首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Patient motion remains a primary obstacle to diagnostic image quality, especially in the abdomen, despite the existence of various motion artifact reduction techniques. This work presents a self-navigated motion detection method that can be generalized for most pulse sequences and k-space trajectories. Motion information is extracted directly from raw MR data, requiring no additional gradient or RF pulses, no physiologic monitoring equipment, and minimal--if any--impact on scan time. Initial feasibility results with a two-dimensional gradient echo sequence are shown in phantom studies and in vivo volunteer abdominal studies, demonstrating the sensitivity of the method to both respiratory motion and cardiovascular pulsatility. Prospectively gated images were acquired using the self-navigated data to synchronize image acquisition with motion. These preliminary results suggest that the self-navigated method is a promising technique for reducing motion artifacts in clinical abdominal and cardiac applications.  相似文献   

2.
Band artifacts due to bulk motion were investigated in images acquired with fast gradient echo sequences. A simple analytical calculation shows that the width of the artifacts has a square-root dependence on the velocity of the imaged object, the time taken to acquire each line of k-space and the field of view in the phase-encoding direction. The theory furthermore predicts that the artifact width can be reduced using parallel imaging by a factor equal to the square root of the acceleration parameter. The analysis and results are presented for motion in the phase- and frequency-encoding directions and comparisons are made between sequential and centric ordering. The theory is validated in phantom experiments, in which bulk motion is simulated in a controlled and reproducible manner by rocking the scan table back and forth along the bore axis. Preliminary cardiac studies in healthy human volunteers show that dark bands may be observed in the endocardium in images acquired with nonsegmented fast gradient echo sequences. The fact that the position of the bands changes with the phase-encoding direction suggests that they may be artifacts due to motion of the heart walls during the image acquisition period.  相似文献   

3.
A generalized k-sampling scheme for 3D fast spin echo   总被引:1,自引:0,他引:1  
The phase-encoding scheme can significantly affect the quality of fast spin-echo (FSE) images because the echo amplitude is modulated as a function of the echo position in k-space. The effects of the modulation in two-dimensional FSE imaging include ghosting and blurring artifacts and resolution loss in the phase-encoding (PE) direction. In 3D FSE imaging, the use of two PE directions presents the opportunity for improved PE schemes. A new scheme for assignment of echoes to views in 3D FSE, termed generalized, has been developed. This scheme distributes T(2) effects along both PE directions, allowing considerable flexibility in the selection of blurring artifact appearance. In a set of simulations, phantom experiments, and in vivo experiments, the performance of the generalized PE scheme for 3D FSE imaging was compared with the performance of existing PE schemes. The results demonstrate that the generalized PE scheme can be used to reduce blurring artifacts greatly relative to other PE techniques that are presently in use. This approach to PE can be used to manipulate the blurring artifact appearance and to optimize acquisition time.  相似文献   

4.
Breathing-induced bulk motion of the myocardium during data acquisition may cause severe image artifacts in coronary magnetic resonance angiography (MRA). Current motion compensation strategies include breath-holding or free-breathing MR navigator gating and tracking techniques. Navigator-based techniques have been further refined by the applications of sophisticated 2D k-space reordering techniques. A further improvement in image quality and a reduction of relative scanning duration may be expected from a 3D k-space reordering scheme. Therefore, a 3D k-space reordered acquisition scheme including a 3D navigator gated and corrected segmented k-space gradient echo imaging sequence for coronary MRA was implemented. This new zonal motion-adapted acquisition and reordering technique (ZMART) was developed on the basis of a numerical simulation of the Bloch equations. The technique was implemented on a commercial 1.5T MR system, and first phantom and in vivo experiments were performed. Consistent with the results of the theoretical findings, the results obtained in the phantom studies demonstrate a significant reduction of motion artifacts when compared to conventional (non-k-space reordered) gating techniques. Preliminary in vivo findings also compare favorably with the phantom experiments and theoretical considerations. Magn Reson Med 45:645-652, 2001.  相似文献   

5.
PURPOSE: To develop a method of retrospectively correcting for motion artifacts using a variable-density spiral (VDS) trajectory. MATERIALS AND METHODS: Each VDS interleaf was designed to adequately sample the same center region of k-space. This central overlapping region can then be used to measure rigid body motion between the acquisition of each VDS interleaf. By applying appropriate phase shifts and rotations of the k-space data, rigid body motion artifacts can be removed, resulting in images with less motion corruption. RESULTS: Both phantom and volunteer experiments are shown, demonstrating the technique's ability to further reduce artifacts in images acquired with an already motion-resistant acquisition trajectory. Registration accuracy is highly dependent on the trajectory design parameters. This space was explored to find an optimal design of VDS trajectories for motion compensation. CONCLUSION: Using appropriately designed VDS trajectories, residual motion artifacts can be significantly reduced by retrospectively correcting for in-plane rigid body motion. An overlapping region of approximately 8% of the central region of k-space and approximately 70 interleaves were found to be near-optimal parameters for retrospective correction using VDS trajectories.  相似文献   

