首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Null cyclic beta-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abortus S19 cgs mutant was completely cleared from the spleens of mice after 4 weeks, while the 2308 mutant showed a 1.5-log reduction of the number of brucellae isolated from the spleens after 12 weeks. These results suggest that cyclic beta-1,2-glucan plays an important role in the residual virulence of the attenuated B. abortus S19 strain. Although the cgs mutant was cleared from the spleens earlier than the wild-type parental strain (B. abortus S19) and produced less inflammatory response, its ability to confer protection against the virulent strain B. abortus 2308 was fully retained. Equivalent levels of induction of spleen gamma interferon mRNA and anti-lipopolysaccharide (LPS) of immunoglobulin G2a (IgG2a) subtype antibodies were observed in mice injected with B. abortus S19 or the cgs mutant. However, the titer of anti-LPS antibodies of the IgG1 subtype induced by the cgs mutant was lower than that observed with the parental S19 strain, thus suggesting that the cgs mutant induces a relatively exclusive Th1 response.  相似文献   

2.
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not fully understood yet. Furthermore, genes that allow Brucella to reach the intracellular niche and to interact with host cells need to be identified. Using the genomic survey sequence (GSS) approach, we identified the gene encoding an ATP-binding cassette (ABC) transporter of B. abortus strain S2308. The deduced amino acid sequence encoded by this gene exhibited 69 and 67% identity with the sequences of the ABC transporters encoded by the exsA genes of Rhizobium meliloti and Mesorhizobium loti, respectively. Additionally, B. abortus ExsA, like R. meliloti and M. loti ExsA, possesses ATP-binding motifs and the ABC signature domain features of a typical ABC transporter. Furthermore, ortholog group analysis placed B. abortus ExsA in ortholog group 6 of ABC transporters more likely to be involved in bacterial pathogenesis. In R. meliloti, ExsA is an exopolysaccharide transporter essential for alfalfa root nodule invasion and establishment of infection. To test the role of ExsA in Brucella pathogenesis, an exsA deletion mutant was constructed. Replacement of the wild-type exsA by recombination was demonstrated by Southern blot analysis of Brucella genomic DNA. Decreased survival in mice of the Brucella DeltaexsA mutant compared to the survival of parental strain S2308 demonstrated that ExsA is critical for full bacterial virulence. Additionally, the B. abortus exsA deletion mutant was used as a live vaccine. Challenge experiments revealed that the exsA mutant strain induced superior protective immunity in BALB/c mice compared to the protective immunity induced by strain S19 or RB51.  相似文献   

3.
To help dissect the molecular basis of the Rhizobium-legume symbiosis, we used in vitro translation and Northern blot analysis of nodule RNA to examine alfalfa-specific genes (nodulins) expressed in two types of developmentally defective root nodules elicited by Rhizobium meliloti. Fix- nodules were elicited by R. meliloti nif mutants; these nodules were invaded by rhizobia and contained differentiated bacteroids. 'Empty' nodules were elicited by R. meliloti exo and ndv mutants and by Agrobacterium tumefaciens strains carrying the R. meliloti nod genes; these nodules contained a nodule meristem but lacked infection threads, intracellular bacteria, and bacteroids. Fix- nodules contained a spectrum of nodulins similar to wild-type nodules. In contrast, only two nodulins, Nms-30 and a nodulin homologous to ENOD2 of soybean, were detected in empty nodules. Although R. meliloti ndv and exo mutants elicited nodules with the same defective phenotype, ndv and exo mutants (except for exoC mutants) had distinct biochemical phenotypes. R. meliloti ndvA and ndvB mutants were deficient in cyclic glucan production but not the acidic exopolysaccharide; the converse was true for exoA, exoB, and exoF mutants. exoC mutants were defective in both exopolysaccharide and cyclic glucan biosynthesis. Our results support the model that the R. meliloti nod genes produce a signal that results in nodule meristem induction. Both the exopolysaccharide and cyclic glucan, however, appear to act at the next step in the developmental process and are involved in the production of a signal (or structure) that allows infection thread formation and invasion of the nodule.  相似文献   

