首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes are considered as molecular wires exhibiting novel properties for diverse applications including medicinal and biotechnological purposes. Surface chemistry on carbon nanotubes results on their solubilization in organic solvents and/or aqueous/physiological media. Herein, we will present how interfacing such novel carbon-based nanomaterials with biological systems may lead to new applications in diagnostics, vaccine and drug delivery. Recent developments in this rapidly growing field will be presented thus suggesting exciting opportunities for the utilization of carbon nanotubes as useful tools for biotechnological applications. Emphasis will be placed in the integration of biomaterials with carbon nanotubes, which enables the use of such hybrid systems as biosensor devices, immunosensors and DNA-sensors.  相似文献   

2.
The development of new methods for determining at a very low level a large spectrum of substances affecting the behaviour of living organisms is still a challenging goal. For such a purpose, chemical sensors which can be defined as the intimate combination of a sensitive and specific layer with a transducer, are undoubtedly among the more promising devices.

In this field, optical sensors are expanding rapidly, mainly based on absorption, fluorescence, chemi- and bioluminescence. Beside pH and gases, drugs (anticonvulsant, antitumour, anaesthetic …) and other compounds of biological interest can be determined with specifically designed optical sensors, for instance immunosensors.

Special attention will be given to optical biosensors with emphasis on chemi- and bioluminescence-based devices which are highly selective and ultrasensitive. When coimmobilizing various auxiliary enzymes in the sensing layer, the potentialities of such devices can be greatly extended as demonstrated by promising results recently obtained in our group.  相似文献   


3.
Synthetic nanotubes that have the ability to broadly mimic the function of biological ion channels have extraordinary potential for various applications, from ultrasensitive biosensors to efficient water purification devices. As a result of their immense potential, the design and fabrication of such synthetic nanotubes is rapidly gaining momentum. We briefly review recent theoretical and experimental studies on nanoscale cylindrical hollow tubes constructed from carbon, boron, and nitrogen atoms that are able to selectively transport water molecules, cations (positively charged ions), or anions (negatively charged ions) similar to various biological ion channels. FROM THE CLINICAL EDITOR: This review discusses the current status of synthetic nanotube research, including recent theoretical and experimental studies on nanoscale cylindrical hollow tubes constructed from carbon, boron, and nitrogen atoms that are able to selectively transport water molecules, cations or anions similar to biological ion channels.  相似文献   

4.
Functionalised carbon nanotubes (f-CNTs) are emerging as new tools in the field of nanobiotechnology and nanomedicine. This is because they can be easily manipulated and modified by encapsulation with biopolymers or by covalent linking of solubilising groups to the external walls and tips. The possibility of incorporating f-CNTs into biological systems has opened the way to the exploration of their potential applications in biology and medicinal chemistry. Within the different fields of applications (i.e., biosensors, composite materials, molecular electronics), one use of CNTs is as new carrier systems for the delivery of therapeutic molecules. Research discussed in this review is focused on recent advances in the development of CNT technology for the delivery of drugs, antigens and genes.  相似文献   

5.
Carbon nanotubes for the delivery of therapeutic molecules   总被引:1,自引:0,他引:1  
Functionalised carbon nanotubes (f-CNTs) are emerging as new tools in the field of nanobiotechnology and nanomedicine. This is because they can be easily manipulated and modified by encapsulation with biopolymers or by covalent linking of solubilising groups to the external walls and tips. The possibility of incorporating f-CNTs into biological systems has opened the way to the exploration of their potential applications in biology and medicinal chemistry. Within the different fields of applications (i.e., biosensors, composite materials, molecular electronics), one use of CNTs is as new carrier systems for the delivery of therapeutic molecules. Research discussed in this review is focused on recent advances in the development of CNT technology for the delivery of drugs, antigens and genes.  相似文献   

6.
Nanotechnology is considered to be an emerging, disruptive technology that will have significant impact in all industrial sectors and across-the-board applications in cancer research. There has been tremendous investment in this area and an explosion of research and development efforts in recent years, particularly in the area of cancer research. At the National Institutes of Health, nanomedicine is one of the priority areas under its Roadmap Initiatives. Moreover, in 2005 the National Cancer Institute alone committed $144.3 million over 5 years for its Alliance for Nanotechnology in Cancer program. Much research and development is progressing in the areas of cancer diagnostics, devices, biosensors, and microfluidics, but this review will focus on therapeutics. Current nanotechnology platforms for cancer therapeutics encompass a vast array of nanomaterials and nanodevices. This review will focus on six of the most prominent and most widely studied: nanoshells, carbon nanotubes, dendrimers, quantum dots, superparamagnetic nanoparticles, and liposomes. All of these nanotechnology platforms can be multifunctional, so they are frequently touted as "smart" or "intelligent." This review will discuss the shared approaches in the design and development of these nanotechnology platforms that bestow such characteristics to the nanoparticles. Finally, the review will raise awareness of the physiological challenges for the application of these therapeutic nanotechnologies, in light of some recent advances in our understanding of tumor biology.  相似文献   

