首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Advanced hormone-refractory prostate cancer is associated with poor prognosis and limited treatment options. Members of the pyrrolo-1,5-benzoxazepine (PBOX) family of compounds exhibit anti-cancer properties in cancer cell lines (including multi-drug resistant cells), ex vivo patient samples and in vivo mouse tumour models with minimal toxicity to normal cells. Recently, they have also been found to possess anti-angiogenic properties in vitro. However, both the apoptotic pathways and the overall extent of the apoptotic response induced by PBOX compounds tend to be cell-type specific. Since the effect of the PBOX compounds on prostate cancer has not yet been elucidated, the purpose of this study was to investigate if PBOX compounds induce anti-proliferative effects on hormone-refractory prostate cancer cells. We examined the effect of two representative PBOX compounds, PBOX-6 and PBOX-15, on the androgen-independent human prostate adenocarcinoma cell line, PC3. PBOX-6 and -15 displayed anti-proliferative effects on PC3 cells, mediated initially through a sustained G2/M arrest. G2/M arrest, illustrated as DNA tetraploidy, was accompanied by microtubule depolymerisation and phosphorylation of anti-apoptotic proteins Bcl-2 and Bcl-xL and the mitotic spindle checkpoint protein BubR1. Phosphorylation of BubR1 is indicative of an active mitotic checkpoint and results in maintenance of cell cycle arrest. G2/M arrest was followed by apoptosis illustrated by DNA hypoploidy and PARP cleavage and was accompanied by degradation of BubR1, Bcl-2 and Bcl-xL. Furthermore, sequential treatment with the CDK1-inhibitor, flavopiridol, synergistically enhanced PBOX-induced apoptosis. In summary, this in vitro study indicates that PBOX compounds may be useful alone or in combination with other agents in the treatment of hormone-refractory prostate cancer.  相似文献   

2.
Germline mutation of the tumor suppressor gene, adenomatous polyposis coli (APC), is responsible for familial adenomatous polyposis (FAP) with nearly 100% risk for colon cancer at an early age. Although FAP is involved in only 1% of all colon cancer cases, over 80% of sporadic cancers harbor somatic mutations of APC. We show here that bromo-noscapine (EM011), a rationally designed synthetic derivative of a natural nontoxic tubulin-binding alkaloid-noscapine, that reduces the dynamics of microtubules, causes a reversible G(2) /M arrest in wild type murine embryonic fibroblasts (MEFs), but an aberrant exit from a brief mitotic block, followed by apoptosis in MEFs after APC deletion with small interfering RNA. Furthermore, both β-catenin levels and activity fell to half the original levels with a concomitant reduction of cell proliferation-inducing cyclin D1, c-Myc, and induction of cytostatic protein p21 before caspase-3 activation. Additionally, we show a statistically significant reduction in the number of newly emerging intestinal polyps (to 35% compared with untreated mice) as well as the mean size of polyps (to 42% compared with untreated mice) in EM011-treated Apc(Min/+) mice as compared to their sham-treated control littermates. The remaining polyps in the EM011 treated group of Apc(Min/+) mice showed evidence of elevated apoptosis as revealed by immunohistochemistry. We failed to detect any evidence of histopathological and hematological toxicities following EM011 treatment. Taken together, our data are persuasive that a clinical trial of EM011 is possible for the prevention/amelioration of polyposis in FAP patients.  相似文献   

3.
(S)‐3‐((R)‐9‐bromo‐4‐methoxy‐6‐methyl‐5,6,7,8‐tetrahydro‐[1,3]dioxolo[4,5‐g]isoquino‐lin‐5‐yl)‐6,7‐dimethoxyisobenzofuran‐1(3H)‐one (EM011) is a tubulin‐binding agent with significant anticancer activity. Here we show that EM011 modulates microtubule dynamics at concentrations that do not alter the total polymer mass of tubulin. In particular, EM011 decreases the transition frequencies between growth and shortening phases and increases the duration microtubules spend in an idle ‘pause’ state. Using B16LS9 murine melanoma cells, we show that EM011 briefly arrests cell‐cycle progression at the G2/M phase by formation of multiple aster spindles. An aberrant mitotic exit without cytokinesis then occurs, leading to the accumulation of abnormal multinucleated cells prior to apoptosis. Our pharmacokinetic studies conformed to a linear dose‐response relationship upto 150 mg/kg. However, non‐linearity was observed at 300 mg/kg. In a syngeneic murine model of subcutaneous melanoma, better antitumor responses were seen at 150 mg/kg compared to 300 mg/kg of EM011. Unlike currently available chemotherapeutics, EM011 is non‐toxic to normal tissues and most importantly, does not cause any immunosuppression and neurotoxicity. Our data thus warrant a clinical evaluation of EM011 for melanoma therapy.  相似文献   