6.
Fast MR imaging methods should provide a familiar contrast behavior at a reduced scan time. The multi-spin echo approach (TSE) is one of the most promising techniques satisfying this condition. Although the data acquisition time is significantly reduced, image quality may still suffer from artifacts due to patient motion and flow. The radial turbo spin echo (rTSE) approach combines TSE methods and projection reconstruction (PR) techniques. In PR images, artifacts induced by patient motion or flow are known to have a different appearance with lower level of intensity. The contrast and artifact behavior of the rTSE approach has been investigated. The new technique has been applied to abdominal imaging with acquisition times shorter than 30 s and to heart imaging in combination with cardiac triggering.  相似文献   

7.
Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts.  相似文献   

8.
The partial Fourier gradient-echo echo planar imaging (EPI) technique makes it possible to acquire high-resolution functional MRI (fMRI) data at an optimal echo time. This technique is especially important for fMRI studies at high magnetic fields, where the optimal echo time is short and may not be achieved with a full Fourier acquisition scheme. In addition, it has been shown that partial Fourier EPI provides better anatomic resolvability than full Fourier EPI. However, the partial Fourier gradient-echo EPI may be degraded by artifacts that are not usually seen in other types of imaging. Those unique artifacts in partial Fourier gradient-echo EPI, to our knowledge, have not yet been systematically evaluated. Here we use the k-space energy spectrum analysis method to understand and characterize two types of partial Fourier EPI artifacts. Our studies show that Type 1 artifact, originating from k-space energy loss, cannot be corrected with pure postprocessing, and Type 2 artifact can be eliminated with an improved reconstruction method. We propose a novel algorithm, that combines images obtained from two or more reconstruction schemes guided by k-space energy spectrum analysis, to generate partial Fourier EPI with greatly reduced Type 2 artifact. Quality control procedures for avoiding Type 1 artifact in partial Fourier EPI are also discussed.  相似文献   

9.
The additional data acquired when using multiple receiver coils is commonly used to improve SNR or reduce acquisition times. It may also be used to remove image artifacts by selectively replacing corrupt data. In the present study, a correction scheme is presented based on simultaneous acquisition of spatial harmonics (SMASH) that enables detection and correction of motion artifacts caused by 2D translations. Newly measured data is compared with predictions from previously measured data by making negative and positive spatial harmonics. Differences are attributed to motion occurring in the interval between the acquisition of separate phase encode lines and correction parameters are determined. Two types of rigid body motion are considered: 1) object and coil array move, and 2) object only moves, since each causes different phase errors in k-space. Simulation, phantom, and volunteer experiments demonstrate the validity of the technique.  相似文献   

10.
A new rigid-body motion correction algorithm is described that is compatible with 3D image sets acquired with the elliptical centric (EC) view order. With this view order, an annular ring of k-space data is acquired in the ky-kz plane during any short time interval. Images for tracking motion can be reconstructed in the yz-plane from any ring of the acquisition data. In these tracking images, a point source (such as an external marker) shows a characteristic bull's-eye pattern that permits motion monitoring and correction. The true position of the point object is located at the center of the bull's-eye pattern. Cross correlation can be performed to automatically track the positions of markers reconstructed from adjacent rings of k-space. To increase the marker signal, the markers are encased in inductively coupled RF coils. Rigid-body motion in the yz-plane is calculated directly with the Euclidean group for rotation and translation, and corrected by rotating and applying phase shifts to any corrupted rings of data. In the current work we present a theoretical analysis of this method, as well as results of volunteer and controlled phantom experiments that demonstrate its initial feasibility. Although the EC view order has mainly been used for MR angiography (MRA), it can also be used for most 3D acquisitions.  相似文献   

11.
Automatic compensation of motion artifacts in MRI.   总被引:1,自引:0,他引:1  
Patient motion during the acquisition of a magnetic resonance image can cause blurring and ghosting artifacts in the image. This paper presents a new post-processing strategy that can reduce artifacts due to in-plane, rigid-body motion in times comparable to that required to re-scan a patient. The algorithm iteratively determines unknown patient motion such that corrections for this motion provide the best image quality, as measured by an entropy-related focus criterion. The new optimization strategy features a multi-resolution approach in the phase-encode direction, separate successive one-dimensional searches for rotations and translations, and a novel method requiring only one re-gridding calculation for each rotation angle considered. Applicability to general rigid-body in-plane rotational and translational motion and to a range of differently weighted images and k-space trajectories is demonstrated. Motion artifact reduction is observed for data from a phantom, volunteers, and patients.  相似文献   

