首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expansion of hematopoietic stem cells could be used clinically to shorten the prolonged aplastic phase after umbilical cord blood (UCB) transplantation. In this report, we investigated rapid severe combined immunodeficient (SCID) repopulating activity (rSRA) 2 weeks after transplantation of CD34(+) UCB cells cultured with serum on MS5 stromal cells and in serum- and stroma-free cultures. Various subpopulations obtained after culture were studied for rSRA. CD34(+) expansion cultures resulted in vast expansion of CD45(+) and CD34(+) cells. Independent of the culture method, only the CD34(+)33(+)38(-) fraction of the cultured cells contained rSRA. Subsequently, we subfractionated the CD34(+)38(-) fraction using stem cell markers CD45RA and CD90. In vitro differentiation cultures showed CD34(+) expansion in both CD45RA(-) and CD90(+) cultures, whereas little increase in CD34(+) cells was observed in both CD45RA(+) and CD90(-) cultures. By four-color flow cytometry, we could demonstrate that CD34(+)38(-)45RA(-) and CD34(+)38(-)90(+) cell populations were largely overlapping. Both populations were able to reconstitute SCID/nonobese diabetic mice at 2 weeks, indicating that these cells contained rSRA activity. In contrast, CD34(+)38(-)45RA(+) or CD34(+)38(-)90(-) cells contributed only marginally to rSRA. Similar results were obtained when cells were injected intrafemorally, suggesting that the lack of reconstitution was not due to homing defects. In conclusion, we show that after in vitro expansion, rSRA is mediated by CD34(+)38(-)90(+)45RA(-) cells. All other cell fractions have limited reconstitutive potential, mainly because the cells have lost stem cell activity rather than because of homing defects. These findings can be used clinically to assess the rSRA of cultured stem cells.  相似文献   

2.
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.  相似文献   

3.
目的:以NOD/SCID小鼠为模型, 经半致死剂量照射后输注新鲜或培养后的造血细胞, 以比较培养前后脐血CD34 细胞的造血重建功能.方法:从新鲜脐血中分离单个核细胞(MNC), 采用干细胞因子(SCF)、血小板生成素(TPO)、Flt3配体(FL)、白细胞介素3(IL-3)和白细胞介素6(IL-6)细胞因子组合体外培养14 d.通过MiniMACS免疫磁性吸附柱从新鲜或培养后的MNC中分离CD34 细胞, 4×105个CD34 细胞和5×106CD34-细胞混合后通过尾静脉输注入NOD/SCID小鼠中.饲养过程中动态观察外周血象恢复情况, 6周后检测小鼠骨髓和脾脏细胞中人源细胞及各系造血细胞的含量.结果:体外培养MNC 14 d后, 总细胞扩增了1.78倍;细胞移植6周后, 输注新鲜和培养后造血细胞的小鼠均存活, 在小鼠骨髓和脾脏中均可检测到人源细胞及各系人源血细胞和人特异ALU基因序列, 小鼠外周血象恢复到辐照前水平.培养后CD34 细胞在小鼠体内的植入水平与新鲜CD34 细胞的相近, 而其各系人源血细胞的含量高于新鲜CD34 细胞. 结论:体外培养14 d后的CD34 细胞仍保持了体内植入和重建造血的能力, 且其多系造血重建能力优于新鲜CD34 细胞.  相似文献   

