首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geisler S  Zahm DS 《Brain research》2006,1087(1):87-104
Neurotensin (NT) modulates ventral tegmental area (VTA) signaling in a manner relevant to psychostimulant drug actions, thus inviting evaluation of psychostimulant effects in conditions of reduced or absent VTA NT. However, in a preliminary study, NT immunoreactivity (-ir) in the VTA was unaffected following destruction of the main concentration of forebrain neurotensinergic VTA afferents in the lateral preoptic-rostral lateral hypothalamic continuum (LPH) and adjacent lateral part of the medial preoptic area (MPOA). This study attempted to determine what measures are necessary to obtain a significant reduction of VTA NT-ir. Large unilateral ibotenic acid lesions were made in several structures containing NTergic, VTA-projecting neurons, including the LPH-MPOA, nucleus accumbens, VTA itself and dorsal raphe. None of these was associated with substantial ipsilateral loss of NT-ir in the VTA, lateral hypothalamus or lateral habenula. Combinations of lesions, such as LPH-MPOA plus VTA and LPH-MPOA plus dorsal raphe, also failed to substantially reduce NT-ir in these structures. Transections of the medial forebrain bundle (mfb) likewise failed to produce a substantial loss of VTA NT-ir measured with immunohistochemistry and radioimmunoassay. Transections of the mfb were carried out in combination with infusions of retrograde and anterograde axonal tract-tracers, revealing that the routes taken by some forebrain NT-ir VTA afferents circumvent mfb transections. All of these results together are consistent with the hypothesis that the connectional organization of forebrain and brainstem, potentially in combination with limited adaptive synaptogenesis, renders the VTA relatively insensitive to moderate losses of neurotensinergic and, perhaps, other peptidergic afferents.  相似文献   

2.
The hormone insulin can down-regulate the function and synthesis of the re-uptake transporter for norepinephrine (NET) in vivo and in vitro. In the present study we tested whether this action of insulin is generalized to another member of the catecholamine transporter family. We determined the level of dopamine transporter (DAT) mRNA expression in the ventral tegmental area (VTA)/substantia nigra compacta (SNc) of rats which were chronically treated with vehicle or insulin via the third cerebral ventricle (i.c.v.). DAT mRNA was significantly elevated in the VTA/SNc of rats treated with insulin, as compared with levels in vehicle-treated rats. This is in contrast to our previous observation that i.c.v. insulin decreases NET mRNA in the rat locus coeruleus, and suggests that insulin may have differential and specific modulatory effects on CNS catecholaminergic pathways.  相似文献   

3.
Small injections of tritiated leucine and proline confined to the ventral tegmental area (AVT) were found to label fibers ascending: (a) to the entire ventromedial half of the striatum, but most massively to the ventral striatal zone that includes the nucleus accumbens; (b) to the thalamus: lateral habenular nucleus, nuclei reuniens and centralis medius, and the most medial zone of the mediodorsal nucleus; (c) to the posterior hypothalamic nucleus and possibly the lateral hypothalamic and preoptic region; (d) to the nuclei amygdalae centralis, lateralis and medialis; (e) to the bed nucleus of the stria terminalis, the nucleus of the diagonal band, and the medial half of the lateral septal nucleus; (f) to the anteromedial (frontocingulate) cortex; and (g) to the entorhinal area. Further AVT efferents descend to the medial half of the midbrain tegmentum including an anterior region of the median raphe nucleus, to the ventral half of the central grey substance including the dorsal raphe nucleus, to the parabrachial nuclei, and to the locus coeruleus. Similar injections centered in the pars compacta of the substantia nigra (SNC) label fibers that are distributed in the striatum in an orderly medial-to-lateral arrangement, and almost entirely avoid the nucleus accumbens and olfactory tubercle. With the exception of the lateral quarter of the substantia nigra, which apparently does not project to the extreme rostral pole of the striatum, each small SNC locus, regardless of its anteroposterior localization, distributes nigrostriatal fibers throughout the length of the striatum. Descending SNC efferents are distributed to the same general regions that receive descending AVT projections, except that no SNC fibers appear to enter the locus coeruleus. Isotope injections confined to the pars reticulata (SNR) label sparse nigrostriatal fibers, and numerous nigrothalamic fibers ascending mainly to the nucleus ventromedialis and in lesser number to the parafascicular nucleus and the paralamellar zone of the nucleus mediodorsalis. Descending SNR fibers leave the nigra as a voluminous fiber bundle that bifurcates into a large nigrotectal and a smaller nigrotegmental component, the latter terminating largely in the pedunculopontine nucleus of the pontomesencephalic tegmentum.  相似文献   

