首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
Hermansky-Pudlak syndrome (HPS), a disorder of organelle biogenesis, affects lysosomes, melanosomes, and platelet dense bodies. Seven genes cause HPS in humans (HPS1-HPS7) and at least 15 nonallelic mutations cause HPS in mice. Where their function is known, the HPS proteins participate in protein trafficking and vesicle docking/fusion events during organelle biogenesis. HPS-associated genes participate in at least 4 distinct protein complexes: the adaptor complex AP-3; biogenesis of lysosome-related organelles complex 1 (BLOC-1), consisting of 4 HPS proteins (pallidin, muted, cappuccino, HPS7/sandy); BLOC-2, consisting of HPS6/ruby-eye, HPS5/ruby-eye-2, and HPS3/cocoa; and BLOC-3, consisting of HPS1/pale ear and HPS4/light ear. Here, we report the cloning of the mouse HPS mutation reduced pigmentation (rp). We show that the wild-type rp gene encodes a novel, widely expressed 195-amino acid protein that shares 87% amino acid identity with its human orthologue and localizes to punctate cytoplasmic structures. Further, we show that phosphorylated RP is part of the BLOC-1 complex. In mutant rp/rp mice, a premature stop codon truncates the protein after 79 amino acids. Defects in all the 5 known components of BLOC-1, including RP, cause severe HPS in mice, suggesting that the subunits are nonredundant and that BLOC-1 plays a key role in organelle biogenesis.  相似文献   

2.
Hermansky-Pudlak syndrome (HPS) is a disorder of organelle biogenesis affecting 3 related organelles-melanosomes, platelet dense bodies, and lysosomes. Four genes causing HPS in humans (HPS1-HPS4) are known, and at least 15 nonallelic mutations cause HPS in the mouse. Where their functions are known, the HPS-associated proteins are involved in some aspect of intracellular vesicular trafficking, that is, protein sorting and vesicle docking and fusion. Biochemical and genetic evidence indicates that the HPS-associated genes encode components of at least 3 distinct protein complexes: the adaptor complex AP-3; the HPS1/HPS4 complex; and BLOC-1 (biogenesis of lysosome-related organelles complex-1), consisting of the proteins encoded at 2 mouse HPS loci, pallid (pa) and muted (mu), and at least 3 other unidentified proteins. Here, we report the cloning of the mouse HPS mutation cappuccino (cno). We show that the wild-type cno gene encodes a novel, ubiquitously expressed cytoplasmic protein that coassembles with pallidin and the muted protein in the BLOC-1 complex. Further, we identify a frameshift mutation in mutant cno/cno mice. The C-terminal 81 amino acids are replaced with 72 different amino acids in the mutant CNO protein, and its ability to interact in BLOC-1 is abolished. We performed mutation screening of patients with HPS and failed to identify any CNO defects. Notably, although defects in components of the HPS1/HPS4 and the AP-3 complexes are associated with HPS in humans, no defects in the known components of BLOC-1 have been identified in 142 patients with HPS screened to date, suggesting that BLOC-1 function may be critical in humans.  相似文献   

3.
Hermansky-Pudlak syndrome (HPS) is a disorder of lysosome-related organelle biogenesis that displays genetic locus heterogeneity. The eight known HPS proteins combine in functional complexes, two of which are called BLOC-2 and BLOC-3; a BLOC is a Biogenesis of Lysosome-related Organelles Complex. Organelles affected in HPS include the melanosome, resulting in hypopigmentation, and the platelet delta (dense) granule, resulting in prolonged bleeding times. Whole mount electron microscopy (EM) detects the absence of platelet delta granules and confirms the diagnosis of HPS. To date, the status of other organelles and granules in HPS platelets has not been documented. We performed ultrastructural studies on platelets of patients with different genetic forms of HPS, specifically those comprising the BLOC-2 and BLOC-3 subtypes. No differences in distribution, size or quantity of other platelet organelles and membrane structures could be detected in our patients. Since alpha and delta granules are formed from multivesicular bodies in the megakaryocyte, and since only delta granules are defective in HPS, we conclude that HPS genes function within the portion of delta granule biogenesis that has diverged from that of alpha granules. Thus, it is unlikely that the generalized bleeding diathesis of HPS is attributed to a deficiency of alpha granules.  相似文献   

