首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Epidermal Langerhans cells (LC) are immature dendritic cells (DC) located in close proximity to the site of inoculation of infectious Leishmania major metacyclic promastigotes by sand flies. Using LC-like DC expanded from C57BL/6 fetal skin, we characterized interactions involving several developmental stages of Leishmania and DC. We confirmed that L. major amastigotes, but not promastigotes, efficiently entered LC-like DC. Parasite internalization was associated with activation manifested by upregulation of major histocompatibility complex (MHC) class I and II surface antigens, increased expression of costimulatory molecules (CD40, CD54, CD80, and CD86), and interleukin (IL)-12 p40 release within 18 h. L. major–induced IL-12 p70 release by DC required interferon γ and prolonged (72 h) incubation. In contrast, infection of inflammatory macrophages (Mφ) with amastigotes or promastigotes did not lead to significant changes in surface antigen expression or cytokine production. These results suggest that skin Mφ and DC are infected sequentially in cutaneous leishmaniasis and that they play distinct roles in the inflammatory and immune response initiated by L. major. Mφ capture organisms near the site of inoculation early in the course of infection after establishment of cellular immunity, and kill amastigotes but probably do not actively participate in T cell priming. In contrast, skin DC are induced to express increased amounts of MHC antigens and costimulatory molecules and to release cytokines (including IL-12 p70) by exposure to L. major amastigotes that ultimately accumulate in lesional tissue, and thus very likely initiate protective T helper cell type 1 immunity.  相似文献   

2.
It has been shown that the stromal-cell population found in bone marrow can be expanded and differentiated into cells with the phenotypes of bone, cartilage, muscle, neural, and fat cells. However, whether mesenchymal stem cells (MSCs) are present in human umbilical-cord blood (UCB) has been the subject of ongoing debate. In this study, we report on a population of fibroblastlike cells derived from the mononuclear fraction of human UCB with osteogenic and adipogenic potential, as well as the presence of a subset of cells that have been maintained in continuous culture for more than 6 months. These cells were found to express CD29, CD44, CD90, CD95, CD105, CD166, and MHC class, but not CD14, CD34, CD40, CD45, CD80, CD86, CD117, CD152, or MHC class II. We also compared gene expression after gene transfer using lenti- and adenoviral vectors carrying the green fluorescence protein to the MSCs derived from UCB because a reliable gene-delivery system is required to transfer target genes into MSCs, which have attracted attention as potential platforms for the systemic delivery of therapeutic genes. The lentiviral vectors can transduce these cells more efficiently than can adenoviral vectors, and we maintained transgene expression for at least 5 weeks. This is the first report showing that UCB-derived MSCs can express exogenous genes by way of a lentivirus vector. These results demonstrate that human UCB is a source of mesenchymal progenitors and may be used in cell transplantation and a wide range of gene-therapy treatments.  相似文献   

3.
4.

Objective

Statin pleiotropy is still an evolving concept, and the lack of clarity on this subject is due at least in part to the lack of a definitive biomarker for statin pleiotropy. Using plasma mRNA analysis as a novel research tool for the non-invasive in vivo assessment of gene expression in vascular beds, we hypothesised that atorvastatin lowers the plasma mRNA level from statin pleiotropy-target genes, and the reduction is independent of the reduction of low-density lipoprotein cholesterol (LDL-C).

Design and methods

Forty-four patients with stable angina received atorvastatin therapy (20 mg/day, 10 weeks). Plasma chemokine (C-C motif) ligand 2 (CCL2) and intercellular adhesion molecule-1 (ICAM1) mRNA levels and their protein concentrations (MCP-1, sICAM-1) were analysed before and after the treatment. Plasma vascular adhesion molecule-1 (sVCAM-1) concentrations were also analysed.

Results

Atorvastatin lowered plasma mRNA levels (CCL2: − 31.76%, p = 0.037; ICAM1: − 34.09%, p < 0.001) and MCP-1 protein concentration (− 18.88%, p = 0.008) but did not lower sICAM-1 and sVCAM-1 protein concentrations, and the decreases appeared to be independent from the lowering of LDL-C. The plasma mRNA levels correlated with their protein concentrations following statin treatment only.