12.
PURPOSE: To investigate the effect of patient motion on quantitative cerebral blood flow (CBF) maps in ischemic stroke patients and to evaluate the efficacy of a motion-correction scheme. MATERIALS AND METHODS: Perfusion data from 25 ischemic stroke patients were selected for analysis. Two motion profiles were applied to a digital anthropomorphic brain phantom to estimate accuracy. CBF images were generated for motion-corrupted and motion-corrected data. To correct for motion, rigid-body registration was performed. The realignment parameters and mean CBF in regions of interest were recorded. RESULTS: All patient data with motion exhibited visibly reduced intervolume misalignment after motion correction. Improved flow delineation between different tissues and a more clearly defined ischemic lesion (IL) were achieved in the motion-corrected CBF. A significant difference occurred in the IL (P < 0.05) for patients with severe motion with an average difference between corrupted and corrected data of 4.8 mL/minute/100 g. The phantom data supported the patient results with better CBF accuracy after motion correction and high registration accuracy (<1 mm translational and <1 degrees rotational error). CONCLUSION: Motion degrades flow differentiation between adjacent tissues in CBF maps and can cause ischemic severity to be underestimated. A registration motion correction scheme improves dynamic susceptibility contrast (DSC)-MR perfusion estimates.  相似文献   

13.
OBJECTIVE: Gamma camera nonuniformity can result in the presence of ring artifacts in reconstructed SPECT images. The objective of this study is to compare the relationship between ring artifact magnitude and image noise in tomographic images reconstructed using FBP and OSEM. METHODS: A cylindrical phantom was filled with water and (99m)TC: Seven tomographic acquisitions were performed, with total counts per acquisition ranging from 1.5 Mcts to 100 MCTS: All acquisitions were reconstructed using both FBP and OSEM. Ring artifacts were generated in the transaxial data by introducing defects at a given location in each planar image. The modified acquisitions were again reconstructed using both FBP and OSEM. The ring artifacts were isolated by the subtraction of the uncorrupted datasets from the corrupted datasets. The magnitude of the ring artifacts in the corrupted reconstructions was measured and compared to the mean counts and noise level in the uncorrupted data. RESULTS: Ring magnitude in OSEM-reconstructed images is approximately one third that of FBP images. However, there is a corresponding reduction in image noise with OSEM and the ratio of ring magnitude-to-image noise was relatively similar for both OSEM and FBP. Rings generated with OSEM fell off more rapidly with distance from the image center, and reached a plateau at a higher magnitude at large distances. The visibility of rings with OSEM relative to FBP will depend on the location of the causative defect in the planar data and the number of iterations performed with OSEM. Differences between the 2 algorithms are subtle. CONCLUSION: Our results would indicate that the uniformity requirements for SPECT are similar for FBP and OSEM reconstruction algorithms.  相似文献   

14.
Rigid body translations of an object in MRI create image artifacts along the phase-encode (PE) direction in standard 2DFT imaging. If two images are acquired with swapped PE direction, it is possible to determine and correct for arbitrary in-plane translational interview motions in both images directly from phase differences in the k-space acquisitions by solving a large system of linear equations. For example, if one assumes two N x N 2D acquisitions with in-plane translational interview motion, 4N unknown motions may corrupt the two images, but the phase difference at each point in k-space yields a system of N(2) equations in these 4N unknowns. If the acquisitions have orthogonal PE directions, this highly overdetermined system of equations can be solved to provide the motion records, which in turn can be used to correct the motion artifacts in each image. The theory of this orthogonal k-space phase difference (ORKPHAD) technique is described, and results are presented for synthetic and in vivo motion-corrupted data sets. In all cases, the data showed clear improvement of translation-induced artifacts. These methods do not require special pulse sequences and are theoretically generalizable to partial Fourier imaging and 3D acquisitions.  相似文献   

15.
A motion artifact reduction method for proton chemical shift imaging (CSI) is presented. The method uses spiral-based readout gradients for data acquisition. A characteristic of spiral-based readout gradients is that data are repeatedly sampled at the kxy origin. These data points are used to estimate and correct for motion-induced phase variations. Both phantom and in vivo spectra reconstructed using the new motion artifact reduction algorithm showed significant signal-to-noise ratio (SNR) improvements as compared to uncorrected data.  相似文献   