4.
Mesenchymal stem cells have been implicated as playing an important role in stem cell engraftment. Recently, a new pluripotent population of umbilical cord blood (UCB) cells, unrestricted somatic stem cells (USSCs), with intrinsic and directable potential to develop into mesodermal, endodermal, and ectodermal fates, has been identified. In this study, we evaluated the capacity of ex vivo expanded USSCs to influence the homing of UCB-derived CD34(+) cells into the marrow and spleen of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. USSCs induced a significant enhancement of CD34(+) cell homing to both bone marrow and spleen (2.2 +/- 0.3- and 2.4 +/- 0.6-fold, respectively; p < .05), with a magnitude similar to that induced by USSCs that had been thawed prior to transplantation. The effect of USSCs was dose-dependent and detectable at USSC:CD34(+) ratios of 1:1 and above. Enhanced marrow homing by USSCs was unaltered by extensive culture passaging of the cells, as similar enhancement was observed for both early-passage (passage 5 [p5]) and late-passage (p10) USSCs. The homing effect of USSCs was also reflected in an increased proportion of NOD/SCID mice exhibiting significant human cell engraftment 6 weeks after transplantation, with a similar distribution of myeloid and lymphoid components. USSCs enhanced the homing of cellular products of ex vivo expanded UCB lineage-negative (lin(-)) cells, generated in 14-day cultures by Selective Amplification. The relative proportion of homing CD34(+) cells within the culture-expanded cell population was unaltered by USSC cotransplantation. Production of stromal-derived factor-1 (SDF-1) by USSCs was detected by both gene expression and protein released into culture media of these cells. Knockdown of SDF-1 production by USSCs using lentiviral-SiRNA led to a significant (p < .05) reduction in USSC-mediated enhancement of CD34(+) homing. Our findings thus suggest a clinical potential for using USSCs in facilitating homing and engraftment for cord blood transplant recipients.  相似文献   

5.
Human umbilical cord blood units (UCBs) are an alternative source in allogeneic-stem-cell transplantation. Human leukocyte antigen (HLA)-G is a tolerogenic molecule with a possible implication in UCB immunoregulatory effect. HLA-G expression was observed in UCB myeloid and plasmacytoid dendritic cells; in contrast, CD34(+) cells did not produce this molecule. CD34(+) cells are primitive hematopoietic progenitor cells that are present in UCB and are necessary for long-term engraftment via production of immunoregulatory molecules and a hematopoietic progeny that supports cellular recovery. The role of these cells in UCB transplantation needs further evaluation of HLA-G expression in CD34(+) cells and their hematopoietic progeny. We confirmed the absence of HLA-G expression in CD34(+) cells, whereas CD34(+)-derived progeny secreted HLA-G molecules and expressed HLA-G mRNA in in vitro cultures. Furthermore, soluble HLA (sHLA)-G molecules purified from the culture supernatants of CD34(+)-derived progeny were able to suppress lymphoproliferative response in an HLA-G dose-dependent manner. Overall these results identify CD34(+)-derived hematopoietic progeny as producers of HLA-G molecules and support a role of this antigen as an immuno-modulatory factor in UCB.  相似文献   

6.
Allogeneic transplantation with umbilical cord blood (UCB) is limited in adult recipients by a low CD34(+) cell dose. Clinical trials incorporating cytokine-based UCB in vitro expansion have not demonstrated significant shortening of hematologic recovery despite substantial increases in CD34(+) cell dose, suggesting loss of stem cell function. To sustain stem cell function during cytokine-based in vitro expansion, a feeder layer of human mesenchymal stem cells (MSCs) was incorporated in an attempt to mimic the stem cell niche in the marrow microenvironment. UCB expansion on MSCs resulted in a 7.7-fold increase in total LTC-IC output and a 3.8-fold increase of total early CD34(+) progenitors (CD38(-)/HLA-DR(-)). Importantly, early CD34(+)/CD38(-)/HLA-DR(-) progenitors from cultures expanded on MSCs demonstrated higher cytoplasmic expression of the cell-cycle inhibitor, p21(cip1/waf1), and the antiapoptotic protein, BCL-2, compared with UCB expanded in cytokines alone, suggesting improved maintenance of stem cell function in the presence of MSCs. Moreover, the presence of MSCs did not elicit UCB lymphocyte activation. Taken together, these results strongly suggest that the addition of MSCs as a feeder layer provides improved conditions for expansion of early UCB CD34(+)/CD38(-)/HLA-DR(-) hematopoietic progenitors and may serve to inhibit their differentiation and rates of apoptosis during short-term in vitro expansion.  相似文献   