Conclusion

Our results significantly strengthen the clinical evidence in support of statin pleiotropy. Furthermore, this unique simultaneous measurement of plasma mRNAs and their protein concentrations offers an advanced non-invasive in vivo assessment of the circulation pathology.  相似文献   

5.
Glomerular podocytes play a key role in maintaining the integrity of the glomerular filtration barrier. This function may be regulated by angiotensin II (Ang II) through activation of cell-surface receptors. Although studies suggest that podocytes express receptors for Ang II, the Ang II binding site has not been characterized with radioligand binding techniques. We therefore used iodine 125-labeled Ang II to monitor Ang II-receptor density during differentiation of a mouse podocyte cell line. Scatchard analyses of equilibrium binding data revealed a single class of high-affinity binding sites (dissociation constant approximately 3 nmol/L) in both differentiated and nondifferentiated cells. During differentiation, the density of Ang II-receptor sites increased roughly 15-fold in differentiated podocytes (maximal density of specific binding sites 881 fmol/mg protein) compared with that in nondifferentiated cells (52 fmol/mg protein; P<.005). Glomerular podocytes expressed messenger RNA for AT1A, AT1B, and AT2 receptor subtypes, and competitive binding studies found that differentiated podocytes expressed mostly AT1 receptors (approximately 75%) with lesser amounts of AT2 (approximately 25%). Up-regulation of Ang II-receptor number was associated with increased Ang II-receptor responsiveness, as evidenced by enhanced Ang II-stimulated inositol phosphate (IP) generation and incorporation of tritiated thymidine. Both [3H]thymidine incorporation and IP generation were mediated by AT1-receptor activation. These data suggest that glomerular podocytes express a high-affinity binding site for Ang II with pharmacologic characteristics of both AT1 and AT2 receptors. This receptor site is up-regulated during podocyte differentiation, and receptor activation induces both IP generation and DNA synthesis by AT1-dependent mechanisms. We speculate that activation of podocyte Ang II receptors contributes to glomerular damage in disease states.  相似文献   

6.
Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response.In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality.  相似文献   

7.
Previously, we reported that oxycodone is a putative kappa-opioid agonist based on studies where intracerebroventricular (i.c.v.) pre-treatment of rats with the kappa-selective opioid antagonist, nor-binaltorphimine (nor-BNI), abolished i.c.v. oxycodone but not morphine antinociception, whereas pretreatment with i.c.v. naloxonazine (mu-selective antagonist) produced the opposite effects. In the present study, we used behavioural experiments in rat models of mechanical and biochemical nerve injury together with radioligand binding to further examine the pharmacology of oxycodone. Following chronic constriction injury (CCI) of the sciatic nerve in rats, the antinociceptive effects of intrathecal (i.t.) oxycodone, but not i.t. morphine, were abolished by nor-BNI. Marked differences were found in the antinociceptive properties of oxycodone and morphine in streptozotocin (STZ)-diabetic rats. While the antinociceptive efficacy of morphine was abolished at 12 and 24 weeks post-STZ administration, the antinociceptive efficacy of s.c. oxycodone was maintained over 24 weeks, albeit with an approximately 3- to 4-fold decrease in potency. In rat brain membranes irreversibly depleted of mu- and delta-opioid binding sites, oxycodone displaced [(3)H]bremazocine (kappa(2)-selective in depleted membranes) binding with relatively high affinity whereas the selective mu- and delta-opioid ligands, CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2)) and DPDPE ([D-Pen(2,5)]-enkephalin), respectively, did not. In depleted brain membranes, the kappa(2b)-ligand, leu-enkephalin, prevented oxycodone's displacement of high-affinity [(3)H]bremazocine binding, suggesting the notion that oxycodone is a kappa(2b)-opioid ligand. Collectively, the present findings provide further support for the notion that oxycodone and morphine produce antinociception through distinctly different opioid receptor populations. Oxycodone appears to act as a kappa(2b)-opioid agonist with a relatively low affinity for mu-opioid receptors.  相似文献   

8.
Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson's disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson's patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized antiparkinsonian drug therapy, namely the existence of (hetero)dimers/oligomers of G protein-coupled receptors, a topic that is currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs.  相似文献   