4.
A light and electron microscopic double antigen localization technique was employed to examine the fine structural relationship between neurotensin-containing axon terminals and dopaminergic neurons in the substantia nigra and ventral tegmental area of the rat. At the light microscopic level, neurotensin-immunoreactive terminals were densely distributed throughout the substantia nigra pars compacta and ventral tegmental area in close proximity to tyrosine hydroxylase-immunoreactive somata and dendrites. On electron microscopic examination, direct synaptic connections were identified between neurotensin-immunoreactive axon terminals and tyrosine hydroxylase-immunopositive perikarya and dendrites. However, only 8.2% and 8.8% of the neurotensin-immunoreactive axonal profiles detected in the substantia nigra and ventral tegmental area, respectively, were found in direct apposition with tyrosine hydroxylase-immunostained elements. In turn, only 9.3% and 10.0% of tyrosine hydroxylase immunoreactive dendrites sampled from the substantia nigra and ventral tegmental area, respectively, were seen in contact with neurotensin immunopositive axon terminals. However, neurotensin-immunoreactive and tyrosine hydroxylase-immunolabelled elements were frequently identified in close anatomical proximity (less than 5 microns) to one another. These results are interpreted in light of the selective association of neurotensin receptors with dopaminergic neurons in the substantia nigra and ventral tegmental area to suggest a predominantly parasynaptic mechanism of action for neurotensin in the ventral midbrain.  相似文献   

5.
6.
Four types of neurons were identified in the substantia nigra (SN) of the monkey, cat, and rat. The compacta-type neurons, characterized by unevenly distributed and intensely stained Nissl substance, display many shapes and sizes. The reticulata-type neurons, characterized by the presence of discrete Nissl bodies, are triangular or round. The intermediary-type neurons contain less intensely stained but more diffusely distributed Nissl substance. These triangular or fusiform neurons have thinner processes than the compacta- and reticulata-type cells. The globular-type neurons, characterized by a high nuclear/cytoplasmic ratio, are much smaller than the three other types of SN neurons. The total number of neurons of the SN, which is much greater in the macaque (n=73,508) than in the cat (n=38,366) and the rat (n=22,532), is comprised mainly of the compacta type neurons (n=62,624; 22,323; and 9.925 in the three species, respectively). The reticulata-type neurons are more abundant in the cat, and the intermediary and globular types are more numerous in the rat. The compacta-type neurons have a particular distribution in each species. The ventral tegmental area (VTA) contains numerous globular-type neurons and a number of compacta-like or transitional type neurons which constitute the foyer pédiculaire of the central linear nucleus and the paranigral nucleus. The rostral linear nucleus is unique to the cat brain.  相似文献   