4.
To-Ho KW  Cheung HW  Ling MT  Wong YC  Wang X 《Oncogene》2008,27(3):347-357
The mitotic arrest deficient 2 (MAD2) is suggested to play a key role in a functional mitotic checkpoint because of its inhibitory effect on anaphase-promoting complex/cyclosome (APC/C) during mitosis. The binding of MAD2 to mitotic checkpoint regulators MAD1 and Cdc20 is thought to be crucial for its function and loss of which leads to functional inactivation of the MAD2 protein. However, little is known about the biological significance of this MAD2 mutant in human cells. In this study, we stably transfected a C-terminal-deleted MAD2 gene (MAD2DeltaC) into a human prostate epithelial cell line, Hpr-1 and studied its effect on chromosomal instability, cell proliferation, mitotic checkpoint control and soft agar colony-forming ability. We found that MAD2DeltaC was able to induce aneuploidy through promoting chromosomal duplication, which was a result of an impaired mitotic checkpoint and cytokinesis, suggesting a crucial role of MAD2-mediated mitotic checkpoint in chromosome stability in human cells. In addition, the MAD2DeltaC-transfected cells displayed anchorage-independent growth in soft agar after challenged by 7,12-dimethylbenz[A]anthracene (DMBA), demonstrating a cancer-promoting effect of a defective mitotic checkpoint in human cells. Furthermore, the DMBA-induced transformation was accompanied by a complete loss of DNA damage-induced p53 response and activation of the MAPK pathway in MAD2DeltaC cells. These results indicate that a defective mitotic checkpoint alone is not a direct cause of tumorigenesis, but it may predispose human cells to carcinogen-induced malignant transformation. The evidence presented here provides a link between MAD2 inactivation and malignant transformation of epithelial cells.  相似文献   

5.
We previously identified 1-(2,4-dimethoxyphenyl)-3-(1-methylindolyl) propenone (IPP51), a new chalcone derivative that is capable of inducing prometaphase arrest and subsequent apoptosis of bladder cancer cells. Here, we demonstrate that IPP51 selectively inhibits proliferation of tumor-derived cells versus normal non-tumor cells. IPP51 interfered with spindle formation and mitotic chromosome alignment. Accumulation of cyclin B1 and mitotic checkpoint proteins Bub1 and BubR1 on chromosomes in IPP51 treated cells indicated the activation of spindle-assembly checkpoint, which is consistent with the mitotic arrest. The antimitotic actions of other chalcones are often associated with microtubule disruption. Indeed, IPP51 inhibited tubulin polymerization in an in vitro assay with purified tubulin. In cells, IPP51 induced an increase in soluble tubulin. Furthermore, IPP51 inhibited in vitro capillary-like tube formation by endothelial cells, indicating that it has anti-angiogenic activity. Molecular docking showed that the indol group of IPP51 can be accommodated in the colchicine binding site of tubulin. This characteristic was confirmed by an in vitro competition assay demonstrating that IPP51 can compete for colchicine binding to soluble tubulin. Finally, in a human bladder xenograft mouse model, IPP51 inhibited tumor growth without signs of toxicity. Altogether, these findings suggest that IPP51 is an attractive new microtubule-targeting agent with potential chemotherapeutic value.  相似文献   