7.
In the last decade, we have experienced an increasing interest and an improved understanding of the application of nanotechnology to the nervous system. The aim of such studies is that of developing future strategies for tissue repair to promote functional recovery after brain damage. In this framework, carbon nanotube based technologies are emerging as particularly innovative tools due to the outstanding physical properties of these nanomaterials together with their recently documented ability to interface neuronal circuits, synapses and membranes. This review will discuss the state of the art in carbon nanotube technology applied to the development of devices able to drive nerve tissue repair; we will highlight the most exciting findings addressing the impact of carbon nanotubes in nerve tissue engineering, focusing in particular on neuronal differentiation, growth and network reconstruction.  相似文献   

8.
One-dimensional (1D) carbon nanotubes (CNTs) and the two-dimensional (2D) graphene represent the most widely studied allotropes of carbon. Due to their unique structural, electrical, mechanical and optical properties, 1D and 2D carbon nanostructures are considered to be leading candidates for numerous applications in biomedical fields, including tissue engineering, drug delivery, bioimaging and biosensors. The biocompatibility and toxicity issues associated with these nanostructures have been a critical impediment for their use in biomedical applications. In this review, we present an overview of the various materials types, properties, functionalization strategies and characterization methods of 1D and 2D carbon nanomaterials and their derivatives in terms of their biomedical applications. In addition, we discuss various factors and mechanisms affecting their toxicity and biocompatibility.  相似文献   

9.
Carbon nanofibers and carbon nanotubes in regenerative medicine   总被引:2,自引:0,他引:2  
Carbon nanotubes and carbon nanofibers have long been investigated for applications in composite structural materials, semiconductor devices, and sensors. With the recent well-documented ability to chemically modify nanofibrous carbon materials to improve their solubility and biocompatibility properties: a whole new class of bioactive carbon nanostructures has been created for biological applications. This review focuses on the latest applications of carbon nanofibers and carbon nanotubes in regenerative medicine.  相似文献   

10.
11.
Nanomedicine is an emerging field that proposes the application of precisely engineered nanomaterials for the prevention, diagnosis and therapy of certain diseases, including neurological pathologies. Carbon nanotubes (CNT) are a new class of nanomaterials, which have been shown to be promising in different areas of nanomedicine. In this review, the application of CNT interfacing with the central nervous system (CNS) will be described, and representative examples of neuroprosthetic devices, such as neuronal implants and electrodes will be discussed. Furthermore, the possible application of CNT-based materials as regenerative matrices of neuronal tissue and as delivery systems for the therapy of CNS will be presented.  相似文献   

12.
When artificial materials come into contact with blood, various biological responses are induced. For successful development of biomaterials used in biomedical devices that will be exposed to blood, understanding and control of these interactions are essential. Surface plasmon resonance (SPR) spectroscopy is one of the surface-sensitive optical methods to monitor biological interactions. SPR enables real-time and in situ analysis of interfacial events associated with biomaterials research. In this review, we describe an SPR biosensor and its application to monitor complement activation onto biomaterials surface. We also discuss the effect of surface properties of the material on complement activation.  相似文献   

13.
Son SJ  Bai X  Lee SB 《Drug discovery today》2007,12(15-16):657-663
Inorganic nanoparticles, such as carbon nanotubes, quantum dots and gold nanoshells, have been adopted for biomedical use, due to their unique optical and physical properties. Compared to conventional materials, inorganic nanomaterials have several advantages such as simple preparative processes and precise control over their shape, composition and size. In addition, inorganic porous nanomaterials are fundamentally advantageous for developing multifunctional nanomaterials, due to their distinctive inner and outer surfaces. In this review, we describe recent developments of hollow and porous inorganic nanomaterials in nanomedicine, especially for imaging/diagnosis and photothermal therapy.  相似文献   

14.
Cell-based biosensors (CBBs) utilize the principles of cell-based assays (CBAs) by employing living cells for detection of different analytes from environment, food, clinical, or other sources. For toxin detection, CBBs are emerging as unique alternatives to other analytical methods. The main advantage of using CBBs for probing biotoxins and toxic agents is that CBBs respond to the toxic exposures in the manner related to actual physiologic responses of the vulnerable subjects. The results obtained from CBBs are based on the toxin-cell interactions, and therefore, reveal functional information (such as mode of action, toxic potency, bioavailability, target tissue or organ, etc.) about the toxin. CBBs incorporate both prokaryotic (bacteria) and eukaryotic (yeast, invertebrate and vertebrate) cells. To create CBB devices, living cells are directly integrated onto the biosensor platform. The sensors report the cellular responses upon exposures to toxins and the resulting cellular signals are transduced by secondary transducers generating optical or electrical signals outputs followed by appropriate read-outs. Examples of the layout and operation of cellular biosensors for detection of selected biotoxins are summarized.  相似文献   

