首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Ke J  Schmidt T  Chase E  Bozarth RF  Smith TJ 《Virology》2004,321(2):349-358
Cowpea mottle virus (CPMoV) is a T = 3 virus that belongs to Carmovirus genus of the Tombusviridae family. Here, we report the crystal structure of CPMoV determined to a resolution of 7.0 angstroms. The structures and sequences of three Carmoviruses, CPMoV, Turnip crinkle virus (TCV), and Carnation mottle virus (CarMV) have been compared to TBSV from the Tombusvirus genus. CPMoV, TCV, and CarMV all have a deletion in betaC strand in the S domain relative to TBSV that may be distinctive to the genus. Although CPMoV has an elongated C-terminus like TBSV, it does not interact with the icosahedrally related P domain as observed in TBSV. In CPMoV, the termini of A and B interact with the icosahedrally related shell domains of A and C, respectively, to form a chain of interactions around the 5-fold axes. The C subunit terminus does not, however, interact with the B subunit because of quasi-equivalent differences in the P domain orientations.  相似文献   

2.
3.
We identified a new member of the Tetraviridae, Providence virus (PrV), persistently infecting a midgut cell line derived from the corn earworm (Helicoverpa zea). Virus purified from these cells also productively infected a H. zea fat body cell line, and a cell line from whole embryos of the beet armyworm, Spodoptera exigua. PrV is thus the first tetravirus shown to replicate in cell culture. PrV virions are isometric particles composed of two structural proteins (60 and 7.4 kDa) that encapsidate both the genomic (6.4 kb) and the subgenomic (2.5 kb) RNAs. The monopartite organization of the PrV genome resembles that of Nudaurelia beta virus and Thosea asigna virus, members of the genus Betatetravirus. The predicted sequence of the PrV structural proteins demonstrates homology to tetraviruses in both genera. The infectivity of PrV for cultured cells uniquely permitted examination of tetravirus RNA and protein synthesis during synchronous infection. The discovery of PrV greatly facilitates studies of tetravirus molecular biology.  相似文献   

4.
5.
Beet soil-borne mosaic virus (BSBMV), like Beet necrotic yellow vein virus (BNYVV), is a member of the Benyvirus genus and both are transmitted by Polymyxa betae. Both viruses possess a similar genomic organization: RNA-1 and -2 are essential for infection and replication while RNA-3 and -4 play important roles in disease development and vector-mediated infection in sugar beet roots. We characterized a new species of BSBMV RNA-4 that encodes a 32 kDa protein and a chimeric form of BSBMV RNA-3 and -4. We demonstrated that BSBMV RNA-4 can be amplified by BNYVV RNA-1 and -2 in planta, is involved in symptoms expression on Chenopodium quinoa plants and can also complement BNYVV RNA-4 for virus transmission through its vector P. betae in Beta vulgaris plants. Using replicon-mediated expression, we demonstrate for the first time that a correct expression of RNAs-4 encoded proteins is essential for benyvirus transmission.  相似文献   

6.
The Tetraviridae is a family of non-enveloped positive-stranded RNA insect viruses that is defined by the T = 4 symmetry of virions. We report the complete Euprosterna elaeasa virus (EeV) genome sequence of 5698 nt with no poly(A) tail and two overlapping open reading frames, encoding the replicase and capsid precursor, with ∼67% amino acid identity to Thosea asigna virus (TaV). The N-terminally positioned 17 kDa protein is released from the capsid precursor by a NPGP motif. EeV has 40 nm non-enveloped isometric particles composed of 58 and 7 kDa proteins. The 3′-end of TaV/EeV is predicted to form a conserved pseudoknot. Replicases of TaV and EeV include a newly delineated VPg signal mediating the protein priming of RNA synthesis in dsRNA Birnaviridae. Results of rooted phylogenetic analysis of replicase and capsid proteins are presented to implicate recombination between monopartite tetraviruses, involving autonomization of a sgRNA, in the emergence of bipartite tetraviruses. They are also used to revise the Tetraviridae taxonomy.  相似文献   