6.
Cheung HW  Jin DY  Ling MT  Wong YC  Wang Q  Tsao SW  Wang X 《Cancer research》2005,65(4):1450-1458
Recently, mitotic arrest deficient 2 (MAD2)-mediated spindle checkpoint is shown to induce mitotic arrest in response to DNA damage, indicating overlapping roles of the spindle checkpoint and DNA damage checkpoint. In this study, we investigated if MAD2 played a part in cellular sensitivity to DNA-damaging agents, especially cisplatin, and whether it was regulated through mitotic checkpoint. Using nine nasopharyngeal carcinoma (NPC) cell lines, we found that decreased MAD2 expression was correlated with cellular resistance to cisplatin compared with the cell lines with high levels of MAD2. Exogenous MAD2 expression in NPC cells also conferred sensitivity to DNA-damaging agents especially cisplatin but not other anticancer drugs with different mechanisms of action. The increased cisplatin sensitivity in MAD2 transfectants was associated with mitotic arrest and activation of apoptosis pathway evidenced by the increased mitotic index and apoptosis rate as well as decreased Bcl-2 and Bax ratio and expression of cleaved poly(ADP-ribose) polymerase and caspase 3. Our results indicate that the MAD2-induced chemosensitization to cisplatin in NPC cells is mediated through the induction of mitotic arrest, which in turn activates the apoptosis pathway. Our evidence further confirms the previous hypothesis that spindle checkpoint plays an important part in DNA damage-induced cell cycle arrest and suggests a novel role of MAD2 in cellular sensitivity to cisplatin.  相似文献   

7.
The inhibition of KSP causes mitotic arrest by activating the spindle assembly checkpoint. While transient inhibition of KSP leads to reversible mitotic arrest, prolonged exposure to a KSP inhibitor induces apoptosis. Induction of apoptosis by the KSP inhibitor couples with mitotic slippage. Slippage-refractory cells show resistance to KSP inhibitor-mediated lethality, whereas promotion of slippage after mitotic arrest enhances apoptosis. However, attenuation of the spindle checkpoint confers resistance to KSP inhibitor-induced apoptosis. Furthermore, sustained KSP inhibition activates the proapoptotic protein, Bax, and both activation of the spindle checkpoint and subsequent mitotic slippage are required for Bax activation. These studies indicate that in response to KSP inhibition, activation of the spindle checkpoint followed by mitotic slippage initiates apoptosis by activating Bax.  相似文献   

8.
The mitotic checkpoint ensures the fidelity of chromosomal segregation by delaying the onset of anaphase until all chromosomes are aligned on the metaphase plate. After sustained mitotic arrest, however, cells eventually exit mitosis without the mitotic checkpoint being silenced. These cells then undergo apoptosis, an event that is important for prevention of the chromosomal instability observed in human cancers. An interesting question is to establish the biochemical link between the mitotic checkpoint and the subsequent apoptotic cell death. Here, we found that following prolonged spindle damage, the mitotic checkpoint kinases such as Bub1 and BubR1 were cleaved through a mechanism sensitive to caspases inhibitor. Interestingly, the expression of these mutants resistant to caspases-dependent cleavage led to increased apoptosis after sustained mitotic arrest, and a correspondingly more efficient elimination of the polyploid population than that seen in cells expressing wild-type proteins. These findings provide the novel biochemical properties of mitotic checkpoint proteins through its cleavage by caspases-dependent manner.  相似文献   

