of pancreatic beta-cells in patients with type 2 diabetes would be a substantial therapeutic improvement as the disease is associated with a progressive loss of insulin-producing beta-cells. In various preclinical studies glucagon-like peptide 1 (GLP-1) led to preservation of beta-cell mass by inducing beta-cell proliferation and neogenesis as well as inhibiting apoptosis. These results cannot readily be translated to the situation in humans and further clinical evidence is needed.  相似文献   

6.
7.
Beta-cell neogenesis triggers the generation of new beta-cells from precursor cells. Neogenesis from duct epithelium is the most currently described and the best documented process of differentiation of precursor cells into beta-cells. It is contributes not only to beta-cell mass expansion during fetal and nonatal life but it is also involved in the maintenance of the beta-cell mass in adults. It is also required for the increase in beta-cell mass in situations of increase insulin demand (obesity, pregnancy). A large number of factors controlling the differentiation of beta-cells has been identified. They are classified into the following main categories: growth factors, cytokine and inflammatory factors, and hormones such as PTHrP and GLP-1. The fact that intestinal incretin hormone GLP-1 exerts a major trophic role on pancreatic beta-cells provides insights into the possibility to pharmacologically stimulate beta-cell neogenesis. This could have important implications for the of treatment of type 1 and type 2 diabetes. Transdifferentiation, that is, the differentiation of already differentiated cells into beta-cells, remains controversial. However, more and more studies support this concept. The cells, which can potentially "transdifferentiate" into beta-cells, can belong to the pancreas (acinar cells) and even islets, or originate from extra-pancreatic tissues such as the liver. Neogenesis from intra-islet precursors also have been proposed and subpopulations of cell precursors inside islets have been described by some authors. Nestin positive cells, which have been considered as the main candidates, appear rather as progenitors of endothelial cells rather than beta-cells and contribute to angiogenesis rather than neogenesis. To take advantage of the different differentiation processes may be a direction for future cellular therapies. Ultimately, a better understanding of the molecular mechanisms involved in beta-cell neogenesis will allow us to use any type of differentiated and/or undifferentiated cells as a source of potential cell precursors.  相似文献   

8.
beta-cell failure in diabetes and preservation by clinical treatment   总被引:14,自引:0,他引:14  
  相似文献   

9.
The growth of both tumors and nonneoplastic tissues may be influenced by signals from the vascular endothelium. In the present investigation we show that purified proliferating endothelial cells from pancreatic islets can stimulate beta-cell proliferation through secretion of hepatocyte growth factor (HGF). This secretion could be induced by soluble signals from the islets, such as vascular endothelial growth factor-A (VEGF-A) and insulin. During pregnancy, the pancreatic beta-cells display a highly reproducible physiological proliferation. We show that islet endothelial cell proliferation precedes beta-cell proliferation in pregnant animals. Vascular growth was closely associated with endocrine cell proliferation, and prominent expression of HGF was observed in islet endothelium on d 15 of pregnancy, i.e. coinciding with the peak of beta-cell proliferation. In summary, our results suggest the existence of an endothelial-endocrine axis within adult pancreatic islets, which is of importance for adult beta-cell proliferation.  相似文献   

10.
Understanding in detail how pancreatic endocrine cells develop is important for many reasons. From a scientific point of view, elucidation of such a complex process is a major challenge. From a more applied point of view, this may help us to better understand and treat specific forms of diabetes. Although a variety of therapeutic approaches are well validated, no cure for diabetes is available. Many arguments indicate that the development of new strategies to cure diabetic patients will require precise understanding of the way beta-cells form during development. This is obvious for a future cell therapy using beta-cells produced from embryonic stem cells. This also holds true for therapeutic approaches based on regenerative medicine. In this review, we summarize our current knowledge concerning pancreatic development and focus on the role of extracellular signals implicated in beta-cell development from pancreatic progenitors.  相似文献   

11.
In type 2 diabetes, there is a defect in the regulation of functional beta-cell mass to overcome high-fat (HF) diet-induced insulin resistance. Many signals and pathways have been implicated in beta-cell function, proliferation and apoptosis. The co-ordinated regulation of functional beta-cell mass by insulin signalling and glucose metabolism under HF diet-induced insulin-resistant conditions is discussed in this article. Insulin receptor substrate (IRS)-2 is one of the two major substrates for the insulin signalling. Interestingly, IRS-2 is involved in the regulation of beta-cell proliferation, as has been demonstrated using knockout mice models. On the other hand, in an animal model for human type 2 diabetes with impaired insulin secretion because of insufficiency of glucose metabolism, decreased beta-cell proliferation was observed in mice with beta-cell-specific glucokinase haploinsufficiency (Gck(+/) (-)) fed a HF diet without upregulation of IRS-2 in beta-cells, which was reversed by overexpression of IRS-2 in beta-cells. As to the mechanism underlying the upregulation of IRS-2 in beta-cells, glucose metabolism plays an important role independently of insulin, and phosphorylation of cAMP response element-binding protein triggered by calcium-dependent signalling is the critical pathway. Downstream from insulin signalling via IRS-2 in beta-cells, a reduction in FoxO1 nuclear exclusion contributes to the insufficient proliferative response of beta-cells to insulin resistance. These findings suggest that IRS-2 is critical for beta-cell hyperplasia in response to HF diet-induced insulin resistance.  相似文献   