4.
Brucella abortus actively secretes materials and uptakes nutrients to maintain the survival and multiplication of the bacteria in host cells. ATP-binding cassette (ABC) transporters can uptake or secrete diverse materials across the bacterial membrane, and thus, ABC transporters may be important for survival of the pathogen in the host. In the present study, the B. abortus genes encoding tandem repeated Brucella ATP-binding proteins, BapA and BapB, were identified. The deduced amino acid sequences of these two genes place BapA and BapB into group 6 containing RTX toxin transporters and cyclic beta-1,2-glucan transporters, one of 25 ABC transporter ortholog groups. One of the ortholog group 6 proteins, Haemophilus influenzae LktB, shows the highest similarity and identity with these two Brucella proteins. To test the role of these putative tandem repeated ABC transporters in Brucella pathogenesis, a bap deletion mutant was constructed and used to infect murine RAW 264.7 macrophages and mice. The number of cfu from RAW 264.7 cells and spleens of BALB/c mice infected with wild type or the bap deletion mutant was similar during the course of infection, suggesting the bap genes are not necessary to maintain the pathogenesis of B. abortus, or alternative compensatory mechanisms may exist to permit the intracellular survival of B. abortus in vitro and in vivo. This is the first molecular approach to investigate the role of putative ABC transporters classified into ortholog group 6 in Brucella pathogenesis.  相似文献   

5.
Brucella abortus is the etiological agent of brucellosis, a disease that affects bovines and human. We generated DNA random sequences from the genome of B. abortus strain 2308 in order to characterize molecular targets that might be useful for developing immunological or chemotherapeutic strategies against this pathogen. The partial sequencing of 1,899 clones allowed the identification of 1,199 genomic sequence surveys (GSSs) with high homology (BLAST expect value < 10(-5)) to sequences deposited in the GenBank databases. Among them, 925 represent putative novel genes for the Brucella genus. Out of 925 nonredundant GSSs, 470 were classified in 15 categories based on cellular function. Seven hundred GSSs showed no significant database matches and remain available for further studies in order to identify their function. A high number of GSSs with homology to Agrobacterium tumefaciens and Rhizobium meliloti proteins were observed, thus confirming their close phylogenetic relationship. Among them, several GSSs showed high similarity with genes related to nodule nitrogen fixation, synthesis of nod factors, nodulation protein symbiotic plasmid, and nodule bacteroid differentiation. We have also identified several B. abortus homologs of virulence and pathogenesis genes from other pathogens, including a homolog to both the Shda gene from Salmonella enterica serovar Typhimurium and the AidA-1 gene from Escherichia coli. Other GSSs displayed significant homologies to genes encoding components of the type III and type IV secretion machineries, suggesting that Brucella might also have an active type III secretion machinery.  相似文献   

6.
Smooth lipopolysaccharide (LPS) of Brucella abortus has been reported to be an important virulence factor, although its precise role in pathogenesis is not yet clear. While the protective properties of LPS against complement are well accepted, there is still some controversy about the capacity of rough mutants to replicate intracellularly. The B. abortus phosphoglucomutase gene (pgm) was cloned, sequenced, and disrupted. The gene has a high index of identity to Agrobacterium tumefaciens pgm but is not part of the glycogen operon. A B. abortus null mutant lacks LPS O antigen but has an LPS core with an electrophoretic profile undistinguishable from that of the wild-type core, suggesting that glucose, galactose, or a derivative of these sugars may be part of the linkage between the core and the O antigen. This mutant is unable to survive in mice but replicates in HeLa cells, indicating that the complete LPS is not essential either for invasion or for intracellular multiplication. This behavior suggests that the LPS may play a role in extracellular survival in the animal, probably protecting the cell against complement-mediated lysis, but is not involved in intracellular survival.  相似文献   