9.
Growth suppressive effect of diallyl trisulfide (DATS), a promising cancer chemopreventive constituent of garlic, against cultured human cancer cells correlates with checkpoint kinase 1 (Chk1)‐mediated mitotic arrest, but the fate of the cells arrested in mitosis remains elusive. Using LNCaP and HCT‐116 human cancer cells as a model, we now demonstrate that the Chk1‐mediated mitotic arrest resulting from DATS exposure leads to apoptosis. The DATS exposure resulted in G2 phase and mitotic arrest in both LNCaP and HCT‐116 cell lines. The G2 arrest was accompanied by downregulation of cyclin‐dependent kinase 1 (Cdk1), cell division cycle (Cdc) 25B, and Cdc25C leading to Tyr15 phosphorylation of Cdk1 (inactivation). The DATS‐mediated mitotic arrest correlated with inactivation of anaphase‐promoting complex/cyclosome as evidenced by accumulation of its substrates cyclinB1 and securin. The DATS treatment increased activating phosphorylation of Chk1 (Ser317) and transient transfection with Chk1‐targeted siRNA conferred significant protection against DATS‐induced mitotic arrest in both cell lines. The Chk1 protein knockdown also afforded partial yet statistically significant protection against apoptotic DNA fragmentation and caspase‐3 activation resulting from DATS exposure in both LNCaP and HCT‐116 cells. Even though DATS treatment resulted in stabilization and Ser15 phosphorylation of p53, the knockdown of p53 protein failed to rescue DATS‐induced mitotic arrest. In conclusion, the results of the present study indicate that Chk1 dependence of DATS‐induced mitotic arrest in human cancer cells is not influenced by the p53 status and cells arrested in mitosis upon DATS exposure are driven to apoptotic DNA fragmentation. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The novel concept of anticancer treatment termed "G(2) checkpoint abrogation" aims to target p53-deficient tumor cells and is currently explored in clinical trials. The anticancer drug UCN-01 is used to abrogate a DNA damage-induced G(2) cell cycle arrest leading to mitotic entry and subsequent cell death, which is poorly defined as "mitotic cell death" or "mitotic catastrophe." We show here that UCN-01 treatment results in a mitotic arrest that requires an active mitotic spindle checkpoint, involving the function of Mad2, Bub1, BubR1, Mps1, Aurora B, and survivin. During the mitotic arrest, hallmark parameters of the mitochondria-associated apoptosis pathway become activated. Interestingly, this apoptotic response requires the spindle checkpoint protein Mad2, suggesting a proapoptotic function for Mad2. However, although survivin and Aurora B are also required for the mitotic arrest, both proteins are part of an antiapoptotic pathway that restrains the UCN-01-induced apoptosis by promoting hyperphosphorylation of Bcl-2 and by inhibiting the activation of Bax. Consequently, inhibition of the antiapoptotic pathway by genetic ablation of survivin or by pharmacologic inhibitors of Aurora B or cyclin-dependent kinase 1 lead to a significant enhancement of apoptosis and therefore act synergistically with UCN-01. Thus, by defining the mechanism of cell death on G(2) checkpoint abrogation we show a highly improved strategy for an anticancer treatment by the combined use of UCN-01 with abrogators of the survivin/Aurora B-dependent antiapoptotic pathway that retains the selectivity for p53-defective cancer cells.  相似文献   

11.
2-methoxyestradiol (2ME2), an estradiol metabolite with antiproliferative and antiangiogenic activities, is in phase I/II clinical trials for breast cancer. 2ME2 inhibits microtubule polymerization and causes cells to arrest in G2-M. The purpose of this study was to further elucidate the molecular mechanism of 2ME2. MDA-MB-435 breast cancer cells were treated with 2ME2 (2 micromol/L) or vehicle alone. RNA was extracted and genomic profiling was done using 22k Agilent microarrays. Expression Analysis Systematic Explorer was used to determine enrichment of Gene Ontology categories. Protein isolates were subjected to Western blot analysis. Protein synthesis was measured with a [35S]methionine pulse assay. An MDA-MB-435 cell line with two beta-tubulin mutations (2ME2R) was used to determine whether novel mechanisms were tubulin-dependent. Gene Ontology categories enriched include genes that regulate the mitotic spindle assembly checkpoint, apoptosis, and the cytosolic ribosome. The target of the mitotic spindle assembly checkpoint is the anaphase-promoting complex (APC). APC inhibition was confirmed by measuring protein levels of its targets securin and cyclin B1, which were increased in 2ME2-treated cells. Because gene expression in the cytosolic ribosome category was decreased, we evaluated whether 2ME2 decreases protein translation. This was confirmed with a pulse assay, which showed decreased isotope incorporation in 2ME2-treated cells, which was maintained in the tubulin-resistant 2ME2R cells. APC inhibition was not maintained in 2ME2R cells. 2ME2 induces tubulin-dependent cell cycle arrest through regulation of genes involved in the mitotic spindle assembly checkpoint, which results in inhibition of the APC and tubulin-independent inhibition of protein translation.  相似文献   

