首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Recent findings suggest that synaptic-type glutamate signaling operates between axons and their supporting glial cells. Glutamate reuptake will be a necessary component of such a system. Evidence for glutamate-mediated damage of oligodendroglia somata and processes in white matter suggests that glutamate regulation in white matter structures is also of clinical importance. The expression of glutamate transporters was examined in postnatal Day 14-17 (P14-17) mouse and in mature mouse and rat optic nerve using immuno-histochemistry and immuno-electron microscopy. EAAC1 was the major glutamate transporter detected in oligodendroglia cell membranes in both developing and mature optic nerve, while GLT-1 was the most heavily expressed transporter in the membranes of astrocytes. Both EAAC1 and GLAST were also seen in adult astrocytes, but there was little membrane expression of either at P14-17. GLAST, EAAC1, and GLT-1 were expressed in P14-17 axons with marked GLT-1 expression in the axolemma, while in mature axons EAAC1 was abundant at the node of Ranvier. Functional glutamate transport was probed in P14-17 mouse optic nerve revealing Na+-dependent, TBOA-blockable uptake of D-aspartate in astrocytes, axons, and oligodendrocytes. The data show that in addition to oligodendroglia and astrocytes, axons represent a potential source for extracellular glutamate in white matter during ischaemic conditions, and have the capacity for Na(+)-dependent glutamate uptake. The findings support the possibility of functional synaptic-type glutamate release from central axons, an event that will require axonal glutamate reuptake.  相似文献   

2.
B A Barres  L L Chun  D P Corey 《Glia》1988,1(1):10-30
White matter is a compact structure consisting primarily of neuronal axons and glial cells. As in other parts of the nervous system, the function of glial cells in white matter is poorly understood. We have explored the electrophysiological properties of two types of glial cells found predominantly in white matter: type 2 astrocytes and oligodendrocytes. Whole-cells and single-channel patch-clamp techniques were used to study these cell types in postnatal rat optic nerve cultures prepared according to the procedures of Raff et al. (Nature, 303:390-396, 1983b). Type 2 astrocytes in culture exhibit a "neuronal" channel phenotype, expressing at least six distinct ion channel types. With whole-cell recording we observed three inward currents: a voltage-sensitive sodium current qualitatively similar to that found in neurons and both transient and sustained calcium currents. In addition, type 2 astrocytes had two components of outward current: a delayed potassium current which activated at 0 mV and an inactivating calcium-dependent potassium current which activated at -30 mV. Type 2 astrocytes in culture could be induced to fire single regenerative potentials in response to injections of depolarizing current. Single-channel recording demonstrated the presence of an outwardly rectifying chloride channel in both type 2 astrocytes and oligodendrocytes, but this channel could only be observed in excised patches. Oligodendrocytes expressed only one other current: an inwardly rectifying potassium current that is mediated by 30- and 120-pS channels. Because these channels preferentially conduct potassium from outside to inside the cell, and because they are open at the resting potential of the cell, they would be appropriate for removing potassium from the extracellular space; thus it is proposed that oligodendrocytes, besides myelinating axons, play an important role in potassium regulation in white matter. The conductances present in oligodendrocytes suggest a "modulated Boyle and Conway mechanism" of potassium accumulation.  相似文献   

3.
Three genetically distinct isozymes of the catalytic subunit of the Na,K-ATPase have been detected and have been designated alpha1, alpha2, and alpha3. To determine whether their expression is restricted to identifiable neurons and glia, specific monoclonal antibodies were used for immunofluorescent localization in the rat retina and optic nerve. The patterns of staining were markedly different, suggesting differences in cellular localization. Photoreceptor inner segments and optic nerve fibers expressed predominantly alpha3. Müller glia in the retina and astrocytes in the optic nerve expressed alpha1 and alpha2. Isolated, dissociated bipolar, horizontal, and Müller cells expressed different isozymes separately or in combination. The complexity of staining of neurons and their axons and dendrites suggested that Na,K-ATPase isozyme expression is not stereotyped, but is tailored to the ion transport needs of individual cell types, and targeted to specified membrane domains.  相似文献   