7.
8.
G-protein-regulated inward-rectifier potassium channel 2 (GIRK2) is reported to be expressed only within certain dopamine neurons of the substantia nigra (SN), although very limited data are available in humans. We examined the localization of GIRK2 in the SN and adjacent ventral tegmental area (VTA) of humans and mice by using either neuromelanin pigment or immunolabeling with tyrosine hydroxylase (TH) or calbindin. GIRK2 immunoreactivity was found in nearly every human pigmented neuron or mouse TH-immunoreactive neuron in both the SN and VTA, although considerable variability in the intensity of GIRK2 staining was observed. The relative intensity of GIRK2 immunoreactivity in TH-immunoreactive neurons was determined; in both species nearly all SN TH-immunoreactive neurons had strong GIRK2 immunoreactivity compared with only 50-60% of VTA neurons. Most paranigral VTA neurons also contained calbindin immunoreactivity, and approximately 25% of these and nearby VTA neurons also had strong GIRK2 immunoreactivity. These data show that high amounts of GIRK2 protein are found in most SN neurons as well as in a proportion of nearby VTA neurons. The single previous human study may have been compromised by the fixation method used and the postmortem delay of their controls, whereas other studies suggesting that GIRK2 is located only in limited neuronal groups within the SN have erroneously included VTA regions as part of the SN. In particular, the dorsal layer of dopamine neurons directly underneath the red nucleus is considered a VTA region in humans but is commonly considered the dorsal tier of the SN in laboratory species.  相似文献   

9.
Previous patch-clamp studies by our laboratory showed that acute exposure to the pesticide rotenone augments inward currents evoked by N-methyl-d-aspartate (NMDA) in substantia nigra zona compacta (SNC) dopamine neurons in slices of rat brain. The present experiments were done to search for histological evidence of increased neurotoxicity produced by combined rotenone and NMDA treatments. In horizontal slices of rat midbrain, we found that a 30 min superfusion with 100 nM rotenone caused significant injury to tyrosine hydroxylase (TH)-positive proximal dendrites in dorsal and ventral regions of the SNC and ventral tegmental area (VTA). Moreover, treatment with 100 μM NMDA potentiated rotenone toxicity. In contrast, treatment with 30 μM NMDA protected against rotenone-induced injury to dendrites in the ventral SNC and ventral VTA. Interestingly, treatment with 30 μM NMDA-alone produced an apparent increase in proximal dendrite scores in ventral SNC and dorsal VTA. We conclude that NMDA has concentration-dependent actions on rotenone toxicity that differ according to regional subtype of dopamine neuron.  相似文献   

10.
Dynorphin and other kappa opioid agonists are thought to elicit aversive actions and changes in motor activity through direct or indirect modulation of dopamine neurons in ventral tegmental area (VTA) and substantia nigra (SN), respectively. We comparatively examined the immunoperoxidase localization of anti-dynorphin A antiserum in sections through the VTA and SN of adult rat brain to assess whether there were common or differential distributions of this opioid peptide relative to the dopamine neurons. We also more directly examined the relationship between dynorphin terminals and dopamine neurons in VTA and SN by combining immunoperoxidase labeling of rabbit dynorphin antiserum and immunogold-silver detection of mouse antibodies against tyrosine hydroxylase (TH) in single sections through the VTA and SN. Light microscopy showed dynorphin-like immunoreactivity (DY-LI) in varicose processes. These were relatively sparse in VTA and were unevenly distributed in the SN, with little labeling in the pars compacta (pcSN) and the highest density of DY-LI in the medial and lateral pars reticulata (prSN). Electron microscopy established that the regional differences were attributed to differences in density (number/unit area) of immunoreactive profiles. The profiles containing DY-LI were designated as axon terminals based on having diameters greater than 0.1 μm, few microtubules and many synaptic vesicles. In both the VTA and SN, the dynorphin-labeled terminals contained primarily small (35–40 nm) clear vesicles. These vesicles were rimmed with peroxidase immunoreactivity and were often seen clustered above axodendritic synapses. These synaptic specializations were usually symmetric; however a few asymmetric densities also were formed by immunoreactive terminals in both VTA and SN. Additionally, most of the dynorphin-labeled terminals contained 1–2, but occasionally 7 or more intensely peroxidase positive dense core vesicles (DCVs). Approximately 60% of the DCVs were located near axolemmal surfaces. The axolemmal surfaces contacted by immunoreactive DCVs were more often apposed to dendrites in the VTA; while in the SN other axon terminals were the most commonly apposed neuronal profiles. In both regions, a substantial proportion of the plasmalemmal surface in contact with the labeled DCVs was apposed to astrocytic processes. In dually labeled sections through the VTA, 22% (n = 138) of the terminals containing DY-LI formed synapseson or were apposed to TH-labeled dendrites, while 16% were in contact with unlabeled dendrites. The remainder were apposed to other dynorphin labeled and unlabeled terminals and/or astrocytes. In dually labeled sections through the prSN, 37% (n = 216) of the terminals containing DY-LI formed synapses or were apposed to TH-labeled dendrites, while 28% contacted unlabeled dendrites. The remainder were in contact with axon terminals or astrocytes. These findings demonstrate the morphologically heterogeneous terminals containing DY-LI in rat VTA and SN provide a substantial monosynaptic input to dopamine and non-dopamine targets. The finding of symmetric and asymmetric synapses, mixed vesicle populations, and associations with dendrites, terminals, and astrocytes suggests multiple sites for dynorphin actions in both VTA and SN.  相似文献   