7.
Infections due to Candida parapsilosis have been associated with the ability of this fungus to form biofilms on indwelling medical devices. Recently, C. parapsilosis isolates were reclassified into 3 genetically non-identical classes: C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Little information is available regarding the ability of these newly reclassified species to form biofilms on biomedical substrates. In this study, we characterized biofilm formation by 10 clinical isolates each of C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Biofilms were allowed to form on silicone elastomer discs to early (6 h) or mature (48 h) phases and quantified by tetrazolium (XTT) and dry weight assays. Surface topography and three-dimensional architecture of the biofilms were visualized using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), respectively. Metabolic activity assay revealed strain-dependent biofilm forming ability of the 3 species tested, while biomass determination revealed that all 3 species formed equivalent biofilms (P>0.05 for all comparisons). SEM analyses of representative isolates of these species showed biofilms with clusters of yeast cells adherent to the catheter surface. Additionally, confocal microscopy analyses showed the presence of cells embedded in biofilms ranging in thickness between 62 and 85 μm. These results demonstrate that similar to C. parapsilosis, the 2 newly identified Candida species (C. orthopsilosis and C. metapsilosis) were able to form biofilms.  相似文献   

8.
9.
A virus was isolated from potted plants of an unidentified species of Aeonium, a succulent ornamental very common in Southern Italy, showing chlorotic spots and rings on both leaf surfaces. It was successfully transmitted by sap inoculation to a limited range of hosts, including Nicotiana benthamiana which was used for ultrastructural observations and virus purification. Virus particles are isometric, ca. 30 nm in diameter, have a single type of coat protein (CP) subunits 54 kDa in size, that encapsidate single-stranded positive-sense RNA species of 7549 (RNA1) and 4010 (RNA2) nucleotides. A third RNA molecule 3472 nts in size entirely derived from RNA2 was also found. The structural organization of both genomic RNAs and the cytopathological features were comparable to those of nepoviruses. In addition, amino acid sequence comparisons of CP and the Pro-Pol region (a sequence containing parts of the proteinase and polymerase) with those of other nepoviruses showed that the Aeonium virus belongs to the subgroup A of the genus Nepovirus and is phylogenetically close to, but serologically distinct from tobacco ringspot virus (TRSV). Based on the species demarcation criteria for the family Secoviridae, the virus under study appears to be a novel member of the genus Nepovirus for which the name of Aeonium ringspot virus (AeRSV) is proposed.  相似文献   

10.
We have surveyed the morphological diversity of viruses infecting the archaeon Aeropyrum pernix, the most thermophilic species among aerobic organisms, growing optimally at 90 °C, and isolated and characterized a novel virus, Aeropyrum pernix bacilliform virus 1, APBV1. This is the first virus to be described of the genus Aeropyrum and the archaeal order Desulfurococcales. The virion of APBV1 has rigid bacilliform morphology, about 140 × 20 nm, with one end pointed and the other rounded. It contains highly glycosylated single major protein and three minor proteins. The circular, double-stranded DNA genome comprising 5278 bp is the smallest for known archaeal viruses. None of the 14 putative genes, all on the same DNA strand, shows significant similarity to sequences in the public databases. The APBV1 infection caused neither retardation of host growth nor lysis of host cells, and integration of the viral genome into the host chromosome was not detected. On the basis of unusual morphological and genomic properties, we propose to consider APBV1 as the first representative of a new viral family, the Clavaviridae.  相似文献   

11.
We report the discovery of a new virus from the red imported fire ant, Solenopsis invicta. Solenopsis invicta virus 3 (SINV-3) represents the third virus discovered from this ant species using the metagenomics approach. The single (positive)-strand RNA, monopartite, bicistronic genome of SINV-3 was sequenced in entirety (GenBank accession number FJ528584), comprised of 10,386 nucleotides, and polyadenylated at the 3′ terminus. This genome size was confirmed by Northern analysis. The genome revealed 2 large open reading frames (ORFs) in the sense orientation with an untranslated region (UTR) at each end and between the two ORFs. The 5′ proximal ORF (ORF 1) encoded a predicted protein of 299.1 kDa (2580 amino acids). The 3′ proximal ORF (ORF 2) encoded a predicted protein of 73.2 kDa (651 amino acids). RNA-dependent RNA polymerase (RdRp), helicase, and protease domains were recognized in ORF 1. SDS-PAGE separation of purified SINV-3 particles yielded 2 bands (ostensibly capsid proteins) with a combined molecular mass of 77.3 kDa which was similar to the mass predicted by ORF 2 (73.2 kDa). Phylogenetic analysis of the conserved amino acid sequences containing domains I to VIII of the RdRp from dicistroviruses, iflaviruses, plant small RNA viruses, picornaviruses, and 4 unassigned positive-strand RNA viruses revealed a trichotomous phenogram with SINV-3 and Kelp fly virus comprising a unique cluster. Electron microscopic examination of negatively stained samples of SINV-3 revealed isometric particles with apparent projections and a diameter of 27.3 ± 1.3 nm. SINV-3 was successfully transmitted to uninfected workers by feeding. The minus (replicative) strand of SINV-3 was detected in worker ants indicating replication of the virus. The possibility of using SINV-3 as a microbial control agent for fire ants is discussed.  相似文献   