4.
Na,K-ATPase is an integral membrane enzyme responsible for maintenance of the transmembrane Na+/K+ gradient which generates membrane excitability. Previous studies showed that oligodendrocytes within the CNS robustly expressed the alpha2 isoform of the Na,K-ATPase while oligodendrocytes in isolated cultures did not. We tested whether the levels of this isoform might be modulated by interactions with neurons. Western blots showed alpha2 protein expression was very low in rat optic nerve immediately after birth, but that expression was greatly increased by days 5 and 14. In adult optic nerves, levels were barely detectable. Since the first myelinated axons are observed in rat optic nerve at day 5, and the next 2 weeks are considered the period of peak myelination, this timing suggested a relationship between oligodendrocyte-neuron contact, myelination onset and the upregulation of the alpha2 isoform. In further experiments we plated oligodendrocytes in isolation or in co-culture with neurons dissociated from cerebral cortex at the day of birth. After 6 days in vitro, 45% of oligodendrocytes co-cultured with neurons expressed abundant alpha2 protein which was detected by immunohistochemistry, a six-fold increase over cells expressing alpha2 protein in isolated cultures. Conditioned medium from neuronal cultures did not affect alpha2 levels in oligodendrocytes. These results suggest that neurons may play a role in upregulating glial expression of the alpha2 isoform during peak periods of myelination, and that the effect is likely to be dependent on contact.  相似文献   

5.
We have used 4 cell-type-specific markers to identify individual glial and neuronal cells in dissociated cell cultures of neonatal rat sciatic nerve, dorsal root ganglia (DRG), optic nerve, cerebellum, corpus callosum, cerebral cortex and leptomeninges. Schwann cells were identified with antibodies against rat neural antigen-1 (Ran-1), neurons with tetanus toxin, astrocytes with antibody against the glial fibrillary acidic protein (GFAP) and oligodendrocytes with antibody against galactocerebroside. All of these ligands react with cell surface molecules except for anti-GFAP antibody which binds to intracellular glial filaments. Using two-fluorochrome immunofluorescence we have studied the distribution of various glycoproteins and glycolipids on these 4 major neural cell types in short-term cultures. We have found that (1) although Ran-1 is expressed on glial and neuronal tumours, it was not found on normal astrocytes, oligodendrocytes or neurons; (2) Thy-1 was present on fibroblasts and some neurons but not on the majority of leptomeningeal cells or on oligodendrocytes or astrocytes in short-term cultures (however, it was expressed on some astrocytes in longer term cultures); (3) the 'large external transformation sensitive' (LETS) protein could be detected on fibroblasts and leptomeningeal cells but not on neurons or glial cells; (4) GM1 was present on all neurons, most oligodendrocytes and approx. 50% of other cell types; sulfatide and GM3 were only detectable on oligodendrocytes, while globoside was only found on some neurons. In addition, we were able to identify putative microglial cells by the presence of cell surface receptors for IgG and by their phagocytic activity; they did not express and of the cell-type-specific defining markers.  相似文献   

6.
Four subunits of Ca2+/calmodulin-dependent protein kinase II (CaM KII) have several isoforms, which differ in the variable domain. We previously reported that all subunits were highly expressed in rat striatal neurons. To examine intracellular distributions of CaM KII subunits in the rat striatal neurons, we performed immunoblot analysis with antibodies specific to each subunit in cell extracts from the rat striatum after continuous sucrose density gradient fractionation. The alpha subunit, but not the beta, gamma, or delta subunits, was colocalized with synapsin I, and each subunit showed a distinct distribution pattern in the fractions. To examine further the intracellular distributions of CaM KII isoforms in the same subunit, we established NG108-15 cells stably expressing delta1, delta3, and delta4 isoforms and examined distributions of the delta and gamma isoforms in these cell lines after fractionation. Each of the overexpressed exogenous delta isoforms showed a distinct distribution pattern. The endogenous delta2 was colocalized with the overexpressed delta1, delta3, and delta4 isoforms. However, the endogenous gammaB/gammaC isoforms were not colocalized with the overexpressed delta isoforms. Furthermore, the endogenous delta1 was concentrated in the microsomal fraction from the rat striatum. With the results taken together, it is suggested that CaM KII forms oligomers between isoforms in the same subunit but not in different subunits. The variable domain of CaM KII isoforms might possibly be responsible for targeting to certain intracellular compartments.  相似文献   