7.
The human fungal pathogen Candida albicans is able to change its shape in response to various environmental signals. We analyzed the C. albicans BIG1 homolog, which might be involved in beta-1,6-glucan biosynthesis in Saccharomyces cerevisiae. C. albicans BIG1 is a functional homolog of an S. cerevisiae BIG1 gene, because the slow growth of an S. cerevisiae big1 mutant was restored by introduction of C. albicans BIG1. CaBig1p was expressed constitutively in both the yeast and hyphal forms. A specific localization of CaBig1p at the endoplasmic reticulum or plasma membrane similar to the subcellular localization of S. cerevisiae Big1p was observed in yeast form. The content of beta-1,6-glucan in the cell wall was decreased in the Cabig1Delta strain in comparison with the wild-type or reconstituted strain. The C. albicans BIG1 disruptant showed reduced filamentation on a solid agar medium and in a liquid medium. The Cabig1Delta mutant showed markedly attenuated virulence in a mouse model of systemic candidiasis. Adherence to human epithelial HeLa cells and fungal burden in kidneys of infected mice were reduced in the Cabig1Delta mutant. Deletion of CaBIG1 abolished hyphal growth and invasiveness in the kidneys of infected mice. Our results indicate that adhesion failure and morphological abnormality contribute to the attenuated virulence of the Cabig1Delta mutant.  相似文献   

8.
To identify antigens of Brucella spp. that are potentially involved in stimulating a protective T-cell-mediated immune response, previous studies identified 10 clones from a Brucella abortus 2308 genomic library with primed lymphocytes as probes. One selected positive clone (182) contained an insert of 1.2 kb which was identified, sequenced and characterised. The deduced amino acid sequence of the open reading frame (ORF) revealed 82% and 81% identity to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymes from Agrobacterium tumefaciens and Xanthobacter flavus, respectively. Southern blot analysis demonstrated that the gap gene is present in only one copy in the Brucella genome. B. abortus GAPDH was then expressed in Escherichia coli as a fusion protein with the maltose-binding protein (MBP). To demonstrate the functional activity of Brucella GAPDH, E. coli gap mutants were transformed with a Brucella pMAL-gap construct. Genetic complementation was achieved and as a result E. coli mutants were able to grow on glucose or other carbon source medium. The humoral and cellular immune responses to the recombinant (r) GAPDH were characterised. In Western blots, sera from naturally infected cattle and sheep showed antibody reactivity against rGAPDH. In response to in-vitro stimulation by rGAPDH, splenocytes from mice vaccinated with rGAPDH or B. abortus S19 were able to produce gamma-interferon and tumour necrosis factor-a but not interleukin (IL)-4. Furthermore, gap associated with murine IL-12 gene in a DNA vaccine formulation partially protected mice against experimental infection.  相似文献   

9.
Pathogenic brucella bacteria have developed strategies to persist for prolonged periods of time in host cells, avoiding innate immune responses. Here we show that the cyclic beta-1,2-glucans (CbetaG) synthesized by brucella is important for circumventing host cell defenses. CbetaG acted in lipid rafts found on host cell membranes. CbetaG-deficient mutants failed to prevent phagosome-lysosome fusion and could not replicate. However, when treated with purified CbetaG or synthetic methyl-beta-cyclodextrin, the mutants were able to control vacuole maturation by avoiding lysosome fusion, and this allowed intracellular brucella to survive and reach the endoplasmic reticulum. Fusion between the endoplasmic reticulum and the brucella-containing vacuole depended on the brucella virulence type IV secretion system but not on CbetaG. Brucella CbetaG is thus a virulence factor that interacts with lipid rafts and contributes to pathogen survival.  相似文献   