7.
There is increasing evidence that human hematopoietic stem cells can develop into lymphocytes expressing T cell surface markers in the organ culture of murine embryonic thymic lobes. If human T cells with functional maturity are inducible from human stem cells in the mouse, it may be a useful model to investigate human T cell development and the human immune response in vivo. To approach this, we produced a hybrid cluster of murine fetal thymic epithelial cells and human cord blood-derived CD34(+) cells (hu/m cluster) using reaggregate thymic organ culture, and subsequently implanted it under the kidney capsule of NOD/SCID mice. The implanted hu/m cluster grew in volume under the kidney capsule and contained increased numbers of CD4(+)CD8(+)cells as well as CD4 or CD8 single-positive cells with low CD1a expression. These lymphocytes were also shown to possess activity for producing IL-2 and IL-4. Characteristics similar to human T cells also developed in the thymus of newly established mice lacking NK activity from NOD/SCID mice. These results indicate that functionally mature T cells can develop in vivo from human hematopoietic progenitors in the murine environment composed of thymic epithelial cells.  相似文献   

8.
So far, blood progenitor cells (BPC) expanded ex vivo in the absence of stromal cells have not been demonstrated to reconstitute hematopoiesis in myeloablated patients. To characterize the fate of early hematopoietic progenitor cells during ex vivo expansion in suspension culture, human CD34(+)-enriched BPC were cultured in serum-free medium in the presence of FLT3 ligand (FL), stem cell factor (SCF) and interleukin 3 (IL-3). Both CD34 surface expression levels and the percentage of CD34+ cells were continuously downregulated during the culture period. We observed an expansion of colony-forming units granulocyte-macrophage (CFU-GM) and BFU-E beginning on day 3 of culture, reaching an approximate 2-log increase by days 5 to 7. Limiting dilution analysis of primitive in vitro clonogenic progenitors was performed through a week 6 cobblestone-area-forming cell (CAFC) assay, which has previously been shown to detect long-term bone marrow culture-initiating cells (LTC-IC). A maintenance or a slight (threefold) increase of week 6 CAFC/LTC-IC was found after one week of culture. To analyze the presence of BPC mediating in vivo engraftment, expanded CD34+ cells were transplanted into preirradiated NOD/SCID mice at various time points. Only CD34+ cells cultured for up to four days successfully engrafted murine bone marrow with human cells expressing myeloid or lymphoid progenitor phenotypes. In contrast, five- and seven-day expanded human BPC did not detectably engraft NOD/SCID mice. When FL, SCF and IL-3-supplemented cultures were performed for seven days on fibronectin-coated plastic, or when IL-3 was replaced by thrombopoietin, colony forming cells and LTC-IC reached levels similar to those of control cultures, yet no human cell engraftment was recorded in the mice. Also, culture in U-bottom microplates resulting in locally increased CD34+ cell density had no positive effect on engraftment. These results indicate that during ex vivo expansion of human CD34+ cells, CFC and LTC-IC numbers do not correlate with the potential to repopulate NOD/SCID mice. Our results suggest that ex vivo expanded BPC should be cultured for limited time periods only, in order to preserve bone-marrow-repopulating hematopoietic stem cells.  相似文献   

9.
Both oncoretroviral and lentiviral vectors have been shown to transduce CD34(+) human hematopoietic stem cells (HSC) capable of establishing human hematopoiesis in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice that support partially human hematopoiesis. We and others have reported that murine stem cell virus (MSCV)-based oncoretroviral vectors efficiently transduced HSC that had been cultured ex vivo for 4-7 days with cytokines, resulting in transgene expression in lymphoid and myeloid progenies of SCID-engrafting cells 4-8 weeks post-transplantation. Although lentiviral vectors have been demonstrated to transduce HSC under minimal ex vivo culture conditions, concerns exist regarding the level of transgene expression mediated by these vectors. We therefore evaluated a novel hybrid lentiviral vector (GIN-MU3), in which the U3 region of the HIV-1 long terminal repeat was replaced by the MSCV U3 region (MU3). Human cord blood CD34(+) cells were transduced with vesicular stomatitis virus G envelope protein-pseudotyped lentiviruses during a 48-hour culture period. After a total of 4 days in culture, transduced cells were transplanted into NOD/SCID mice to examine gene transfer and expression in engrafting human cells. Fifteen weeks post-transplantation, 37% +/- 12% of engrafted human cells expressed the green fluorescence protein (GFP) gene introduced by the lentiviral vector. High levels of GFP expression were observed in lymphoid, myeloid and erythroid progenies, and in engrafted human cells that retained the CD34(+) phenotype 15 weeks post-transplantation. This study provides evidence that lentiviral vectors transduced both short-term and long-term engrafting human cells, and mediated persistent transgene expression at high levels in multiple lineages of hematopoietic cells.  相似文献   