12.
Trypanosomatids are unicellular parasites living in a wide range of host environments, which to large extent shaped their mitochondrial energy metabolism, resulting in quite large differences even among closely related flagellates. In a comparative manner, we analyzed the activities and composition of mitochondrial respiratory complexes in four species (Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and Trypanosoma brucei), which represent the main model trypanosomatids. Moreover, we measured the activity of mitochondrial glycerol-3-phosphate dehydrogenase, the overall oxygen consumption and the mitochondrial membrane potential in each species. The comparative analysis suggests an inverse relationship between the activities of respiratory complexes I and II, as well as the overall activity of the canonical complexes and glycerol-3-phosphate dehydrogenase. Our comparative analysis shows that mitochondrial functions are highly variable in these versatile parasites  相似文献   

13.
Recent reports indicate that flaviviruses similar to the cell fusing agent virus (CFAV) naturally infect a wide variety of mosquito species. These newly recognized insect-specific viruses comprise a distinct CFAV complex within the genus Flavivirus. Here, we describe the isolation and characterization of nine strains of Culex flavivirus (Cx FV), a member of the CFAV complex, from mosquitoes collected in the United States (East Texas) and Trinidad. Phylogenetic analyses of the envelope protein gene sequences of these nine mosquito isolates with those of other CFAV complex flaviviruses in GenBank indicate that the U.S. isolates group with CxFV isolates from Asia (Japan and Indonesia), while the Trinidad isolates are more similar to CxFV isolates from Central America. A discussion follows on the possible biological significance of the CFAV complex flaviviruses.  相似文献   

14.
15.
Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV) belong to the Benyvirus genus. BSBMV has been reported only in the United States, while BNYVV has a worldwide distribution. Both viruses are vectored by Polymyxa betae and possess similar host ranges, particle number and morphology. BNYVV and BSBMV are not serologically related but they have similar genomic organizations. Field isolates usually consist of four RNA species but some BNYVV isolates contain a fifth RNA. RNAs 1 and 2 are essential for infection and replication while RNAs 3 and 4 play important roles in plant and vector interactions, respectively. Nucleotide and amino acid analyses revealed that BSBMV and BNYVV are sufficiently different to be classified as two species. Complementary base changes found within the BSBMV RNA-3 5′ UTR made it resemble to BNYVV 5′ RNA-3 structure whereas the 3′ UTRs of both species were more conserved. cDNA clones were obtained, and allowed complete copies of BSBMV RNA-3 to be trans-replicated, trans-encapsidated by the BNYVV viral machinery. Long-distance movement was observed indicating that BSBMV RNA-3 could substitute BNYVV RNA-3 for systemic spread, even though the p29 encoded by BSBMV RNA-3 is much closer to the RNA-5-encoded p26 than to BNYVV RNA-3-encoded p25. Competition occurred when BSBMV RNA-3-derived replicons were used together with BNYVV-derived RNA-3 but not when the RNA-5-derived component was used. Exploitation of the similarities and divergences between BSBMV and BNYVV should lead to a better understanding of molecular interactions between Benyviruses and their hosts.  相似文献   

16.

Background

JK1 is a novel cancer-related gene with unknown functional role in carcinogenesis. The aim of this study is to investigate the role of JK1 gene in carcinogenesis in an in vitro cell proliferation and migration analysis model.

Methods

Small hairpin RNAs (shRNA) were designed to knock-down JK1 expression in colon cancer cell line (SW480) using transduction ready lentiviral particles. Cell proliferation and cell migration assays were performed on multiple extracellular matrices to investigate the cellular effects of JK1 in colon cancer cells. A non-cancer colonic epithelial cell line (FHC) was used to compare the expression of JK1 in cancer cell line.