7.
A M Butt  B R Ransom 《Glia》1989,2(6):470-475
The morphology of glial cells in the intact rat optic nerve, a central nervous system (CNS) white matter tract, was analysed by filling over 500 macroglial cells intracellularly with horseradish peroxidase (HRP) or Lucifer yellow (LY). Two main cell types were distinguished: fibrous astrocytes and cells presumed to be oligodendrocytes. Intracellularly stained astrocytes were highly complex, with 50-60 long branching processes which passed radially from the cell body and terminated in end-feet at the pial surface or on blood vessels; some processes ended freely in the nerve parenchyma. Astrocytes filled with LY were usually dye-coupled to other astrocytes after the first week of life. Filled oligodendrocytes had a unique appearance that unmistakably distinguished them from astrocytes and were occassionally dye-coupled to nearby oligodendrocytes. These cells had 20-30 longitudinally oriented processes 150-200 microns long, which passed exclusively along the long axis of the nerve parallel to axons; the longitudinal processes were connected to the cell body by thin branches 15-30 microns long. The longitudinal processes probably represent the tongue processes of the internodal myelin sheaths, and thus each oligodendrocyte appears to myelinate 20-30 axons with sheaths that are 150-200 microns in length.  相似文献   

8.
As several epilepsy syndromes are associated with changes in sodium channel subunits we investigated the expression of beta1 sodium channel protein in a rat epilepsy model. In this model a chronic epileptic syndrome develops after electrically induced status epilepticus (SE). Many neuropathological characteristics of mesial temporal lobe epilepsy can be reproduced (cell loss, gliosis and synaptic reorganization). In control hippocampus beta1 subunit protein was moderately expressed in neurons and weakly expressed in resting astrocytes. beta1 sodium channel immunoreactivity increased markedly within 1 week after SE mainly in astrocytes that were colocalized with vimentin (marker for reactive astrocytes). This up-regulation was still present in reactive astrocytes of chronic epileptic rats (> 3 months after SE). Considering the fact that the beta1 subunits may function as cell adhesion molecules interacting with extracellular matrix, the observed increase in reactive astrocytes might subserve a function in cellular and synaptic reorganization during epileptogenesis.  相似文献   

9.
Using the peroxidase-antiperoxidase staining technique at the light- and electron-microscope levels and two monoclonal antibodies against microtubule-associated protein 2 (MAP2), we found that astrocytes located at the periphery of the rat optic nerve were strongly stained, while those in the central region were very weakly stained. MAP2 immunoreactivity was present in astrocytes of the optic chiasm, but was absent from astrocytes in the optic tract. Inside astrocytes, MAP2 immunoreactivity was excluded from bundles of glial filaments. Treatment of animals with beta,beta'-iminodipropionitrile (IDPN), which caused axonal atrophy, enhanced the staining intensity of all optic nerve astrocytes. Axons and oligodendrocytes remained unstained. Using PAGE and Western immunoblots, we found that extracts from bovine optic nerve contained MAP2. Astrocytes in any other region of the nervous system were negative for MAP2 immunoreactivity, except of the pituicytes and the astrocytes of the fimbria of hippocampus. The optic nerve, neurohypophysis, and hippocampal fimbria are white matter tracts that travel unsupported and free of surrounding nervous tissue. These findings suggest that MAP2 is expressed in astrocytes that are under excessive mechanical stress and further indicate that MAP2 may function as a cytoskeletal rigidifying agent in certain cells.  相似文献   