12.
Glyfoline exhibits cytotoxic activity in vitro and antitumor activity in mice bearing murine or human solid tumors, but the underlying mechanisms are unknown. In our study, we found that glyfoline inhibited cell growth and induced accumulation of mitotic cells in human cancer cell lines. Glyfoline induced the appearance of spindle abnormalities, chromosome mis‐segregation, multipolar cell division and multiple nuclei, all of which are indicative of mitotic catastrophe. However, glyfoline did not bind to DNA and did not inhibit or stabilize tubulin polymerization, but slightly increased the resistance of mitotic spindles to nocodazole‐induced disassembly. In addition, microtubule aster formation was significantly enhanced in the extract prepared from glyfoline‐arrested mitotic cells compared to that from synchronized mitotic cells. When Eg5, a mitotic kinesin that plays an essential role in establishing mitotic spindle bipolarity, was inhibited using S‐trityl‐cysteine in glyfoline‐treated cells, formation of spindle multipolarity, multipolar cell division, and multinuclei was significantly reduced. After glyfoline‐mediated arrest of cells at mitosis, considerable poly(ADP‐ribose) polymerase degradation was induced and the number of annexin V‐positive cells significantly increased, indicating that glyfoline ultimately induces apoptosis. Small interfering RNA‐mediated silencing of the spindle checkpoint proteins BUBR1 and MAD2 markedly reduced induction of mitotic cell accumulation, but did not affect glyfoline‐induced mitotic catastrophe and apoptosis. Thus, glyfoline induces mitotic catastrophe probably by enhancing microtubule aster formation and subsequent apoptosis in cancer cells independently of spindle checkpoint function.  相似文献   

13.
Dalton WB  Nandan MO  Moore RT  Yang VW 《Cancer research》2007,67(24):11487-11492
The mitotic checkpoint is a mechanism that arrests the progression to anaphase until all chromosomes have achieved proper attachment to mitotic spindles. In cancer cells, satisfaction of this checkpoint is frequently delayed or prevented by various defects, some of which have been causally implicated in tumorigenesis. At the same time, deliberate induction of mitotic arrest has proved clinically useful, as antimitotic drugs that interfere with proper chromosome-spindle interactions are effective anticancer agents. However, how mitotic arrest contributes to tumorigenesis or antimitotic drug toxicity is not well defined. Here, we report that mitotic chromosomes can acquire DNA breaks during both pharmacologic and genetic induction of mitotic arrest in human cancer cells. These breaks activate a DNA damage response, occur independently of cell death, and subsequently manifest as karyotype alterations. Such breaks can also occur spontaneously, particularly in cancer cells containing mitotic spindle abnormalities. Moreover, we observed evidence of some breakage in primary human cells. Our findings thus describe a novel source of DNA damage in human cells. They also suggest that mitotic arrest may promote tumorigenesis and antimitotic toxicity by provoking DNA damage.  相似文献   

14.
The human checkpoint kinase Chk1 has been suggested as a target for cancer treatment. Here, we show that a new inhibitor of Chk1 kinase, CEP-3891, efficiently abrogates both the ionizing radiation (IR)-induced S and G(2) checkpoints. When the checkpoints were abrogated by CEP-3891, the majority (64%) of cells showed fragmented nuclei at 24 hours after IR (6 Gy). The formation of nuclear fragmentation in IR-treated human cancer cells was directly visualized by time-lapse video microscopy of U2-OS cells expressing a green fluorescent protein-tagged histone H2B protein. Nuclear fragmentation occurred as a result of defective chromosome segregation when irradiated cells entered their first mitosis, either prematurely without S and G(2) checkpoint arrest in the presence of CEP-3891 or after a prolonged S and G(2) checkpoint arrest in the absence of CEP-3891. The nuclear fragmentation was clearly distinguishable from apoptosis because caspase activity and nuclear condensation were not induced. Finally, CEP-3891 not only accelerated IR-induced nuclear fragmentation, it also increased the overall cell killing after IR as measured in clonogenic survival assays. These results demonstrate that transient Chk1 inhibition by CEP-3891 allows premature mitotic entry of irradiated cells, thereby leading to accelerated onset of mitotic nuclear fragmentation and increased cell death.  相似文献   