9.
Progranulin (PGRN) is abundantly expressed in epithelial cells, immune cells, neurons, and chondrocytes, and reportedly contributes to tumorigenesis. PGRN is a crucial mediator of wound healing and tissue repair. PGRN also functions as a neurotrophic factor and mutations in the PGRN gene resulting in partial loss of the PGRN protein cause frontotemporal dementia. PGRN has been found to be a novel chondrogenic growth factor and to play an important role in cartilage development and inflammatory arthritis. Although research has shown that PGRN exhibits anti-inflammatory properties, the details about the exact molecular pathway of such effects, and, in particular, the PGRN binding receptor, have not been identified so far. Recently, researchers have shown that PGRN binds to tumor necrosis factor (TNF)-receptors (TNFR), interfering with the interaction between TNFα and TNFR. They further demonstrated that mice deficient in PGRN are susceptible to collagen-induced arthritis, an experimental model of rheumatoid arthritis, and that administration of PGRN reversed the arthritic process. An engineered protein made of three PGRN fragments (Atsttrin), displayed selective TNFR binding and was more active than natural PGRN. Both PGRN and Atsttrin prevented inflammation in various arthritis mouse models and inhibited TNFα-induced intracellular signaling pathways. Thus, PGRN is a key regulator of inflammation and it may mediate its anti-inflammatory effects, at least in part, by blocking TNF binding to its receptors. As we discuss here, TNFR-based interventions may both stimulate and suppress the growth of cancer cells, and the same may be true in analogy for Atsttrin as a new player.  相似文献   

10.
BACKGROUND: Inflammation and endothelial dysfunction are prominent in preeclampsia. Microparticles (MPs) may link these processes, as MPs induce the production of pro-inflammatory cytokines by endothelial cells and cause endothelial dysfunction. AIM: To study changes in expression of inflammation-related genes in human endothelial cells in response to MPs from preeclamptic patients. METHODS: Human umbilical vein endothelial cells (HUVECs) were incubated for various time intervals in the absence or presence of isolated MP fractions from preeclamptic patients (n = 3), normotensive pregnant women (n = 3), non-pregnant controls (n = 3), and interleukin (IL)-1alpha as a positive control. Total RNA was isolated and used for multiplex ligation-dependent probe amplification (MLPA) and real-time polymerase chain reaction (PCR). RESULTS: IL-1alpha enhanced the expression of IL-1alpha, IL-2, IL-6, and IL-8; nuclear factor of kappa light chain enhancer in B-cells (NFkappaB)-1, NFkappaB-2, and NFkappaB-inhibitor; cyclin-dependent kinase inhibitor and monocyte chemotactic protein-1; and transiently increased tissue factor expression. RNA expression of inflammation-related genes and genes encoding adhesion receptors, however, were unaffected by any of the MP fractions tested. CONCLUSION: MLPA is a suitable assay to test the inflammatory status of endothelial cells, because incubation with IL-1alpha triggered substantial changes in RNA expression in endothelial cells. Taken together, it seems unlikely that MPs from preeclamptic patients induce endothelial dysfunction by directly affecting the expression of inflammation-related genes in these cells.  相似文献   

11.
12.
Spinal cord injury (SCI) is one of the major disabilities dealt with in clinical rehabilitation settings and is multifactorial in that the patients suffer from motor and sensory impairments as well as many other complications throughout their lifetimes. Many clinical trials have been documented during the last two decades to restore damaged spinal cords. However, only a few pharmacological therapies used in clinical settings which still have only limited effects on the regeneration and functional recovery. This review presents recent clinical trials and recent advances in the development of strategies to restore locomotion after SCI. Several approaches toward functional recovery in SCI succeeded in acute and subacute phases in animal models.However, effective strategies against chronic phase of SCI have not been established yet. The strategy aiming to inhibit single molecule sometimes shows controversial results. In SCI, a lot of players participate in motor and sensory dysfunctions. Therefore, sufficient functional recovery may be achieved by regulating multiple targets. Regrowth of tracts connecting the brain and spinal cord, and axonal sprouting of propriospinal interneurons are fundamentally important for neuronal network working. In addition, remyelination, protection of neuronal death, inhibition of inflammation, and upregulation of beneficial influence of astrocytes are also quite crucial to supporting the axonal refining. Combination of several strategies might be useful as practical therapy. Several compounds such as a Sema3A inhibitor, estrogen, withanoside IV and their relating compounds or other neurotrophic factor-mimicking agents may be candidates for useful SCI therapeutic drugs since those have multi-effects on damaged spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号