10.
CD26, a surface serine dipeptidylpeptidase IV (DPPIV) expressed on different cell types, cleaves the amino-terminal dipeptide from some chemokines, including stromal-derived factor-1 (SDF-1/CXCL12). SDF-1/CXCL12 plays important roles in hematopoietic stem cell (HSC) homing, engraftment, and mobilization. Inhibition of CD26 peptidase activity enhances homing, engraftment, and competitive repopulation in congenic mouse bone marrow cell transplants. Our studies evaluated a role for CD26 in in vivo engraftment of HSCs from human umbilical cord blood (CB) into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Pretreating purified CD34(+) human CB cells with Diprotin A, a DPPIV inhibitor, for 15 min significantly enhanced engraftment. Treatment did not affect differentiation of CD34(+) cells in vivo, as measured phenotypically by human markers CD33, CD38, CD19, and CD34. We found that the percentage of CD26(+) cells within the more immature cells (CD34(+)CD38()) was significantly higher than in the more mature population (CD34(+)CD38(+)). These results suggest that inhibition of CD26 may be one way to enhance engraftment of limiting numbers of stem cells during CB transplantation.  相似文献   

11.
Intra-bone marrow injection is a novel strategy for hematopoietic stem cell transplantation. Here, we investigated whether ex vivo culture of cord blood hematopoietic stem/progenitor cells influences their reconstitution in bone marrow after intra-bone marrow transplantation. Freshly isolated AC133(+) cells or cells derived from AC133(+) cells cultured with cytokines (stem cell factor, flt-3 ligand, and thrombopoietin) for 5 days were injected into the bone marrow of the left tibia in irradiated NOD/SCID mice. In the bone marrow of the injected left tibia, the engraftment levels of human CD45(+) cells at 6 weeks after transplantation did not differ considerably between transplantation of noncultured and cytokine-cultured cells. However, the migration and distribution of transplanted cells to the bone marrow of other, noninjected bones were extremely reduced for cytokine-treated cells compared with noncultured cells. Similar findings were observed for engraftment of CD34(+) cells. Administration of granulocyte colony-stimulating factor to mice after transplantation induced the migration of cytokine-cultured cells to the bone marrow of previously aspirated bone but not to other intact bones. These data suggest that ex vivo manipulation of hematopoietic progenitor/stem cells significantly affects their migration properties to other bone marrow compartments after intra-bone marrow transplantation. Our data raise a caution for future clinical applications of the intra-bone marrow transplantation method using ex vivo-manipulated hematopoietic stem cells.  相似文献   

12.
Cord blood (CB) cells are a useful source of hematopoietic cells for transplantation. The hematopoietic activities of CB cells are different from those of bone marrow and peripheral blood (PB) cells. Platelet recovery is significantly slower after transplantation with CB cells than with cells from other sources. However, the cellular mechanisms underlying these differences have not been elucidated. We compared the surface marker expression profiles of PB and CB hematopoietic cells. We focused on two surface markers of hematopoietic cell immaturity, i.e., CD34 and AC133. In addition to differences in surface marker expression, the PB and CB cells showed nonidentical differentiation pathways from AC133(+)CD34(+) (immature) hematopoietic cells to terminally differentiated cells. The majority of the AC133(+)CD34(+) PB cells initially lost AC133 expression and eventually became AC133(-)CD34(-) cells. In contrast, the AC133(+)CD34(+) CB cells did not go through the intermediate AC133(-)CD34(+) stage and lost both markers simultaneously. Meanwhile, the vast majority of megakaryocyte progenitors were of the AC133(-)CD34(+) phenotype. We conclude that the delayed recovery of platelets after CB transplantation is due to both subpopulation distribution and the process of differentiation from AC133(+)CD34(+) cells.  相似文献   