10.
11.
Vaccination against Brucella infections in animals is usually performed by administration of live attenuated smooth B. abortus strain S19 and B. melitensis strain Rev1. They are proven effective vaccines against B. abortus in cattle and against B. melitensis and B. ovis in sheep and goats, respectively. However, both vaccines have the main drawback of inducing O-polysaccharide-specific antibodies that interfere with serologic diagnosis of disease. In addition, they retain residual virulence, being a cause of abortion in pregnant animals and infection in humans. To overcome these problems, one approach is to develop defined rough mutant Brucella strains lacking O antigen of lipopolysaccharide. B. abortus rough strain RB51, a rifampin-resistant mutant of virulent strain B. abortus 2308, is used as a vaccine against B. abortus infection in cattle in some countries. However, RB51 is not effective in sheep, and there is only preliminary evidence that it is effective in goats. In this study, we tested the efficacies of six rifampin-resistant rough strains of B. melitensis in protecting BALB/c mice exposed to B. melitensis infection. The protective properties, as well as both humoral and cellular immune responses, were assessed in comparison with those provided by B. melitensis Rev1 and B. abortus RB51 vaccines. The results indicated that these rough mutants were able to induce a very good level of protection against B. melitensis infection, similar to that provided by Rev1 and superior to that of RB51, without inducing antibodies to O antigen. In addition, all B. melitensis mutants were able to stimulate good production of gamma interferon. The characteristics of these strains encourage further evaluation of them as alternative vaccines to Rev1 in primary host species.  相似文献   

12.
znuA is known to be an important factor for survival and normal growth under low Zn(2+) concentrations for Escherichia coli, Haemophilus spp., Neisseria gonorrhoeae, and Pasteurella multocida. We hypothesized that the znuA gene present in Brucella melitensis 16 M would be similar to znuA in B. abortus and questioned whether it may also be an important factor for growth and virulence of Brucella abortus. Using the B. melitensis 16 M genome sequence, primers were designed to construct a B. abortus deletion mutant. A znuA knockout mutation in B. abortus 2308 (DeltaznuA) was constructed and found to be lethal in low-Zn(2+) medium. When used to infect macrophages, DeltaznuA B. abortus showed minimal growth. Further study with DeltaznuA B. abortus showed that its virulence in BALB/c mice was attenuated, and most of the bacteria were cleared from the spleen within 8 weeks. Protection studies confirmed the DeltaznuA mutant as a potential live vaccine, since protection against wild-type B. abortus 2308 challenge was as effective as that obtained with the RB51 or S19 vaccine strain.  相似文献   

13.
14.
Brucella abortus clones identified previously using a green fluorescence protein reporter system after 4h macrophage infection provided insight regarding possible genes involved in early host-pathogen interaction. Among identified genes were an integrase/recombinase (xerD) gene involved in cell division, and a monofunctional biosynthesis peptidoglycan transglycosylase (mtgA) gene that catalyzes the final stages of the peptidoglycan membrane synthesis. Here, we evaluate the in vitro and in vivo survival of B. abortus xerD and mtgA insertional mutants. B. abortus xerD::kan and B. abortus mtgA::kan demonstrated no significant growth defects in broth culture when compared to the parental strain, S2308. Also, neither gene was required for B. abortus S2308 replication in RAW 264.7 macrophages. However, experimental evidence using interferon regulatory factor 1 knockout mice, a mouse strain highly susceptible to virulent Brucella, revealed that mice infected with B. abortus xerD::kan or B. abortus mtgA::kan survived longer than mice infected with S2308. Additionally, in immunocompetent BALB/c mice, B. abortus xerD::kan had a significantly lower level of bacterial survival when compared to S2308. Together, these results suggest that B. abortus xerD and mtgA genes play a role during the initial phase of infection in mice.  相似文献   

