首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Discovery of multiple beta-defensin like homologues in teleost fish   总被引:2,自引:0,他引:2  
Using a database mining approach, multiple defensin like genes have been discovered for the first time in fish, in species including zebrafish Danio rerio and the pufferfish, Takifugu rubripes and Tetraodon nigroviridis. They share the common features of vertebrate defensins, including small size, net cationic charge, and six conserved cysteines in the mature region. Based on their cysteine arrangement, the identified fish defensin like peptides resemble beta-defensin family members in birds and mammals. Computing modelling detected three beta-strands in all three zebrafish defensins and an extra N-terminal alpha-helix in one of the peptides. The coding regions of the fish genes contain three exons and two introns, the same as avian defensin genes. In zebrafish and tetraodon, two defensin genes identified are located in the same chromosome. An additional locus containing a third defensin gene has also been found in a different chromosome in zebrafish, demonstrating that multiple defensin loci may be present in fish. Comparative studies suggest that beta-defensins may represent the primitive form of the defensin family, which expanded during evolution by gene or genome duplication. In healthy zebrafish, constitutive expression of defensins was detected by RT-PCR in gill, gonad, gut, kidney, muscle, skin and spleen but the levels and patterns varied for individual defensin genes.  相似文献   

2.
《Mucosal immunology》2022,15(5):940-951
Cytokines are immunomodulatory proteins that orchestrate cellular networks in health and disease. Among these, interleukin (IL)-10 is critical for the establishment of intestinal homeostasis, as mutations in components of the IL-10 signaling pathway result in spontaneous colitis. Whether IL-10 plays other than immunomodulatory roles in the intestines is poorly understood. Here, we report that il10, il10ra, and il10rb are expressed in the zebrafish developing intestine as early as 3 days post fertilization. CRISPR/Cas9-generated il10-deficient zebrafish larvae showed an increased expression of pro-inflammatory genes and an increased number of intestinal goblet cells compared to WT larvae. Mechanistically, Il10 promotes Notch signaling in zebrafish intestinal epithelial cells, which in turn restricts goblet cell expansion. Using murine organoids, we showed that IL-10 modulates goblet cell frequencies in mammals, suggesting conservation across species. This study demonstrates a previously unappreciated IL-10-Notch axis regulating goblet cell homeostasis in the developing zebrafish intestine and may help explain the disease severity of IL-10 deficiency in the intestines of mammals.  相似文献   

3.
《Molecular immunology》2010,47(16):3358-3366
An initial bioinformatics investigation followed by cloning and sequencing analysis, has led to the identification of three novel members (omDB-2, omDB-3, omBD-4) of the β-defensin family in rainbow trout (Oncorhynchus mykiss). The contiguous sequences could be translated to give predicted peptides of 62 (omDB-2), 63 (omDB-3) and 68 (omDB-4) amino acids (aa) in length, with mature peptides of 43 (omDB-2), 39 (omDB-3) and 42 (omDB-4) aa, with no obvious proregion present. Analysis of the gene organization found that all three new genes contained three exons divided by two introns, as seen in defensin genes of other fish species. Constitutive expression of all the trout defensins was detected by RT-PCR in a wide range of mucosal and systemic tissues from healthy fish, with omDB-3 and omDB-4 showing the highest expression levels. Following bacterial challenge in vivo, the defensin genes were induced at the three mucosal sites examined (skin, gill, gut), with levels of omDB-2 and omDB-3 increased some 16-fold in gut and gill respectively. Using polyinosinic polycytosinic RNA (polyI:C) as a viral mimic, all of the four trout β-defensin genes were induced in head kidney primary leucocyte cultures at 4 h post-stimulation, with omDB-1 and omDB-3 particularly highly expressed. These data suggest that β-defensins are likely an important component of the innate defences of fish, and reveal an added level of antimicrobial peptide complexity in fish to that known previously.  相似文献   

4.

Background

Egg white must provide nutrients and protection to the developing avian embryo. One way in which this is achieved is an arsenal of antimicrobial proteins and peptides which are essentially extensions of the innate immune system. Gallin is a recently identified member of a family of peptides that are found in egg white. The function of this peptide family has not been identified and they are potentially antimicrobial.