16.
Partial k-space sampling is frequently used in single-shot diffusion-weighted echo-planar imaging (DW-EPI) to reduce the TE and thereby improve the SNR. However, it increases the sensitivity of the technique to bulk rotational motion, which introduces a phase gradient across the tissue that shifts the echo in k-space. If the echo is displaced into the high spatial frequencies, conventional homodyne reconstruction fails, causing intensity oscillations across the image. Zero-padding, on the other hand, compromises the image resolution and may cause truncation artifacts. We present an adaptive version of the homodyne algorithm that detects the location of the echo in k-space and adjusts the center and width of the homodyne filters accordingly. The adaptive algorithm produces artifact-free images when the echo is shifted into the high positive k-space range, and reduces to the standard homodyne algorithm in the absence of bulk motion.  相似文献   

17.
Two-dimensional (2D) axial continuously-moving-table imaging has to deal with artifacts due to gradient nonlinearity and breathing motion, and has to provide the highest scan efficiency. Parallel imaging techniques (e.g., generalized autocalibrating partially parallel acquisition GRAPPA)) are used to reduce such artifacts and avoid ghosting artifacts. The latter occur in T(2)-weighted multi-spin-echo (SE) acquisitions that omit an additional excitation prior to imaging scans for presaturation purposes. Multiple images are reconstructed from subdivisions of a fully sampled k-space data set, each of which is acquired in a single SE train. These images are then averaged. GRAPPA coil weights are estimated without additional measurements. Compared to conventional image reconstruction, inconsistencies between different subsets of k-space induce less artifacts when each k-space part is reconstructed separately and the multiple images are averaged afterwards. These inconsistencies may lead to inaccurate GRAPPA coil weights using the proposed intrinsic GRAPPA calibration. It is shown that aliasing artifacts in single images are canceled out after averaging. Phantom and in vivo studies demonstrate the benefit of the proposed reconstruction scheme for free-breathing axial continuously-moving-table imaging using fast multi-SE sequences.  相似文献   

18.
A new method for correction of MRI motion artifacts induced by corrupted k‐space data, acquired by multiple receiver coils such as phased arrays, is presented. In our approach, a projections onto convex sets (POCS)‐based method for reconstruction of sensitivity encoded MRI data (POCSENSE) is employed to identify corrupted k‐space samples. After the erroneous data are discarded from the dataset, the artifact‐free images are restored from the remaining data using coil sensitivity profiles. The error detection and data restoration are based on informational redundancy of phased‐array data and may be applied to full and reduced datasets. An important advantage of the new POCS‐based method is that, in addition to multicoil data redundancy, it can use a priori known properties about the imaged object for improved MR image artifact correction. The use of such information was shown to improve significantly k‐space error detection and image artifact correction. The method was validated on data corrupted by simulated and real motion such as head motion and pulsatile flow. Magn Reson Med 63:1104–1110, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The number of MRI applications that use radial k-space data acquisition have been increasing because of their inherent robustness to motion-induced reconstruction image artifacts relative to Cartesian acquisition methods. However, images reconstructed from radial data are more prone to image degrading effects due to magnetic field inhomogeneities than images made from Cartesian data. Presented here is a method for acquiring several radial k-space data lines in one trajectory, the Single TrAjectory Radial, or STAR method, that is a variation of radial EPI. The STAR method allows for angular oversampling without the increase in imaging time that occurs with angularly oversampled single line imaging. It is shown that such oversampling potentially reduces the image degrading effect of magnetic field inhomogeneities so that the motion robust features of radial imaging may be realized in a segmented EPI approach.  相似文献   

20.
PURPOSE: To develop a multishot magnetic resonance imaging (MRI) pulse sequence and reconstruction algorithm for diffusion-weighted imaging (DWI) in the brain with submillimeter in-plane resolution. MATERIALS AND METHODS: A self-navigated multishot acquisition technique based on variable-density spiral k-space trajectory design was implemented on clinical MRI scanners. The image reconstruction algorithm takes advantage of the oversampling of the center k-space and uses the densely sampled central portion of the k-space data for both imaging reconstruction and motion correction. The developed DWI technique was tested in an agar gel phantom and three healthy volunteers. RESULTS: Motions result in phase and k-space shifts in the DWI data acquired using multishot spiral acquisitions. With the two-dimensional self-navigator correction, diffusion-weighted images with a resolution of 0.9 x 0.9 x 3 mm3 were successfully obtained using different interleaves ranging from 8-32. The measured apparent diffusion coefficient (ADC) in the homogenous gel phantom was (1.66 +/- 0.09) x 10(-3) mm2/second, which was the same as measured with single-shot methods. The intersubject average ADC from the brain parenchyma of normal adults was (0.91 +/- 0.01) x 10(-3) mm2/second, which was in a good agreement with the reported literature values. CONCLUSION: The self-navigated multishot variable-density spiral acquisition provides a time-efficient approach to acquire high-resolution diffusion-weighted images on a clinical scanner. The reconstruction algorithm based on motion correction in the k-space data is robust, and measured ADC values are accurate and reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号