15.
Deletion of the BCSP31 gene of Brucella abortus by replacement.   总被引:3,自引:6,他引:3       下载免费PDF全文
The 31-kDa salt-extractable immunogenic protein, BCSP31, was deleted from several Brucella abortus strains by replacement with a marker gene encoding resistance to the antibiotics kanamycin and neomycin. The BCSP31 gene replacement plasmids, constructed with ColE1-derived vectors, were introduced by electroporation into B. abortus strain 19 (S19), into a rough variant of B. abortus S19, and into B. abortus S2308, and antibiotic-resistant transformants were isolated. B. abortus S19 is an attenuated strain used as a vaccine for prevention of bovine brucellosis in the United States, and B. abortus S2308 is a commonly used challenge strain. The antibiotic-resistant isolates were all obtained by recombination; none were spontaneous mutants. Loss of the gene encoding BCSP31 and presence of the marker gene were confirmed by Southern analysis. Vector sequences were either absent or linked to the genome, indicating that ColE1-derived plasmids are not maintained in B. abortus. Survival of B. abortus mutant strains in the macrophagelike cell line J774 and in HeLa cells was examined and shown to be indistinguishable from that of the parental strain.  相似文献   

16.
Previous findings indicate that Brucella antigens and those from nonpathogenic alphaproteobacteria (NPAP) are cross-recognized by the immune system. We hypothesized that immunization with NPAP would protect mice from Brucella infection. Mice were immunized subcutaneously with heat-killed Ochrobactrum anthropi, Sinorhizobium meliloti, Mesorhizobium loti, Agrobacterium tumefaciens, or Brucella melitensis H38 (standard positive control) before intravenous challenge with Brucella abortus 2308. Cross-reacting serum antibodies against Brucella antigens were detected at the moment of challenge in all NPAP-immunized mice. Thirty days after B. abortus challenge, splenic CFU counts were significantly lower in mice immunized with O. anthropi, M. loti, and B. melitensis H38 than in the phosphate-buffered saline controls (protection levels were 0.80, 0.66, and 1.99 log units, respectively). In mice immunized intraperitoneally with cytosoluble extracts from NPAP or Brucella abortus, protection levels were 1.58 for the latter, 0.63 for O. anthropi, and 0.40 for M. loti. To test whether the use of live NPAP would increase protection further, mice were both immunized and challenged by the oral route. Immunization with NPAP induced a significant increase in serum immunoglobulin G (IgG), but not serum or fecal IgA, against Brucella antigens. After challenge, anti-Brucella IgA increased significantly in the sera and feces of mice orally immunized with O. anthropi. For all NPAP, protection levels were higher than those obtained with systemic immunizations but were lower than those obtained by oral immunization with heat-killed B. abortus. These results show that immunization with NPAP, especially O. anthropi, confers partial protection against Brucella challenge. However, such protection is lower than that conferred by immunization with whole Brucella or its cytosoluble fraction.  相似文献   

17.
The Brucella AMOS PCR assay was previously developed to identify and differentiate specific Brucella species. In this study, an abbreviated Brucella AMOS PCR test was evaluated to determine its accuracy in differentiating Brucella abortus into three categories: field strains, vaccine strain 19 (S19), and vaccine strain RB51/parent strain 2308 (S2308). Two hundred thirty-one isolates were identified and tested by the conventional biochemical tests and Brucella AMOS PCR. This included 120 isolates identified as B. abortus S19, 9 identified as B. abortus strain RB51, 57 identified as B. abortus biovar 1, 15 identified as B. abortus bv. 2, 1 identified as B. abortus bv. 2 (M antigen dominant), 7 identified as B. abortus bv. 4, and 22 identified as B. abortus S2308 and isolated from experimentally infected cattle. The Brucella AMOS PCR correctly identified each isolate as RB51/S2308, S19, or a field strain of Brucella.  相似文献   