Results

We have confirmed that there are at least 3 forms of the gallin gene in the chicken genome in 3 separate lines of chicken, all the forms are expressed in the tubular cells of the magnum region of the oviduct, consistent with its presence in egg white. mRNA expression levels are in the order 10,000 times greater in the magnum than the shell gland. The conservation between the multiple forms of gallin in the chicken genome compared with the conservation between gallin and other avian gallin like peptides, suggests that the gene duplication has occurred relatively recently in the chicken lineage. The gallin peptide family contains a six cysteine motif (C-X5-C-X3-C-X11-C-X3-C-C) found in all defensins, and is most closely related to avian beta-defensins, although the cysteine spacing differs. Further support for the classification comes from the presence of a glycine at position 10 in the 41 amino acid peptide. Recombinant gallin inhibited the growth of Escherischia coli (E. coli) at a concentration of 0.25 μM confirming it as part of the antimicrobial innate immune system in avian species.

Conclusions

The relatively recent evolution of multiple forms of a member of a new defensin related group of peptides that we have termed ovodefensins, may be an adaptation to increase expression or the first steps in divergent evolution of the gene in chickens. The potent antimicrobial activity of the peptide against E. coli increases our understanding of the antimicrobial strategies of the avian innate immune system particularly those of the egg white and the evolution of the defensin family. The potential of this peptide and others in the family can now be investigated in a number of novel antimicrobial roles.  相似文献   

5.
6.
7.
The Zebrafish Annexin Gene Family   总被引:5,自引:0,他引:5       下载免费PDF全文
The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes.  相似文献   

8.
The infection of orthopedic implantation devices with Staphylococcus is a serious concern within the biomaterial community. Treatments are not always successful because of antibiotic-resistant bacteria and serious biofilm infections. Human β-defensin 3 (hBD-3) is considered to be the most promising class of defensin antimicrobial peptides and its effect on antibiotic-resistant Staphylococcus biofilms, combined with ultrasound (US)-targeted microbubble (MB) destruction (UTMD), has not been reported. In the study, we found that biofilm densities, the percentage of live cells and the viable counts of two tested Staphylococcus recovered from the biofilm were significantly decreased in the maximum concentration hBD-3 combined with UTMD compared with those of any other groups. Furthermore, results suggested that UTMD could also enhance 1MIC hBD-3 activity inhibiting the biofilm-associated genes expression of icaAD and the methicillin-resistance genes expression of MecA by simultaneously promoting the icaR expression. UTMD may have great potential for improving antibiotic activity against biofilm infections.  相似文献   

9.
Glial cell line-derived neurotrophic factor (GDNF) has a neuroprotective role in Purkinje cells of cerebellum, promoting the survival and the differentiation of these cells. Its signalling is mediated by a receptorial complex GFRalpha1/RET. In the brain of adult zebrafish (Danio rerio) we previously investigated GDNF expression and localization, but no data exist regarding GFRalpha1 and RET presence. Thus, the present study was designed to clarify the morphological relation between GDNF and its receptorial complex GFRalpha1/RET immunoreactivity in the cerebellum of adult zebrafish. The expression of gdnf, GFRalpha1 and ret genes was demonstrated in adult zebrafish cerebellum by a standard RT-PCR. The distribution of GDNF and its receptorial complex GFRalpha1/RET was examined by single and double immunocytochemical stainings. In the valvula and corpus cerebelli GDNF, GFRalpha1 and RET immunoreactivity was seen co-localized in Purkinje cells, identified morphologically and by using an antiserum against a specific marker for these cells, aldolase C enzyme. In the vestibulolateralis lobe, Purkinje neurons were lacking in both the eminentiae granulares and medial caudal lobe. These results demonstrated the expression of the GDNF receptorial complex in adult zebrafish cerebellum and suggest an autocrine mode of action of GDNF in Purkinje cells.  相似文献   