13.
Although umbilical cord blood (CB) is increasingly being used as an alternative to bone marrow (BM) as a source of transplantable hematopoietic stem cells (HSC), information on the hematopoietic repopulating ability of CB HSC is still limited. We recently established a xenotransplantation system in NOD/Shi-scid mice to evaluate human stem cell activity. In the present study, we transplanted 5 to 10 x 10(4) CB CD34(+) cells into six NOD/Shi-scid mice treated with anti-asialo GM1 antiserum to investigate the hematopoietic repopulating ability of CB. The BM of all recipients contained human CD45(+) cells 10 to 12 weeks after the transplantation (43.8 +/- 17.7%). Clonal culture of the recipient BM cells revealed the formation of various types of human hematopoietic colonies, including myelocytic, erythroid, megakaryocytic, and multilineage colonies, indicating that CB HSC can differentiate into hematopoietic progenitors of various lineages. However, the extent of the differentiation and maturation differed with each lineage. CD13(+)/CD14(+)/CD33(+) myelocytic cells were mainly repopulated in BM and peripheral blood (PB). While CD41(+) megakaryocytic cells and platelets were present, few glycophorin A(+)CD71(+) or hemoglobin alpha-containing erythroid cells were detected. CD19(+) B cells were the most abundantly repopulated in NOD/Shi-scid mice, but their maturational stage differed among the hematopoietic organs. Most of the BM CD19(+) cells were immature B cells expressing CD10 but not surface immunoglobulin (Ig) M, whereas more mature CD19(+)CD10(-) surface IgM(+) B cells were predominantly present in spleen and PB. CD3(+) T cells were not detected even in the recipient thymus. The transplantation to the NOD/Shi-scid mouse may provide a useful tool for evaluating the repopulating ability of transplantable human HSC.  相似文献   

14.
Umbilical cord blood (UCB) provides a rich source of stem cells for transplantation after myeloablative therapy. One major disadvantage of UCB transplantation is delayed platelet engraftment. We propose to hasten platelet engraftment by expanding the number of megakaryocyte (MK) precursors (CD34/CD41 cells) through cytokine stimulation within a closed, pre-clinical liquid culture system. Clinical engraftment data suggest a 5- to 10-fold increase in MK precursors in a UCB unit can accelerate platelet engraftment, so this was our goal. Thirteen UCB samples from full-term births were Ficoll-separated and frozen for subsequent use. On thawing, the mononuclear cell population was positively selected for CD34(+) expression. The cells were cultured in gas-permeable Teflon-coated bags in serum-free medium containing the following cytokines: recombinant human interleukin-3, recombinant human Flt3 ligand, recombinant human stem cell factor, and recombinant human thrombopoietin. MK lineage cell expansion was assessed using mononuclear cell count and flow cytometry (CD34/41, CD41, CD34/61, and CD61 expression) on days 7, 11, and 14. Optimal expansion of CD34/41 and CD41 cells was observed at day 11, with a median 6-fold and 33-fold increase in the starting cell doses, respectively. CD34/61 and CD61 cell expansion at day 11 was 7-fold and 14-fold, respectively. MK precursors can be successfully expanded from CD34(+) UCB cells in a closed liquid culture system using interleukin-3, recombinant human Flt3 ligand, recombinant human stem cell factor, and recombinant human thrombopoietin to a level that should have a clinical impact in the transplantation setting. Our ex vivo expansion technique needs to be further optimized before it can be used in a pilot UCB transplantation trial.  相似文献   