15.
Various biomedical applications of carbon nanotubes have been proposed in the last few years leading to the emergence of a new field in diagnostics and therapeutics. Most of these applications will involve the administration or implantation of carbon nanotubes and their matrices into patients. The toxicological and pharmacological profile of such carbon nanotube systems developed as nanomedicines will have to be determined prior to any clinical studies undertaken. This review brings together all the toxicological and pharmacological in vivo studies that have been carried out using carbon nanotubes, to offer the first summary of the state-of-the-art in the pharmaceutical development of carbon nanotubes on the road to becoming viable and effective nanomedicines.  相似文献   

16.
Importance of the field: The possibility of carbon nanotube integration into living systems for therapeutic and diagnostic purposes has opened the way to explore their applications in drug delivery and discovery. A wide variety of chemical approaches has been developed to functionalize carbon nanotubes with therapeutic molecules towards different biomedical uses. Areas covered in this review: This review covers the recent advances in the development of functionalized carbon nanotubes to offer improvements for different diseases, in particular for cancer therapy. What the reader will gain: Functionalized carbon nanotubes are able to transport therapeutic agents. Targeted methodologies using carbon nanotube-based conjugates have been investigated to improve the efficacy of some drugs. The capacity of such nanomaterials to seamlessly translocate into cells with alternative various mechanisms and their pharmacokinetic properties is also discussed. Take home message: Although at its infancy, functionalized carbon nanotubes are very promising as a new nanomedicine platform in the field of drug discovery and delivery. They have the capacity to cross biological barriers and can be eliminated via renal and/or fecal excretion. They can transport small drug molecules while maintaining - and in some cases improving - their therapeutic efficacy.  相似文献   

17.
Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one‐ to two‐cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube‐filled, punctate masses, at the blastula to mid‐gastrula developmental stages, which we call “boluses.” Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127‐coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Promising therapeutic and prophylactic effects have been achieved following advances in the gene therapy research arena, giving birth to the new generation of disease-modifying therapeutics. The greatest challenge that gene therapy vectors still face is the ability to deliver sufficient genetic payloads in order to enable efficient gene transfer into target cells. A wide variety of viral and non-viral gene therapy vectors have been developed and explored over the past 10 years, including carbon nanotubes. In this review we will address the application of carbon nanotubes as non-viral vectors in gene therapy with the aim to give a perspective on the past achievements, present challenges and future goals. A series of important topics concerning carbon nanotubes as gene therapy vectors will be addressed, including the benefits that carbon nanotubes offer over other non-viral delivery systems. Furthermore, a perspective is given on what the ideal genetic cargo to deliver using carbon nanotubes is and finally the geno-pharmacological impact of carbon nanotube-mediated gene therapy is discussed.  相似文献   

19.
Once viewed solely as a tool for low throughput and kinetic analysis of biomolecular interactions, optical biosensors are gaining widespread uses in drug discovery because of recent advances in instrumentation and experimental design. These advances have expanded the capabilities of optical biosensors to meet the needs at many points in the drug discovery process. Concurrent shifts in drug discovery paradigms have seen the growing use of whole cell systems for drug screens, thus creating both a need in drug discovery and a solution in optical biosensors. This article reviews important advances in optical biosensor instrumentation, and highlights the potential of optical biosensors for drug discovery with an emphasis on whole cell sensing in both high throughput and high content fashions.  相似文献   

20.
Shrinking the biologic world--nanobiotechnologies for toxicology.   总被引:4,自引:0,他引:4  
Although toxicologic effects need to be considered at the organismal level, the adverse events originate from interactions and alterations at the molecular level. Cellular structures and functions can be disrupted by modifications of the nanometer structure of critical molecules; therefore, devices used to assess biologic and toxicologic processes at the nanoscale will allow important new research pursuits. In order to properly assess alterations at these dimensions, nanofabricated tools are needed to detect, separate, analyze, and manipulate cells or biologic molecules of interest. The emergence of laser tweezers, surface plasmon resonance (SPR), laser capture microdissection (LCM), atomic force microscopy (AFM), and multi-photon microscopes have allowed for these assessments. Micro- and nanobiotechnologies will further advance biologic, clinical, and toxicologic endeavors with the aid of miniaturized, more sensitive devices. Miniaturized table-top laboratory equipment incorporating additional innovative technologies can lead to new advances, including micro total analysis systems (microTAS) or "lab-on-a-chip" and "sentinel sensor" devices. This review will highlight several devices, which have been made possible by techniques originating in the microelectronics industry. These devices can be used for toxicologic assessment of cellular structures and functions, such as cellular adhesion, signal transduction, motility, deformability, metabolism, and secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号