10.
11.
12.
13.
《Mucosal immunology》2015,8(2):352-361
Organoids mirror in vivo tissue organization and are powerful tools to investigate the development and cell biology of the small intestine. However, their application for the study of host–pathogen interactions has been largely unexplored. We have established a model using microinjection of organoids to mimic enteric infection, allowing for direct examination of pathogen interactions with primary epithelial cells in the absence of confounding variables introduced by immune cells or the commensal microbiota. We investigated the impact of Paneth cell α-defensin antimicrobial peptides on bacterial growth. We demonstrate that organoids form a sealed lumen, which contains concentrations of α-defensins capable of restricting growth of multiple strains of Salmonella enterica serovar Typhimurium for at least 20 h postinfection. Transgenic expression of human defensin 5 in mouse organoids lacking functional murine α-defensins partially restored bacterial killing. We also found that organoids from NOD2−/− mice were not impaired in α-defensin expression or antibacterial activity. This model is optimized for the study of non-invasive bacteria but can be extended to other enteric pathogens and is amenable to further genetic manipulation of both the host and microbe to dissect this critical interface of host defense.  相似文献   

14.
Several strategies currently exist for control of Salmonella enterica serovar Typhimurium colonization in the chicken intestine, among which the use of probiotics is of note. Little is known about the underlying mechanisms of probiotic-mediated reduction of Salmonella colonization. In this study, we asked whether the effect of probiotics is mediated by antimicrobial peptides, including avian beta-defensins (also called gallinacins) and cathelicidins. Four treatment groups were included in this study: a negative-control group, a probiotic-treated group, a Salmonella-infected group, and a probiotic-treated and Salmonella-infected group. On days 1, 3, and 5 postinfection (p.i.), the cecal tonsils were removed, and RNA was extracted and used for measurement of avian beta-defensin 1 (AvBD1), AvBD2, AvBD4, AvBD6, and cathelicidin gene expression by real-time PCR. The expressions of all avian beta-defensins and cathelicidin were detectable in all groups, irrespective of treatment and time point. Probiotic treatment and Salmonella infection did not affect the expression of any of the investigated genes on day 1 p.i. Furthermore, probiotic treatment had no significant effect on the expression of the genes at either 3 or 5 days p.i. However, the expression levels of all five genes were significantly increased (P < 0.05) in response to Salmonella infection at 3 and 5 days p.i. However, administration of probiotics eliminated the effect of Salmonella infection on the expression of antimicrobial genes. These findings indicate that the expression of antimicrobial peptides may be repressed by probiotics in combination with Salmonella infection or, alternatively, point to the possibility that, due to a reduction in Salmonella load in the intestine, these genes may not be induced.  相似文献   

15.
In present study, we identified a novel membrane immunoglobulin M isotype from zebrafish (Danio rerio), which was designated as mIgM-2, adding a new member to the Immunoglobulin family in teleost fish. The full length of cloned mIgM-2 cDNA was 611 bp, encoding 150 amino acids. The putative mIgM-2 protein sequence consists of one constant region and a trans-membrane region. Phylogenetic analysis showed that mIgM-2 grouped with the known zebrafish IgM sequences. The mIgM-2 mRNA was widely expressed in immune-related tissues including intestine, kidney and skin. In vivo stimulation with LPS significantly up-regulates the expression of mIgM-2. Our results will add new insight into the immunoglobulin class diversity of teleost fish, and to better understand the evolutionary history of adaptive immunity from fish to mammals as a whole.  相似文献   

16.
Certain Bacillus strains are important producers of antimicrobial peptides with great potential for biological control. Antimicrobial peptide production by Bacillus amyloliquefaciens P11 was investigated in the presence of heat-inactivated cells of bacteria and fungi. B. amyloliquefaciens P11 exhibited higher antimicrobial activity in the presence of inactivated cells of Staphylococcus aureus and Aspergillus parasiticus compared to other conditions tested. Expression of essential genes related to biosynthesis of the antimicrobial peptides surfactin (sfp), iturin A (lpa-14 and ituD), subtilosin A (sboA) and fengycin (fenA) was investigated by quantitative real-time PCR (qRT-PCR). The genes lpa-14 and ituD were highly expressed in the presence of S. aureus (inactivated cells), indicating induction of iturin A production by B. amyloliquefaciens P11. The other inducing condition (inactivated cells of A. parasiticus) suppressed expression of lpa-14, but increased expression of ituD. A twofold increase in fenA expression was observed for both conditions, while strong suppression of sboA expression was observed in the presence of inactivated cells of S. aureus. An increase in antimicrobial activity was observed, indicating that synthesis of antimicrobial peptides may be induced by target microorganisms.  相似文献   