11.
Rats were implanted with dual dialysis probes, one in the ventral tegmental area, and another one ipsilateral in the nucleus accumbens. Infusion of cocaine (10, 100, 1000 mM) into the ventral tegmental area gradually increased extracellular dopamine to 164, 329 and 991% of baseline in the ventral tegmental area, but reduced dopamine to 76, 47 and 38% of baseline in the nucleus acumbens. These results are consistent with cocaine-induced feedback regulation of dopamine cell activity involving somatodendritec impulse-regulating dopamine D2 autoreceptors.  相似文献   

12.
Reward is an important factor motivating food intake in satiated animals. Two sites involved in the reward response are the ventral tegmental area (VTA) and the nucleus accumbens shell region (sNAcc), between which communication is partially regulated by opioids and dopamine (DA). Previous studies have shown that the mu-opioid agonist Tyr-D-Ala-Gly-MePhe-Gly(ol)-enkephalin (DAMGO) dose-dependently enhances food intake in satiated animals when injected into either the VTA or the sNAcc. The enhanced intake elicited by DAMGO injected into the sNAcc was dose-dependently blocked by injection of naltrexone (NTX) bilaterally into the VTA, indicating an opioid-dependent signaling pathway from the sNAcc to the VTA in mediation of food intake. In the present study, we cannulated animals bilaterally in both the VTA and the sNAcc to further study the nature of opioid- and DA-dependent communication between the sites. Food intake elicited by DAMGO (2 or 5 nmol) injected unilaterally into the VTA was dose-dependently diminished by bilateral injection of NTX (2.5, 5, and 25 g/side) or the D1 antagonist SCH 23390 (3, 1, 0.3, 0.15, 0.05, and 0.015 nmol/side) into the sNAcc. When DAMGO (5 nmol) was injected into the sNAcc, the resulting food intake was decreased by doses of SCH 23390 ranging from 0.05 to 100 nmol/side injected bilaterally into the VTA, but not by equimolar doses of Raclopride, a D2 antagonist. These results, combined with previous findings, suggest a signaling pathway between the VTA and the sNAcc in which opioids and DA facilitate feeding in an interdependent manner.  相似文献   

13.
The sexual motivation and performance of male rats were observed in a bilevel testing chamber after bilateral infusion of 40 pmol β-endorphin, 2.75 nmol naloxone or saline into the ventral tegmental area for four succeeding, weekly tests. In the 5 min prior to introduction of the female rat, the male rat explores the bilevel testing chamber. It was previously shown that the increase over tests of these anticipatory level changes is sexually motivated and a response to olfactory stimuli. Naloxone infusion into the VTA prevented the increase of anticipatory level changes. β-Endorphin failed to affect the anticipatory level-changing behavior. The sexual performance was unaffected by naloxone or β-endorphin treatment, but the number of ejaculating rats decreased with repeated testing after naloxone treatment. It is concluded that endogenous opioid systems in the ventral tegmental area contribute to the stimulation of sexual motivation and/or reward, presumably by stimulating the mesolimbic dopamine system in response to sex-related olfactory stimuli.  相似文献   