12.
Long-term dexamethasone (DEX) treatment is well known for its ability to increase insulin resistance in liver and adipose tissues leading to hyperinsulinemia. On the other hand, exercise enhances peripheral insulin sensitivity. However, it is not clear whether DEX and/or exercise affect beta-cell mass and function in diabetic rats, and whether their effects can be associated with the modulation of the insulin/IGF-I signaling cascade in pancreatic beta-cells. After an 8-week study, whole body glucose disposal rates in 90% pancreatectomized (Px) and sham-operated male rats decreased with a high dose treatment of DEX (0.1mg DEX/kg body weight/day)(HDEX) treatment, while disposal rates increased with exercise. First-phase insulin secretion was decreased and delayed by DEX via the impairment of the glucose-sensing mechanism in beta-cells, while exercise reversed the impairment of first-phase insulin secretion caused by DEX, suggesting ameliorated beta-cell functions. However, exercise and DEX did not alter second-phase insulin secretion except for the fact that HDEX decreased insulin secretion at 120 min during hyperglycemic clamp in Px rats. Unlike beta-cell functions, DEX and exercise exhibited increased pancreatic beta-cell mass in two different pathways. Only exercise, through increased proliferation and decreased apoptosis, increased beta-cell mass via hyperplasia, which resulted from an enhanced insulin/IGF-I signaling cascade by insulin receptor substrate 2 induction. By contrast, DEX expanded beta-cell mass via hypertrophy and neogenesis from precursor cells, rather than increasing proliferation and decreasing apoptosis. In conclusion, the improvement of beta-cell function and survival via the activation of an insulin/IGF-I signaling cascade due to exercise has a crucial role in preventing the development and progression of type 2 diabetes.  相似文献   

13.
Type 2 diabetes is a metabolic disorder characterized by insulin resistance as well as a progressive deterioration of pancreatic beta-cell mass and function. Glucagon-like peptide 1 (GLP-1), an incretin hormone secreted by intestinal L cells, is a promising therapeutic agent in the treatment of diabetes. GLP-1 analogs and enhancers constitute a novel class of anti-diabetes medications which address both the insulin secretion defect as well as the decline in beta-cell mass. GLP-1 improves glucose-stimulated insulin secretion, restores glucose competence in glucose-resistant beta-cells, and stimulates insulin gene expression and biosynthesis. Furthermore, GLP-1 acts as a growth factor by promoting beta-cell proliferation, survival and neogenesis. This review focuses on the molecular mechanisms by which GLP-1 signaling induces beta-cell mass expansion.  相似文献   

14.
Choi SB  Jang JS  Park S 《Endocrinology》2005,146(11):4786-4794
The prevalence and progression of type 2 diabetes have increased remarkably in postmenopausal women. Although estrogen replacement and exercise have been studied for their effect in modulating insulin sensitivity in the case of insufficient estrogen states, their effects on beta-cell function and mass have not been studied. Ovariectomized (OVX) female rats with 90% pancreatectomy were given a 30% fat diet for 8 wk with a corresponding administration of 17beta-estradiol (30 microg/kg body weight) and/or regular exercise. Amelioration of insulin resistance by estrogen replacement or exercise was closely related to body weight reduction. Insulin secretion in first and second phases was lower in OVX during hyperglycemic clamp, which was improved by estrogen replacement and exercise but not by weight reduction induced by restricted diets. Both estrogen replacement and exercise overcame reduced pancreatic beta-cell mass in OVX rats via increased proliferation and decreased apoptosis of beta-cells, but they did not exhibit an additive effect. However, restricted diets did not stimulate beta-cell proliferation. Increased beta-cell proliferation was associated with the induction of insulin receptor substrate-2 and pancreatic homeodomain protein-1 via the activation of the cAMP response element binding protein. Estrogen replacement and exercise shared a common pathway, which led to the improvement of beta-cell function and mass, via cAMP response element binding protein activation, explaining the lack of an additive effect with combined treatments. In conclusion, decreased beta-cell mass leading to impaired insulin secretion triggers glucose dysregulation in estrogen insufficiency, regardless of body fat. Regular moderate exercise eliminates the risk factors of contracting diabetes in the postmenopausal state.  相似文献   