10.
We have analyzed the expression of the oligodendrocyte-derived extracellular matrix molecule janusin (previously termed J1–160/180) in the retina and optic nerve ofdeveloping and adult mice using indirect light and electron microscopic immunocytochemistry, immunoblot analysis, and enzyme-linked immunosorbent assay. In the optic nerve, janusin is not detectable in neonatal and only weakly detectable in 7-day-old animals. Expression is at a peak in 2- or 3-week-old animals and subsequently decreases with inceasing age. In the retina, expression inceases until the third postnatal week and then remains at a constant level. In immunocytochemical investigations at the light microscopic level, janusin was found in the myelinated regions of the nerve with spots of increased immunoreactivity possibly corresponding to an accumulation of the light microscopic level, janusin was found in the myelinated regions of the nerve with sports of increased immunoreactivity possibly corresponding to an accumulation of the molecule at the nodes of Ranvier. At the electron microscopic level, contact sites between unmyelinated axons, between axons, and glial cells, and between axons and processes of myelinating oligodendrocytes were immunoreactive. Cell surfaces of astrocytes at the periphery of the nerve and forming the glial-limiting membrane, in contrast, were only weakly immunopositive or negative. In cell cultures of young postnatal mouse or rat optic nerves, oligodendrocytes and type-2 astrocytes, but not type-1 astrocytes were stained by janusin antibodies. In the oligodendrocyte-free retina, janusin was detectable in association with neuronal cell surfaces, but not with cell surfaces of Muller cells or retinal astrocytes. Our observations indicate that expression of janusin in the optic nerve and in the retina is developmentally differentially regulated and that other cell types, in addition to oligodendrocytes, express the molecule. Since the time course of janusin expression in the optic nerve coincides with the appearance of oligodendrocytes and myelin and since janusin is associated with cell surfaces of oligodendrocytes and outer aspects of myelin sheaths and is concentrated at nodes of Ranvier, we suggest that janusin is functionally involved in the process of myelination. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Fibroblast growth factors (FGFs) exert various effects on glial cells as well as on neurons in the brain. The mRNAs for four FGF receptors (FGFR-1-FGFR-4) are expressed in the brain. Although FGFR-1 and -4 mRNAs are preferentially expressed in neurons, FGFR-2 and -3 mRNAs are preferentially expressed in glial cells. However, the glial cells that express these receptors remained to be identified. In this study, we found that oligodendrocytes and astrocytes in the brain preferentially expressed FGFR-2 and FGFR-3 mRNAs, respectively. The isoforms of immunoglobulin-like domain III (IIIb and IIIc) of the receptors have crucial roles in ligand binding. We also determined the isoforms of FGFR-2 and FGFR-3 expressed in glial cells to be of type IIIc. The expression of FGFR-2 IIIc and FGFR-3 IIIc with different ligand specificities might play important roles in the various effects of FGFs on oligodendrocytes and astrocytes. © 1996 Wiley-Liss, Inc.  相似文献   

12.
S Nakamura  T Todo  Y Motoi  S Haga  T Aizawa  A Ueki  K Ikeda 《Glia》1999,28(1):53-65
We examined the expression of fibroblast growth factor (FGF)-9 in the rat central nervous system (CNS) by immunohistochemistry and in situ hybridization studies. FGF-9 immunoreactivity was conspicuous in motor neurons of the spinal cord, Purkinje cells, and neurons in the hippocampus and cerebral cortex. In addition to the neuronal localization of FGF-9 immunoreactivity that we reported previously, the present double-label immunohistochemistry clearly demonstrated that the immunoreactivity was present in glial fibrillary acidic protein (GFAP)-positive astrocytes preferentially present in the white matter of spinal cord and brainstem of adult rats and in CNPase-positive oligodendrocytes that were arranged between the fasciculi of nerve fibers in cerebellar white matter and corpus callosum of both adult and young rats. There was a tendency for FGF-9 immunoreactivity in oligodendrocytes to be more pronounced in young rats than in adult rats. The variation of oligodendrocyte FGF-9 immunoreactivity in adult rats was also more pronounced than that in young rats. With in situ hybridization, FGF-9 mRNA was observed in astrocytes in the white matter of rat spinal cord and oligodendrocytes in the white matter of cerebellum and corpus callosum of adult and young rats. The expression of FGF-9 mRNA in glial cells was lower than in neurons, and not all glial cells expressed FGF-9. In the present study, we demonstrated that FGF-9 was expressed not only in neurons but also in glial cells in the CNS. FGF-9 was considered to have important functions in adult and developing CNS.  相似文献   