14.
Food intake is significantly increased by administration of either GABAA (e.g., muscimol) or GABAB (e.g., baclofen) agonists into either the shell region of the nucleus accumbens (NAC) or the ventral tegmental area (VTA); these responses are selectively blocked by pretreatment with corresponding GABAA and GABAB antagonists. Previous studies found that a single dose (5 microg) of the general opioid antagonist, naltrexone reduced feeding elicited by muscimol, but not baclofen in the NAC shell, and reduced feeding elicited by baclofen, but not muscimol in the VTA. The present study compared feeding responses elicited by either muscimol or baclofen in either the VTA and NAC shell following pretreatment with equimolar doses of selective mu (0.4, 4 microg), delta (0.4, 4 microg), or kappa (0.6, 6 microg) opioid receptor subtype antagonists. Muscimol (25 ng) and baclofen (200 microg) each significantly and equi-effectively increased food intake over 4 h following VTA or NAC shell microinjections. Muscimol-induced feeding elicited from the VTA was significantly enhanced by mu or delta antagonists, and was significantly reduced by kappa antagonists. Baclofen-induced feeding elicited from the VTA was significantly reduced by mu or kappa, but not delta antagonists. Muscimol-induced feeding elicited from the NAC was significantly reduced by either mu, kappa or delta antagonists. Baclofen-induced feeding elicited from the NAC was significantly reduced by kappa or delta, but not mu antagonists. These data indicate differential opioid receptor subtype antagonist-induced mediation of GABA receptor subtype agonist-induced feeding elicited from the VTA and NAC shell. This is consistent with previously demonstrated differential GABA receptor subtype antagonist-induced mediation of opioid-induced feeding elicited from these same sites. Thus, functional relationships exist for the elaborate anatomical and physiological interactions between these two neurochemical systems in the VTA and NAC shell.  相似文献   

15.
Neurons in the lateral habenula (LHb) of rats have efferent projections that terminate in the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA), where cell bodies of dopamine-containing neurons are located. In order to study the influence of the habenula on dopaminergic activity, single-cell electrophysiological techniques were used to record unit discharge of dopamine-containing neurons in the SNC and VTA during electrical stimulation of the LHb or adjacent structures. Dopamine-containing neurons in the SNC and VTA were identified by their characteristic spike duration (greater than 2 msec), discharge rate (2-8 spikes/sec), and irregular firing pattern. Analysis of peristimulus time histograms showed that 85% of SNC cells and 91% of VTA neurons were inhibited after single pulse stimulation (0.25 mA, 0.1 msec) of the LHb. The mean time between stimulation and onset of inhibition was 11 msec (range, 2-22 msec) and mean duration of maximal suppression was 76 msec (range, 20-250 msec). Stimulation of structures adjacent to the LHb (hippocampus, lateral thalamus, medial dorsal thalamus, medial habenula) had little or no effect. Destruction of the fasciculus retroflexus, the fiber pathway that contains most habenular efferents, blocked the stimulation effects on dopamine-containing neurons. Destruction of the stria medullaris, which contains most habenular afferents, did not alter the inhibitory effect of habenular stimulation. Injection of a cytotoxin, kainic acid, in the LHb 1 week before recording sessions blocked the inhibitory consequences of habenular stimulation. These experiments show that activation of neuronal perikarya in the LHb causes orthodromic inhibition of dopamine-containing neurons in SNC and VTA via the fasciculus retroflexus.  相似文献   