15.
Umbilical cord blood (UCB) preparation needs to be optimized in order to develop more simplified procedures for volume reduction, as well as to reduce the amount of contaminating cells within the final stem cell transplant. We evaluated a novel filter device (StemQuick((TM))E) and compared it with our routine buffy coat (BC) preparation procedure for the enrichment of hematopoietic progenitor cells (HPCs). Two groups of single or pooled UCB units were filtered (each n = 6), or equally divided in two halves and processed by filtration and BC preparation in parallel (n = 10). The engraftment capacity of UCB samples processed by whole blood (WB) preparation was compared with paired samples processed by filtration in the nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse animal model. Filtration of UCB units in the two groups with a mean volume of 87.8 and 120.7 ml, respectively, and nucleated cell (NC) content of 9.7 and 23.8 x 10(8) resulted in a sufficient mean cell recovery for mononucleated cells ([MNCs] 74.2%-77.5%), CD34(+) cells (76.3%-79.0%), and colony-forming cells (64.1%-86.3%). Moreover, we detected a relevant depletion of the transplants for RBCs (89.2%-90.0%) and platelets ([PLTs] 77.5%-86.1%). In contrast, the mean depletion rate using BC processing proved to be significantly different for PLTs (10%, p = 0.03) and RBCs (39.6%, p < 0.01). The NC composition showed a highly significant increase in MNCs and a decrease in granulocytes after filtration (p < 0.01), compared with a less significant MNC increase in the BC group (p < 0.05). For mice transplanted with WB-derived progenitors, we observed a mean of 15.3% +/- 15.5% of human CD45(+) cells within the BM compared with 19.9% +/- 16.8% for mice transplanted with filter samples (p = 0.03). The mean percentage of human CD34(+) cells was 4.2% +/- 3.1% for WB samples and 4.5% +/- 3.2% for filter samples (p = 0.68). As the data of NOD/SCID mice transplantation demonstrated a significant engraftment capacity of HPCs processed by filtration, no negative effect on the engraftment potential of filtered UCB cells versus non-volume-reduced cells from WB transplants was found. The StemQuick((TM))E filter devices proved to be a useful tool for Good Manufacturing Practices conform enrichment of HPCs and MNCs out of UCB. Filtration enables a quick and standardized preparation of a volume-reduced UCB transplant, including a partial depletion of granulocytes, RBCs, and PLTs without the need for centrifugation. Therefore, it seems very probable that filter-processed UCB transplants will also result in sufficient hematopoietic reconstitution in humans.  相似文献   

16.
A major problem with the use of umbilical cord/placental blood (UCB) is the limited blood volume that can be collected from a single donor. In this study, we evaluated a novel system for the collection of UCB and analyzed the kinetics of output of hematopoietic stem cells in the collected blood. Sequential UCB fractions were collected from 48 placentas by gravity following common procedures. When UCB flow was ended, collection was continued using the device. Nucleated cell (NC) density in each fraction was evaluated and the expression of CD34, CD38 and other hematopoietic markers was assessed by flow cytometry. The total collected volume was 60.9 +/- 26.2 ml (mean +/- SD, range 17-141.5). The device yield (volume collected using the device/total volume) was 26.5 +/- 15.1%. No significant difference was observed in NC count in sequential fractions. A significant increase in CD34(+) cell content in sequential fractions and a 2.07 +/- 1.18-fold increase in the percentage of CD34(+) cells in the last versus first fraction were observed. Furthermore, within the CD34(+) population, the percentage of CD38(-) pluripotent stem cells in the first fraction was 3.24 +/- 1.39, while in the last fraction it raised to 34.43 +/- 22.62. Thus, at the end of a collection performed following current procedures, further blood rich in the most primitive progenitor cells can be recovered. Therefore, the optimization and standardization of collection procedures are required to obtain maximal recovery from each placenta and increase the percentage of UCB units suitable for clinical use.  相似文献   

17.
As mobilized peripheral blood (MPB) represents an attractive cell source for gene therapy, we investigated the ability of third-generation lentiviral vectors (LVs) to transfer the enhanced green fluorescent protein gene into MPB CD34(+) cells in culture conditions allowing expansion of transplantable human hematopoietic stem cells. To date, few studies have reported transduction of MPB cells with vesicular stomatitis virus G pseudotyped LVs. The critical issue remains whether primitive, hematopoietic repopulating cells have, indeed, been transduced. In vitro (5 weeks' culture in FLT3 ligand + thrombopoietin + stem cell factor + interleukin 6) and in vivo (serial transplantation in NOD/SCID mice) experiments show that MPB CD34(+) cells can be effectively long-term transduced by LV and maintain their proliferation, self-renewal, and multilineage differentiation potentials. We show that expansion following transduction improves the engraftment of transduced MPB CD34(+) (4.6-fold expansion of SCID repopulating cells by limiting dilution studies). We propose ex vivo expansion after transduction as an effective tool to improve gene therapy protocols with MPB. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