Results

JK1 knock-down did not affect cellular proliferation or survival in colon cancer. However, the manipulation increased cancer cell migration rates on collagen and fibronectin substrates.

Conclusions

JK1 was shown for the first time to have a functional role in the pathogenesis of colon cancer. The results imply that JK1 represses the capacity of cancer cells to migrate within their tissue. They also concurred with the previous findings of JK1 activity correlations with clinical and pathological features in colon cancer. The capacity may have utility as a means to prevent cancer cells forming metastases.  相似文献   

17.
The retroviral genus Lentivirus comprises retroviruses characterised from five mammalian orders. Lentiviruses typically undergo rapid rates of evolution, a feature that has allowed recent evolutionary relationships to be elucidated, but has also obscured their distant evolutionary past. However, the slowdown in the rate of evolution associated with genome invasion, as has occurred in the European rabbit, enables longer-term lentiviral evolutionary history to be inferred. Here we report the identification of orthologous RELIK proviruses in the European hare, demonstrating a minimum age of 12 million years for the lagomorph lentiviruses. This finding indicates an association between lentiviruses and their hosts covering much of the evolutionary history of the lagomorphs, and taking place within species with a worldwide distribution.  相似文献   

18.
The complete nucleotide sequence of a novel single-stranded RNA virus infecting the glassy-winged sharpshooter, Homalodisca coagulata, has been determined. In silico analysis of H. coagulata virus-1 (HoCV-1) revealed a 9321-nt polyadenylated genome encoding two large open reading frames (ORF1 and ORF2) separated by a 182-nt intergenic region (IGR). The deduced amino acid sequence of the 5'-proximal ORF (ORF1, nt 420-5807) exhibited conserved core motifs characteristic of the helicases, cysteine proteases, and RNA-dependent RNA polymerases of other insect-infecting picorna-like viruses. A structural model created using Mfold exposed a series of stem loop (SL) structures immediately preceding the second ORF which are analogous to an internal ribosome entry site (IRES), suggesting that ORF2 begins with a noncognate GCA triplet rather than the canonical AUG. This 3' ORF2 (5990-8740) showed significant similarity to the structural proteins of members of the family Dicistroviridae, particularly those belonging to the genus Cripavirus. Evidence demonstrating relatedness of these viruses regarding genome organization, amino acid sequence similarity, and putative replication strategy substantiate inclusion of HoCV-1 into this taxonomic position.  相似文献   

19.
Yellow head virus (YHV) is one of the most widespread viruses seriously affecting black tiger shrimp (Penaeus monodon) cultivation. A previous microarray study demonstrated that clathrin coat assembly protein 17 (AP17) was significantly up-regulated after YHV infection (Pongsomboon et al., 2011). Clathrin coat AP17 is a part of the assembly protein σ2 (AP-2) complex which is involved in clathrin-mediated endocytosis. Quantitative RT-PCR (qRT-PCR) revealed that the clathrin coat AP17 gene was up-regulated 3-fold at 12 h post YHV infection. In addition, immunofluorescence microscopy showed that clathrin coat AP17 was highly expressed in the cytoplasm of the YHV-infected hemocytes. Knockdown of the clathrin coat AP17 gene dramatically reduced YHV replicativity by 32-fold. Interestingly, shrimp pre-treated with chlorpromazine, a commercial drug that inhibits clathrin-dependent endocytosis, exhibited significantly low levels of YHV infection. Taken together, these results suggest that clathrin-mediated endocytosis is involved in YHV propagation in P. monodon.  相似文献   

20.
The hexanucleotide repeat expansion (GGGGCC) in chromosome 9 open-reading frame 72 (C9orf72) and mutations in the microtubule-associated protein tau (MAPT) and progranulin (GRN) genes are known to be associated with the main causes of familial or sporadic amyotrophic lateral sclerosis and frontotemporal dementia (FTD) in Western populations. These genetic abnormalities have rarely been studied in Asian FTD populations. We investigated the frequencies of mutations in MAPT and GRN and the C9orf72 abnormal expansion in 75 Korean FTD patients. Two novel missense variants of unknown significance in the MAPT and GRN were detected in each gene. However, neither abnormal C9orf72 expansion nor pathogenic MAPT or GRN mutation was found. Our findings indicate that MAPT, GRN, and C9orf72 mutations are rare causes of FTD in Korean patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号