17.
CD36 is a transmembrane glycoprotein belonging to the scavenger receptor class B family which plays crucial roles in innate immunity. Although CD36 is widely documented in mammals, the study of its functions in fish is still limited. Here we report the identification of a zebrafish cd36 homologue. Zebrafish cd36 has a higher gene expression in the tissues of intestine and liver but very low in kidney and swim bladder. We find cd36 mRNA is maternally expressed and is mainly restricted to the intestine, branchial arches and regions around the lips after the segmentation stage during embryogenesis. Functionally, the recombinant Cd36 corresponding to the large extracellular loop is capable of binding both the Gram-negative and Gram-positive bacteria. These results indicate that zebrafish Cd36 is a microbial-binding molecule. The study expands our knowledge of the function of scavenger receptor molecules in fish innate immune process.  相似文献   

18.
Metallothionein (MT) is a small cysteine-rich heavy metal-binding protein involved in metal homeostasis, detoxification and free radical-scavenging. MT is ubiquitously expressed in several tissues, but its role in the central nervous system is not well understood. In this study, we identified two MT homologous genes (mt2 and smtb) in the zebrafish. Digoxigenin-in situ hybridization showed the expression of mt2 and smtb genes in the ventricular layers in the telencephalon, diencephalon, mesencephalon and rhombencephalon, most of which are cell proliferating regions in the brain of zebrafish. Cellular characteristics of MT genes expressing cells were examined by double-labelling with markers for neurons (HuC/D) and astrocytes (glial fibrillary acidic protein, GFAP and S100 protein) and cell proliferation marker (PCNA). mt2 and smtb mRNAs are expressed in neurons and not in astrocytes, and they were co-localized with PCNA. These results suggest that mt2 and smtb may play an important role in neurogenesis and neuroprotection.  相似文献   

19.
Human hearing loss is a common neurosensory disorder about which many basic research and clinically relevant questions are unresolved. At least 50% of hearing loss are due to a genetic etiology. Although hundreds of genes have been reported, there are still hundreds of related deafness genes to be found. Clinical, genetic, and functional investigations were performed to identify the causative mutation in a distinctive Chinese family with postlingual nonsyndromic sensorineural hearing loss. Whole‐exome sequencing (WES) identified lipoprotein receptor‐related protein 5 (LRP5), a member of the low‐density lipoprotein receptor family, as the causative gene in this family. In the zebrafish model, lrp5 downregulation using morpholinos led to significant abnormalities in zebrafish inner ear and lateral line neuromasts and contributed, to some extent, to disabilities in hearing and balance. Rescue experiments showed that LRP5 mutation is associated with hearing loss. Knocking down lrp5 in zebrafish results in reduced expression of several genes linked to Wnt signaling pathway and decreased cell proliferation when compared with those in wild‐type zebrafish. In conclusion, the LRP5 mutation influences cell proliferation through the Wnt signaling pathway, thereby reducing the number of supporting cells and hair cells and leading to nonsyndromic hearing loss in this Chinese family.  相似文献   

20.
An initial bioinformatics investigation followed by cloning and sequencing analysis, has led to the identification of three novel members (omDB-2, omDB-3, omBD-4) of the β-defensin family in rainbow trout (Oncorhynchus mykiss). The contiguous sequences could be translated to give predicted peptides of 62 (omDB-2), 63 (omDB-3) and 68 (omDB-4) amino acids (aa) in length, with mature peptides of 43 (omDB-2), 39 (omDB-3) and 42 (omDB-4) aa, with no obvious proregion present. Analysis of the gene organization found that all three new genes contained three exons divided by two introns, as seen in defensin genes of other fish species. Constitutive expression of all the trout defensins was detected by RT-PCR in a wide range of mucosal and systemic tissues from healthy fish, with omDB-3 and omDB-4 showing the highest expression levels. Following bacterial challenge in vivo, the defensin genes were induced at the three mucosal sites examined (skin, gill, gut), with levels of omDB-2 and omDB-3 increased some 16-fold in gut and gill respectively. Using polyinosinic polycytosinic RNA (polyI:C) as a viral mimic, all of the four trout β-defensin genes were induced in head kidney primary leucocyte cultures at 4 h post-stimulation, with omDB-1 and omDB-3 particularly highly expressed. These data suggest that β-defensins are likely an important component of the innate defences of fish, and reveal an added level of antimicrobial peptide complexity in fish to that known previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号