15.
Insulin stimulates primary beta-cell proliferation via Raf-1 kinase   总被引:1,自引:0,他引:1  
A relative decrease in beta-cell mass is key in the pathogenesis of type 1 diabetes, type 2 diabetes, and in the failure of transplanted islet grafts. It is now clear that beta-cell duplication plays a dominant role in the regulation of adult beta-cell mass. Therefore, knowledge of the endogenous regulators of beta-cell replication is critical for understanding the physiological control of beta-cell mass and for harnessing this process therapeutically. We have shown that concentrations of insulin known to exist in vivo act directly on beta-cells to promote survival. Whether insulin stimulates adult beta-cell proliferation remains unclear. We tested this hypothesis using dispersed primary mouse islet cells double labeled with 5-bromo-2-deoxyuridine and insulin antisera. Treating cells with 200-pm insulin significantly increased proliferation from a baseline rate of 0.15% per day. Elevating glucose from 5-15 mm did not significantly increase beta-cell replication. beta-Cell proliferation was inhibited by somatostatin as well as inhibitors of insulin signaling. Interestingly, inhibiting Raf-1 kinase blocked proliferation stimulated by low, but not high (superphysiological), insulin doses. Insulin-stimulated mouse insulinoma cell proliferation was dependent on both phosphatidylinositol 3-kinase/Akt and Raf-1/MAPK kinase pathways. Overexpression of Raf-1 was sufficient to increase proliferation in the absence of insulin, whereas a dominant-negative Raf-1 reduced proliferation in the presence of 200-pm insulin. Together, these results demonstrate for the first time that insulin, at levels that have been measured in vivo, can directly stimulate beta-cell proliferation and that Raf-1 kinase is involved in this process. These findings have significant implications for the understanding of the regulation of beta-cell mass in both the hyperinsulinemic and insulin-deficient states that occur in the various forms of diabetes.  相似文献   

16.
Glucagon-like peptide-1 (GLP-1), an incretin hormone, is released from intestinal L-cells in response to nutrients. GLP-1 lowers blood glucose levels by stimulating insulin secretion from pancreatic beta-cells in a glucose-dependent manner. In addition, GLP-1 slows gastric emptying, suppresses appetite, reduces plasma glucagon, and stimulates glucose disposal, which are beneficial for glucose homeostasis. Therefore, incretin-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase IV, an enzyme which inactivates GLP-1, have been developed for treatment of diabetes. This review outlines our knowledge of the actions of GLP-1 on insulin secretion and biosynthesis, beta-cell proliferation and regeneration, and protection against beta-cell damage, as well as the involvement of recently discovered signaling pathways of GLP-1 action, mainly focusing on pancreatic beta-cells.  相似文献   

17.
The phenomenon of pancreatic regeneration in mammals has been well documented. It has been shown that pancreatic tissue is able to regenerate in several species of mammal after surgical insult. This tissue is also known to have the potential to maintain or increase its beta-cell mass in response to metabolic demands during pregnancy and obesity. Since deficiency in beta-cell mass is the hallmark of most forms of diabetes, it is worthwhile understanding pancreatic regeneration in the context of this disease. With this view in mind, this article aims to discuss the potential use in clinical strategies of knowledge that we obtained from studies carried out in animal models of diabetes. Approaches to achieve this goal involve the use of biomolecules, adult stem cells and gene therapy. Various molecules, such as glucagon-like peptide-1, beta-cellulin, nicotinamide, gastrin, epidermal growth factor-1 and thyroid hormone, play major roles in the initiation of endogenous islet regeneration in diabetes. The most accepted hypothesis is that these molecules stimulate islet precursor cells to undergo neogenesis or to induce replication of existing beta-cells, emphasizing the importance of pancreas-resident stem/progenitor cells in islet regeneration. Moreover, the potential of adult stem cell population from bone marrow, umbilical cord blood, liver, spleen, or amniotic membrane, is also discussed with regard to their potential to induce pancreatic regeneration.  相似文献   

18.
19.
Ballian N  Hu M  Liu SH  Brunicardi FC 《Pancreas》2007,35(3):199-206
Pancreatic disease is responsible for significant morbidity and mortality as a result of pancreatic carcinoma and diabetes mellitus. Regulation of endocrine cell mass is thought to have a central role in the pathogenesis of both these diseases. Islet cell proliferation, hypertrophy, neogenesis, and apoptosis are the main determinants of endocrine cell mass in the pancreas, and their understanding has been improved by new clues of their genetic and molecular basis. Beta cells have attracted most research interest because of potential implications in the treatment of diabetes mellitus and hypoglycemic disorders. The processes that operate during pancreatic adaptation to a changing hormonal milieu are important in pancreatic carcinogenesis. There is evidence that somatostatin and its receptors are fundamental regulators of endocrine cell mass and are involved in islet tumorigenesis.  相似文献   

20.
自身免疫性糖尿病是由抗原特异性T淋巴细胞对胰岛β细胞的选择性破坏,凋亡是β细胞破坏的基本过程。凋亡的β细胞所产生的自身抗原通过树突状细胞递呈给幼稚的T淋巴细胞使之活化、进入循环、激发胰岛炎,并通过细胞毒性T细胞再次诱导β细胞凋亡,由此形成恶性循环,导致β细胞强烈而特异性的破坏。环孢菌素A通过对钙调磷酸酶的特异性抑制,下调T淋巴细胞某些早期基因的转录,抑制其活化与增殖,打断β细胞凋亡-T淋巴细胞激活-β细胞凋亡链;环孢菌素A还可能通过阻断钙调磷酸酶介导的线粒体膜通透性转运孔的开放,直接抑制胰岛β细胞凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号