16.
The serotoninergic (5-HT) input from the dorsal raphe nucleus (DRN) to midbrain dopamine (DA) neurons is one of the most prominent. In this study, using standard extracellular single cell recording techniques we investigated the effects of electrical stimulation of the DRN on the spontaneous activity of substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) DA neurons in anesthetized rats. Poststimulus time histograms (PSTH) revealed two different types of response in both SNpc and VTA. Some cells exhibited an inhibition-excitation response while in other DA neurons the initial response was an excitation followed by an inhibition. In SNpc, 56% of the DA cells recorded were initially inhibited and 31% of the DA cells were initially excited. In contrast, 63% of VTA DA cells were initially excited and 34% were initially inhibited. Depletion of endogenous 5-HT by the neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), and the 5-HT synthesis inhibitor para-chlorophenylalanine (PCPA), almost completely eliminated the inhibition-excitation response in both SNpc and VTA DA cells, without changing the percentage of DA cells initially excited. Consequently, the proportion of DA neurons that were not affected by DR stimulation increased after 5-HT depletion (from 13% to 60% in SNpc and from 6% to 31% in VTA). In several DA cells, DRN stimulation caused important changes in firing rate and firing pattern. These data strongly suggest that the 5-HT input from the DRN is mainly inhibitory. It also suggests that 5-HT afferences modulate SNpc and VTA DA neurons in an opposite manner. Our results also suggest that non-5-HT inputs from DR can also modulate mesencephalic DA neurons. A differential modulation of VTA and SNpc DA neurons by 5-HT afferences from the DRN could have important implications for the development of drugs to treat schizophrenia or other neurologic and psychiatric diseases in which DA neurons are involved.  相似文献   

17.
Parkinson's disease patients are known to have not only motor but also urinary autonomic disorders, suggesting central dopaminergic pathways being involved in the micturition function. However, there is little evidence that the substantia nigra pars compacta (SNC) and the ventral tegmental area (VTA), the major dopamine-containing nuclei in the midbrain, should participate in regulating micturition. We investigated micturition-related electrophysiological properties in the SNC and VTA. In 20 male cats under ketamine anaesthesia, in which spontaneous isovolumetric micturition reflex was generated, we performed electrical stimulation and extracellular single-unit recording in the SNC and the VTA, and correlation analysis of the neuronal firings and antidromic stimulation between the SNC/VTA and the pontine storage centre (PSC). Electrical stimulations in the SNC elicited termination of the micturition reflex, whereas those in the VTA elicited both termination and facilitation of the reflex. Forty-nine neurons in the SNC/VTA showed firing in response to the bladder storage/micturition cycles. The major neurons were tonic storage (55%) and phasic storage neurons (22%), which were found diffusely in th e SNC/VTA. The rest were tonic micturition (16%) and phasic micturition neurons (6%), which were concentrated in the caudal part (A2-4 in the Horsley-Clarke coordinates). These neuronal types were further subclassified into augmenting, constant, binary and decrementing neurons according to their temporal discharge rate change. The decrementing neurons were concentrated in the caudal part (A2-4), whereas the augmenting neurons in the rostral part (A4-6). Some of the recorded neurons had preceding firing pattern, which was more frequently found in the tonic type than in the phasic-type neurons. Twenty-four of the neuronal firings in the SNC/VTA were recorded simultaneously with those in the PSC. However, there was no apparent time-correlation between both sets of neuronal firings. In 15 of the simultaneous recording sites, electrical stimulation was applied to one site to see if antidromic response might be evoked in another site. However, there was no orthodromic or antidromic response in either SNC/VTA or PSC. In conclusion, the present study indicates that neurons in the SNC and the VTA are involved in supra-pontine control of micturition, particularly of urinary storage phase. It is also likely that the major role of the SNC is inhibition of the micturiton reflex, whereas that of the VTA is both facilitation and inhibition of the micturition reflex.  相似文献   