15.
Drug resistance, in particular multidrug resistance, is a serious problem that impedes the effectiveness of chemotherapy. Multidrug resistance results mainly from an enhanced efflux of drugs by drug pumps located on the cell membrane such as P-glycoprotein. In the study reported here we showed that EM012, a microtubule-interfering agent, is a weak substrate for P-glycoprotein and inhibited the proliferation of A2780/ADR human ovarian cancer cells, which possess multidrug resistance due to P-glycoprotein overexpression. A2780/ADR cells treated with EM012 exhibited pronounced mitotic arrest, developed large multilobed nuclei, and eventually died through the initiation of apoptosis. Intraperitoneal treatment of A2780/ADR xenograft tumors in athymic nude mice with EM012 significantly inhibited tumor progression through triggering apoptosis and conferred an apparent survival advantage. Furthermore, EM012 treatment did not cause detectable toxicity to normal tissues. These findings suggest that EM012 may serve as a novel chemotherapeutic agent for the treatment of multidrug-resistant human ovarian cancer.  相似文献   

16.
Disrupted passage through mitosis often leads to chromosome missegregation and the production of aneuploid progeny. Aneuploidy has long been recognized as a frequent characteristic of cancer cells and a possible cause of tumorigenesis. Drugs that target mitotic spindle assembly are frequently used to treat various types of human tumors. These lead to chronic mitotic arrest from sustained activation of the mitotic checkpoint. Here, we review the linkage between the mitotic checkpoint, aneuploidy, adaptation from mitotic arrest, and antimitotic drug-induced cell death.  相似文献   

17.
The selective CB1 receptor antagonist rimonabant (SR141716) was shown to perform a number of biological effects in several pathological conditions. Emerging findings demonstrate that rimonabant exerts antitumor action in thyroid tumors and breast cancer cells. In our study, human colorectal cancer cells (DLD‐1, CaCo‐2 and SW620) were treated with rimonabant and analyzed for markers of cell proliferation, cell viability and cell cycle progression. Rimonabant significantly reduced cell growth and induced cell death. In addition, rimonabant was able to alter cell cycle distribution in all the cell lines tested. Particularly, rimonabant produced a G2/M cell cycle arrest in DLD‐1 cells without inducing apoptosis or necrosis. The G2/M phase arrest was characterized by a parallel enhancement of the number of mitoses associated to elevated DNA double strand breaks and chromosome misjoining events, hallmarks of mitotic catastrophe. Protein expression analyses of Cyclin B1, PARP‐1, Aurora B and phosphorylated p38/MAPK and Chk1 demonstrated that rimonabant‐induced mitotic catastrophe is mediated by interfering with the spindle assembly checkpoint and the DNA damage checkpoint. Moreover, in the mouse model of azoxymethane‐induced colon carcinogenesis, rimonabant significantly decreased aberrant crypt foci (ACF) formation, which precedes colorectal cancer. Our findings suggest that rimonabant is able to inhibit colorectal cancer cell growth at different stages of colon cancer pathogenesis inducing mitotic catastrophe in vitro. © 2009 UICC.  相似文献   

18.
Isoliquiritigenin, a natural flavonoid found in licorice, shallots, and bean sprouts, has been demonstrated to inhibit proliferation and to induce apoptosis in a variety of human cancer cells. We attempted to ascertain the underlying mechanism by which isoliquiritigenin induced cell cycle arrest and cytotoxicity in HeLa human cervical cancer cells. Isoliquiritigenin treatment arrested cells in both G2 and M phase. The cells arrested in interphase (G2) showed markers for DNA damage including the formation of γ-H2AX foci and the phosphorylation of ATM and Chk2, whereas the cells arrested in M phase evidenced separate poles and mitotic metaphase-like spindles with partially unaligned chromosomes. The induction of DNA damage and blockade at the metaphase/anaphase transition implied that isoliquiritigenin might function as a topoisomerase II poison, which was further demonstrated via an in vitro topoisomerase II inhibition assay. These results show that isoliquiritigenin inhibits topoiosmerase II activity, and the resultant DNA damage and arrest in mitotic metaphase-like stage contributes to the antiproliferative effects of isoliquiritigenin.  相似文献   