18.
Clinical experience and animal models have shown that donor T cell depletion (TCD) adversely affects engraftment of hematopoietic stem cells (HSCs). Although it is known that donor T cells are acting to overcome residual host immune barriers, they may also exert effects independent of host resistance via direct or indirect interactions with donor stem cells, their microenvironment, or key differentiation events. To more precisely define the effect of T cells on engraftment, we have performed human umbilical cord blood (UCB) transplantation into immunodeficient mice under limiting dilution conditions. UCB mononuclear cells (MNC) or TCD UCB were transplanted into NOD/LtSz-scid/scid B2m(null) (NOD/SCID-beta(2)m(-/-)) mice. Cohorts of mice received UCB MNC or TCD UCB at 5 dose levels between 5 x 10(4) and 5 x 10(6) cells. At dose levels at or above 10(5) cells, engraftment was higher in the MNC recipients (n = 32) than the TCD recipients (n = 31) in a dose-dependent manner. Despite this difference, limiting dilution analysis to determine functional stem cell frequency revealed that SCID repopulating cells in TCD UCB was not significantly less than in CB MNCs, suggesting that T cells may facilitate engraftment at stages beyond the stem cell. Add-back of CD3/CD28 costimulated T cells restored and appeared to enhance engraftment, both in NOD/SCID-beta(2)m(-/-) as well as NOD/LtSz-scid IL2Rgamma(null) (NOG) recipients. These results, in a model where there are minimal host immune barriers to overcome, suggest T cells possess additional graft-facilitating properties. CD3/CD28 costimulation of UCB T cells represents a potential strategy for enhancing the engraftment of UCB.  相似文献   

19.
A major problem after clinical hematopoietic stem cell transplantations is poor T-cell reconstitution. Studying the mechanisms underlying this concern is hampered, because experimental transplantation of human stem and progenitor cells into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice usually results in low T-lymphocyte reconstitution. Because tumor necrosis factor alpha (TNFalpha) has been proposed to play a role in T-lineage commitment and differentiation in vitro, we investigated its potential to augment human T-cell development in vivo. Administration of TNF to irradiated NOD/SCID mice before transplantation of human mononuclear cells from either cord blood or adult G-CSF-mobilized peripheral blood (MPBL) led 2-3 weeks after transplantation to the emergence of human immature CD4(+)CD8(+) double-positive T-cells in the bone marrow (BM), spleen, and thymus, and in this organ, the human cells also express CD1a marker. One to 2 weeks later, single-positive CD4(+) and CD8(+) cells expressing heterogenous T-cell receptor alpha beta were detected in all three organs. These cells were also capable of migrating through the blood circulation. Interestingly, human T-cell development in these mice was associated with a significant reduction in immature lymphoid human CD19(+) B cells and natural killer progenitors in the murine BM. The human T cells were mostly derived from the transplanted immature CD34(+) cells. This study demonstrates the potential of TNF to rapidly augment human T lymphopoiesis in vivo and also provides clinically relevant evidence for this process with adult MPBL progenitors.  相似文献   

20.
Umbilical cord blood (UCB) transplantation is limited by the low number of hematopoietic stem cells in UCB units, which results in a low engraftment rate in transplant recipients. Here, we measured the total nucleated cell count and CD34(+), CD3(+), CD4(+), CD8(+), CD14(+), and CD16(+)/56(+) cell doses in each UCB unit and evaluated their influence on engraftment and other outcomes in 146 recipients. Multivariate analysis showed a significant association between a higher incidence of successful engraftment and a dose of CD34(+) and CD8(+) cells above the median (1.4 x 10(5) and 15.7 x 10(5) cells/kg, respectively). Engraftment occurred 4 days earlier in patients who received UCB with more than the median dose of CD34(+) cells than those receiving UCB at or below the median. Stratification of the group according to CD34(+) cell dose revealed a significant influence of the CD8(+) cell dose on the time to achieve neutrophil engraftment in patients receiving a lower CD34(+) cell dose, whereas there was no significant influence in the patients receiving a higher CD34(+) cell dose. These results suggest that consideration of CD34(+) and CD8(+) cell doses in UCB units may improve the engraftment in recipients of UCB transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号