18.
The aim of the present study was to determine whether the retrorubral nucleus projects to the dopaminergic nuclei in the ventral midbrain of the cat. For this purpose, injections of biotinylated dextran-amine or Phaseolus vulgaris-leucoagglutinin were placed into the retrorubral nucleus under stereotaxic guidance. The tracers were visualized by means of (immuno) histochemical procedures. In addition, tyrosine hydroxylase immunohistochemistry was used to evaluate the location of the injection sites and the distribution of the anterogradely labeled fibers. Both tracers reveal the same topography of labeled fibers in the ventral mesencephalon. Labeled fibers with varicosities were found ipsilaterally in the substantia nigra pars compacta, the substantia nigra pars lateralis, the ventral tegmental area and, contralaterally, in the substantia nigra pars compacta, the ventral tegmental area, and the retrorubral nucleus. A considerable number of labeled axons with varicosities were observed to be wrapped around the dendrites and perikarya of tyrosine hydroxylase-positive neurons in these areas. The present results are discussed in view of the possible role of the A8 dopaminergic cell group in the coordination of A9 nigrostriatal and A10 mesolimbic systems, as well as in the progressive pathology seen in patients suffering from Parkinson's disease.  相似文献   

19.
Gonadal hormones influence brain functions, including motor and motivational behaviors, transmitter release, and receptor binding in midbrain dopamine systems. Much of this influence suggests genomic hormone action. To identify which midbrain cells may be targets of genomic influence, double label immunocytochemistry was used to map intracellular estrogen and androgen receptors and tyrosine hydroxylase (TH) in the ventral tegmental area (VTA), substantia nigra (SN), and retrorubral fields (RRF) in intact, adult rats. The distribution of estrogen and androgen receptor immunoreactivity was highly selective, similar in males and females, and largely nonoverlapping. Estrogen receptors were present within subpopulations of cells in the ventrolateral paranigral VTA and rostrolateral RRF; of these, only a few cells in the RRF were immunoreactive for TH. Cells immunoreactive for androgen receptors were numerous in the paranigral and parabrachial VTA, SN pars lateralis and dorsomedial pars compacta, and lateral RRF. Nearly every androgen receptor-bearing cell in the VTA and SN pars compacta, roughly half in the SN pars lateralis, and about one-third in the RRF were TH immunopositive. The localization of estrogen receptors approximates the distribution of subsets of cells labeled following neostriatal injections, whereas androgen receptors tend to occupy regions labeled by injections in cortical or limbic targets. These receptor-specific alignments with origins of nigrostriatal, mesolimbic, and mesocortical projections are consistent with identified estrogen influence over motor behaviors and androgen involvement in motivational functions and may hold clues for understanding hormone action in these and other functions and dysfunctions of midbrain dopamine systems. J. Comp. Neurol. 379:247–260, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
In the present study, the effects of intra-ventral tegmental area (VTA) injections of morphine on memory retention of a one-trial passive avoidance task have been investigated in morphine-sensitized rats. Retrieval was examined 24h after training and used as memory retention. Sensitization was obtained by subcutaneous (s.c.) injections of morphine, once daily for 3 and 5 days free of the opioid before training. Post-training administration of the both systemic (2.5, 5 and 7.5mg/kg, s.c.) and intra-VTA (5 and 7.5microg/rat) of morphine, dose-dependently decreased memory retention. The response induced by post-training administration of intra-VTA morphine (7.5microg/rat) was significantly reversed in morphine-sensitized rats. The inhibition of morphine-induced amnesia in morphine-sensitized rats was decreased by once daily injections of naloxone (0.5, 1 and 2mg/kg, s.c.), SCH 23390 (0.025, 0.05 and 0.1mg/kg, s.c.) or sulpiride (25, 50 and 100mg/kg, s.c.), during the sensitization. The results suggest that VTA has an important role in morphine-induced amnesia and morphine sensitization affects this process through opioid and dopamine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号