19.
Arsenic compounds, which are well-documented human carcinogens, are now used in cancer therapy. Knowledge of the mechanism by which arsenic exerts its toxicity may help in designing a more effective regimen for therapy. In this study, we showed that arsenite could induce prominent mitotic arrest in CGL-2 cells and demonstrated the presence of damaged DNA in arsenite-arrested mitotic cells. We then explored why these cells with arsenite-induced DNA damage were arrested at mitosis instead of G2 stage. When synchronized CGL-2 cells were treated with arsenite at stage G1, S or G2, all progressed into, and arrested at, the mitotic stage and contained damaged DNA, as demonstrated by the appearance of the DNA double-strand break marker, phosphorylated histone H2A.X (gamma-H2AX). Since X-irradiation induced G2 arrest in CGL-2 cells, these cells clearly have a functional G2 DNA damage checkpoint. However, treatment of X-irradiated CGL-2 cells with arsenite resulted in a decrease in G2 cells and an increase in mitotic cells, suggesting that arsenite may inhibit activation of the G2 DNA damage checkpoint and thus allow cells with damaged DNA to proceed from G2 into mitosis. Immunoblot analysis confirmed that arsenite treatment reduced the X-irradiation-induced phosphorylation of both ataxia-telangiectasia, mutated at serine 1981 and Cdc25C at serine 216, events which are crucial for G2 checkpoint activation and G2 arrest. Moreover, a higher frequency of apoptotic cells is observed in mitotic CGL-2 cells arrested by arsenite than those arrested by nocodazole or taxol. Our results show that the combined effects of arsenite in inducing DNA damages, inhibiting the activation of G2 checkpoint, and arresting cells with damaged DNA in the mitotic stage may subsequently enhance the induction of apoptosis in arsenite-arrested mitotic CGL-2 cells.  相似文献   

20.
Colchicine, an antimitotic alkaloid isolated from Colchicum autumnale, is a classical drug for treatment of gout and familial Mediterranean fever. It causes antiproliferative effects through the inhibition of microtubule formation, which leads to mitotic arrest and cell death by apoptosis. Here, we report that a novel colchicine analog, 4o (N-[(7S)-1,2,3-trimethoxy-9-oxo-10-[3-(trifluoromethyl)-4-chlorophenylamino]-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl]acetamide), which exhibited potent anticancer activities both in vitro and in vivo. In this study, 4o with excellent pharmacokinetic profile and no P-gp induction liability displayed strong inhibition of proliferation against various human cancer cell lines. However, pancreatic cancer cell line MIA PaCa-2 was found to be more sensitive towards 4o and showed strong inhibition in concentration and time-dependent manner. By increasing intracellular reactive oxygen species (ROS) levels, 4o induced endoplasmic reticular stress and mitochondrial dysfunction in MIA PaCa-2 cells. Blockage of ROS production reversed 4o-induced endoplasmic reticulum (ER) stress, calcium release, and cell death. More importantly, it revealed that increased ROS generation might be an effective strategy in treating human pancreatic cancer. Further 4o treatment induced mitotic arrest, altered the expression of cell cycle-associated proteins, and disrupted the microtubules in MIA PaCa-2 cells. 4o treatment caused loss of mitochondrial membrane potential, cytochrome c release, upregulation of Bax, downregulation of Bcl-2, and cleavage of caspase-3, thereby showing activation of mitochondrial mediated apoptosis. The in vivo anticancer activity of the compound was studied using sarcoma-180 (ascitic) and leukemia (P388 lymphocytic and L1210 lymphoid) models in mice and showed promising antitumor activity with the least toxicity unlike colchicine. Such studies have hitherto not been reported. Taken together, these findings highlighted that 4o, a potent derivative of colchicine, causes tumor regression with reduced toxicity and provides a novel anticancer candidate for the therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号