13.
14.
Retinal ganglion cell (RGC) axons in lizards (reptiles) were found to regenerate after optic nerve injury. To determine whether regeneration occurs because the visual pathway has growth-supporting glia cells or whether RGC axons regrow despite the presence of neurite growth-inhibitory components, the substrate properties of lizard optic nerve myelin and of oligodendrocytes were analyzed in vitro, using rat dorsal root ganglion (DRG) neurons. In addition, the response of lizard RGC axons upon contact with rat and reptilian oligodendrocytes or with myelin proteins from the mammalian central nervous system (CNS) was monitored. Lizard optic nerve myelin inhibited extension of rat DRG neurites, and lizard oligodendrocytes elicited DRG growth cone collapse. Both effects were partially reversed by antibody IN-1 against mammalian 35/250 kD neurite growth inhibitors, and IN-1 stained myelinated fiber tracts in the lizard CNS. However, lizard RGC growth cones grew freely across oligodendrocytes from the rat and the reptilian CNS. Mammalian CNS myelin proteins reconstituted into liposomes and added to elongating lizard RGC axons caused at most a transient collapse reaction. Growth cones always recovered within an hour and regrew. Thus, lizard CNS myelin and oligodendrocytes possess nonpermissive substrate properties for DRG neurons—like corresponding structures and cells in the mammalian CNS, including mammalian-like neurite growth inhibitors. Lizard RGC axons, however, appear to be far less sensitive to these inhibitory substrate components and therefore may be able to regenerate through the visual pathway despite the presence of myelin and oligodendrocytes that block growth of DRG neurites. GLIA 22:61–74, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
We have examined glial cell lineages during rat spinal cord development by using a variety of antibodies that react with immature and mature glia. Radial glia in embryonic cord bound 1) A2B5, an antibody that reacts with a glial precursor cell population in optic nerve; 2) AbR24, which is directed against GD3 ganglioside and binds to immature neuroectodermal cells and to developing oligodendrocytes in forebrain and cerebellum; and 3) an antibody to the intermediate filament, vimentin. With time, two different populations emerged, both of which seemed to be derivatives of radial cells. One cell type expressed the astrocyte intermediate filament, GFAP, in addition to vimentin. GFAP-containing cells eventually took on the forms of astrocytes in gray and white matter. The other type expressed carbonic anhydrase, an enzyme characteristic of oligodendrocytes and enriched in myelin. Carbonic anhydrase-positive cells eventually developed into small cells with oligodendrocyte morphology. Our observations suggest a common lineage for astrocytes and oligodendrocytes from radial cells during spinal cord gliogenesis.  相似文献   

16.
Raabe TD  Deadwyler G  Varga JW  Devries GH 《Glia》2004,45(2):197-207
Neuregulins (NRGs) are growth factors present in neurons and glial cells of the central and peripheral nervous systems and play a role in the survival, proliferation, and differentiation of these cells. We now report the localization of the two major isoforms of NRG (alpha and beta) and their receptors (erbB) in cultured Schwann cells and oligodendrocytes isolated from neonatal rat pups. Immunocytochemistry and Western blots for NRG and erbB receptors in defined subcellular fractions were utilized to assess cellular localization. Less differentiated oligodendrocytes contain both NRG isoforms in the cell bodies but not the processes, while only NRG-1beta was found in the nucleus. In contrast, more differentiated oligodendrocytes contained neither isoform in the nucleus while both isoforms were colocalized in the cytoplasm and cell processes. In Schwann cells, both NRG-1beta and NRG-1alpha were colocalized in the cytoplasm and processes. The Schwann cell nucleus had weak immunoreactivity for both NRG-1 isoforms, although NRG-1beta was predominant. ErbB2 and erbB3 receptors, which transduce the NRG-1 signal in Schwann cells, were found throughout the cytoplasm and in the processes and were also localized in the cell nucleus. The nuclear localization of NRG-1 isoforms and/or erbB receptors in both cell types was confirmed by Western blotting of nuclear and cytoplasmic extracts. Stimulation of Schwann cells with mitotic agents increased NRG-1beta expression in the nucleus and dramatically suppressed NRG-1alpha expression throughout the cell. The functional implications of this differential localization in myelinating cells are discussed.  相似文献   

17.
Glial cells in degenerating and regenerating optic nerve of the adult rat   总被引:7,自引:0,他引:7  
The glial cell reaction both in degenerating and regenerating adult rat optic nerve was studied by immunohistochemistry and electron microscopy. Degeneration in the optic nerve was achieved by complete transection, and the retinal stump was then analyzed. The regeneration was observed by autotransplantation of a sciatic nerve segment to the transected retinal stump. In both cases, optic nerve axons were labeled anterogradely with rhodamine, followed by immunohistochemical staining. Glial fibrillary acidic protein-positive astrocytes covered the transected end of degenerating optic nerve, whereas in the regenerating optic nerve they enwrapped axonal bundles emerging from the optic nerve stump and migrated together into the transitional zone intervening between the retinal stump and graft. In electron microscopy, direct attachment of astrocyte and Schwann cell was found within the transitional zone, whereby these cells were holding axons between them. Decrease of 04 immunoreactivity, which labels oligodendrocytes, was apparent in the transected end of retinal stump during the regeneration. The ED1 -positivity, which labels microglia/macrophages, was found in cells accumulated in the transitional zone of degenerating optic nerve, whereas during regeneration, ED1-immunoreactive cells were also distributed in the retinal stump. These results suggest that astrocytes, usually considered to interfere with optic nerve regeneration, change their characteristics in the presence of peripheral nerve graft and guide the regenerating axons in cooperation with Schwann cells. The response of oligodendrocytes and microglia/macrophages may also be modulated by peripheral nerve.  相似文献   