18.
Brucella abortus rough lipopolysaccharide (LPS) mutants were obtained by transposon insertion into two wbk genes (wbkA [putative glycosyltransferase; formerly rfbU] and per [perosamine synthetase]), into manB (pmm [phosphomannomutase; formerly rfbK]), and into an unassigned gene. Consistent with gene-predicted roles, electrophoretic analysis, 2-keto-3-manno-D-octulosonate measurements, and immunoblots with monoclonal antibodies to O-polysaccharide, outer and inner core epitopes showed no O-polysaccharide expression and no LPS core defects in the wbk mutants. The rough LPS of manB mutant lacked the outer core epitope and the gene was designated manB(core) to distinguish it from the wbk manB(O-Ag). The fourth gene (provisionally designated wa**) coded for a putative glycosyltransferase involved in inner core synthesis, but the mutant kept the outer core epitope. Differences in phage and polymyxin sensitivity, exposure or expression of outer membrane protein, core and lipid A epitopes, and lipid A acylation demonstrated that small changes in LPS core caused significant differences in B. abortus outer membrane topology. In mice, the mutants showed different degrees of attenuation and induced antibodies to rough LPS and outer membrane proteins. Core-defective mutants and strain RB51 were ineffective vaccines against B. abortus in mice. The mutants per and wbkA induced protection but less than the standard smooth vaccine S19, and controls suggested that anti O-polysaccharide antibodies accounted largely for the difference. Whereas no core-defective mutant was effective against B. ovis, S19, RB51, and the wbkA and per mutants afforded similar levels of protection. These results suggest that rough Brucella vaccines should carry a complete core for maximal effectiveness.  相似文献   

19.
Cells in the Brucella spp. are intracellular pathogens that survive and replicate within host monocytes. Brucella maintains persistent infections in animals despite the production of high levels of anti-Brucella-specific antibodies. To determine the effect of antibody opsonization on the ability of Brucella to establish itself within monocytes, the intracellular trafficking of virulent Brucella abortus 2308 and attenuated hfq and bacA mutants was followed in the human monocytic cell line THP-1. Early trafficking events of B. abortus 2308-containing phagosomes (BCP) were indistinguishable from those seen for control particles (heat-killed B. abortus 2308, live Escherichia coli HB101, or latex beads). All phagosomes transiently communicated the early-endosomal compartment and rapidly matured into LAMP-1(+), cathepsin D(+), and acidic phagosomes. By 2 h postinfection, however, the number of cathepsin D(+) BCP was significantly lower for live B. abortus 2308-infected cells than for either Brucella mutant strains or control particles. B. abortus 2308 persisted within these cathepsin D(-), LAMP-1(+), and acidic vesicles; however, at the onset of intracellular replication, the numbers of acidic B. abortus 2308 BCP decreased while remaining cathepsin D(-) and LAMP-1(+). In contrast to B. abortus 2308, the isogenic hfq and bacA mutants remained in acidic, LAMP-1(+) phagosomes and failed to initiate intracellular replication. Notably, markers specific for the host endoplasmic reticulum were absent from the BCPs throughout the course of the infection. Thus, opsonized B. abortus in human monocytes survives within phagosomes that remain in the endosomal pathway and replication of virulent B. abortus 2308 within these vesicles corresponds with an increase in intraphagosomal pH.  相似文献   

20.
Brucella spp. are the causative agents of brucellosis in many different hosts, including humans. Most of the serological methods of diagnosis are based on the detection of antilipopolysaccharide antibodies, which makes the differentiation of vaccinated animals from infected animals difficult. By using molecular biology techniques, a gene that encodes a 26-kDa protein (BP26) was isolated from a Brucella abortus S19 genome lambda gt11 library. This protein is in the periplasm of B. abortus and in transformed Escherichia coli. It is exported to the periplasm via a preprotein of 29 kDa with a signal sequence of 28 amino acids. The nucleotide and amino acid sequences of this gene and protein did not show any similarity with those of previously sequenced genes. The use of this protein in Western blotting allowed the differentiation between vaccinated bovines from infected bovines and the detection of infected rams: on the other hand, sera from human patients with active brucellosis were positive, while sera from human patients with chronic brucellosis or without clinical signs were nonreactive. BP26 might be of value as an antigen for serological diagnosis of brucellosis in different mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号