18.
T Sivron  G Jeserich  S Nona  M Schwartz 《Glia》1992,6(1):52-66
Regeneration of injured central nervous system axons is largely dependent on the response of the associated nonneuronal glial cells to injury. Glial cells of the mammalian central nervous system, unlike those of fish, are apparently not conducive to axonal regeneration. While the lineage of rat glial cells is well characterized and its role in the support or inhibition of regenerative growth is beginning to be understood, little is known about fish glial cells. Accordingly, glial cells in cultures of adult goldfish brain and of newly hatched goldfish larvae were studied in an attempt to establish their lineage. The cells were identified by means of indirect immunofluorescence, using antibodies against fish astrocytes and oligodendrocytes. The cell count in the cultures increased from a small number of cells at 24 h after plating to a large number of both astrocytes and oligodendrocytes after 1 week in culture. Both of these cell types had originated from proliferating cells, as shown by their uptake of tritiated thymidine and by the inhibition of cell proliferation by 5-fluoro-2'-deoxyuridine. Both astrocytes, i.e., glial fibrillary acidic protein-positive cells, and oligodendrocytes, i.e., 6D2-positive cells, were positively labeled also by A2B5 antibodies, which are known to label progenitors of type-2 astrocytes and oligodendrocytes in the rat optic nerve. The results suggest that A2B5 positive progenitor cells in the goldfish central nervous system, as in the rat optic nerve, might be a common progenitor of astrocytes and oligodendrocytes.  相似文献   

19.
Editorial     
Segments from adult fish and rat retinae were explanted on myelin-marker expressing oligodendrocytes derived from the regenerating goldfish optic nerve. Fish axons grew in high density and even rat retinal axons regenerated to considerable length on the surface of the fish oligodendrocytes, suggesting that this type of fish glia has axon-growth promoting surface components that exert their influence across species boundaries. One interesting surface component of the fish oligodendrocytes as demonstrated here is the E 587 antigen, which is related to the L1 family of cell adhesion molecules. In long term cocultures of oligodendrocytes and retinal axons, the fish glial cells were found to enwrap rat axons. This suggests that the oligodendrocytes of the regenerating goldfish optic nerve/tract may, despite striking differences, represent the equivalent to mammalian optic nerve oligodendrocytes. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Na+ channel expression was studied in cultures of rat optic nerve astrocytes using whole-cell voltage-clamp recordings. Astrocytes from postnatal day 7 rat optic nerve (RON) expressed two distinct types of Na+ currents, which had significantly different h infinity curves. Stellate, GFAP+/A2B5+ astrocytes showed currents with h infinity curve midpoints close to -65 mV, similar to Na+ currents in most neurons. In contrast, flat fibroblast-like GFAP+/A2B5- astrocytes showed Na+ currents with h infinity midpoints around -85 mV, almost 20 mV more hyperpolarized than in neurons or A2B5+ astrocytes. Interestingly, Na+ current expression was maintained in A2B5+ astrocytes but began to decrease in A2B5- astrocytes after 6 days in vitro (DIV) and fell to or below the level of detection (i.e., 1 pA/pF) at 12 DIV. Astrocytes cultured from neonatal rats (P0) are almost exclusively GFAP+/A2B5-. These cells did not display measurable Na+ currents when studied at 2 DIV; however, Na+ current was observed after 5 DIV in A2B5- astrocytes from these neonatal (P0) cultures. These findings were substantiated by immunocytochemical experiments using 7493, an antibody raised against purified rat brain Na+ channels; in P0-derived astrocyte cultures 7493 antibody staining was initially lacking (up to 3 DIV), but it was prominent in cultures after 5 DIV, suggesting that Na+ current expression in RON astrocytes occurs postnatally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号