4.
Hermansky-Pudlak syndrome (HPS) is a disorder of lysosome-related organelle biogenesis that displays genetic locus heterogeneity. The eight known HPS proteins combine in functional complexes, two of which are called BLOC-2 and BLOC-3; a BLOC is a Biogenesis of Lysosome-related Organelles Complex. Organelles affected in HPS include the melanosome, resulting in hypopigmentation, and the platelet delta (dense) granule, resulting in prolonged bleeding times. Whole mount electron microscopy (EM) detects the absence of platelet delta granules and confirms the diagnosis of HPS. To date, the status of other organelles and granules in HPS platelets has not been documented. We performed ultrastructural studies on platelets of patients with different genetic forms of HPS, specifically those comprising the BLOC-2 and BLOC-3 subtypes. No differences in distribution, size or quantity of other platelet organelles and membrane structures could be detected in our patients. Since alpha and delta granules are formed from multivesicular bodies in the megakaryocyte, and since only delta granules are defective in HPS, we conclude that HPS genes function within the portion of delta granule biogenesis that has diverged from that of alpha granules. Thus, it is unlikely that the generalized bleeding diathesis of HPS is attributed to a deficiency of alpha granules.  相似文献   

5.
Defects in a triad of organelles (melanosomes, platelet granules, and lysosomes) result in albinism, prolonged bleeding, and lysosome abnormalities in Hermansky-Pudlak syndrome (HPS). Defects in HPS1, a protein of unknown function, and in components of the AP-3 complex cause some, but not all, cases of HPS in humans. There have been 15 inherited models of HPS described in the mouse, underscoring its marked genetic heterogeneity. Here we characterize a new spontaneous mutation in the mouse, cappuccino (cno), that maps to mouse chromosome 5 in a region conserved with human 4p15-p16. Melanosomes of cno/cno mice are immature and dramatically decreased in number in the eye and skin, resulting in severe oculocutaneous albinism. Platelet dense body contents (adenosine triphosphate, serotonin) are markedly deficient, leading to defective aggregation and prolonged bleeding. Lysosomal enzyme concentrations are significantly elevated in the kidney and liver. Genetic, immunofluorescence microscopy, and lysosomal protein trafficking studies indicate that the AP-3 complex is intact in cno/cno mice. It was concluded that the cappuccino gene encodes a product involved in an AP-3-independent mechanism critical to the biogenesis of lysosome-related organelles. (Blood. 2000;96:4227-4235)  相似文献   

6.
Abstract

Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by defective biogenesis of lysosome-related organelles. Clinical manifestations include a bleeding diathesis due to a platelet delta storage pool deficiency, oculocutaneous albinism, inflammatory bowel disease, neutropenia, and pulmonary fibrosis. Ten genes associated with HPS are identified to date, and each gene encodes a protein subunit of either Biogenesis of Lysosome-related Organelles Complex (BLOC)-1, BLOC-2, BLOC-3, or the Adaptor Protein-3 complex. Several genetic variants and phenotypic heterogeneities are reported in individuals with HPS, who generally exhibit easy bruisability and increased bleeding. Desmopressin, pro-coagulants, or platelet transfusion may be used as prophylaxis or treatment for excessive bleeding in patients with HPS. However, response to desmopressin can be variable. Platelets are effective in preventing or treating bleeding in individuals with HPS, but platelets should be transfused judiciously to limit alloimmunization in patients with HPS who are at risk of developing pulmonary fibrosis and may be potential candidates for lung transplantation. The discovery of new genes associated with HPS in people with excessive bleeding and hypopigmentation of unknown etiology may be facilitated by the use of next-generation sequencing or panel-based genetic testing.  相似文献   

7.
Meng R  Wang Y  Yao Y  Zhang Z  Harper DC  Heijnen HF  Sitaram A  Li W  Raposo G  Weiss MJ  Poncz M  Marks MS 《Blood》2012,120(2):404-414
Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.  相似文献   

8.
Hermansky-Pudlak syndrome (HPS) is an inherited hemorrhagic disease affecting the related subcellular organelles platelet dense granules, lysosomes, and melanosomes. The mouse genes for HPS, pale ear and pearl, orthologous to the human HPS1 and HPS2 (ADTB3A) genes, encode a novel protein of unknown function and the beta(3)A subunit of the AP-3 adaptor complex, respectively. To test for in vivo interactions between these genes in the production and function of intracellular organelles, mice doubly homozygous for the 2 mutant genes were produced by appropriate breeding. Cooperation between the 2 genes in melanosome production was evident in increased hypopigmentation of the coat together with dramatic quantitative and qualitative alterations of melanosomes of the retinal pigment epithelium and choroid of double mutant mice. Lysosomal and platelet dense granule abnormalities, including hyposecretion of lysosomal enzymes from kidneys and depression of serotonin concentrations of platelet dense granules were likewise more severe in double than single mutants. Also, lysosomal enzyme concentrations were significantly increased in lungs of double mutant mice. Interaction between the 2 genes was specific in that effects on organelles were confined to melanosomes, lysosomes, and platelet dense granules. Together, the evidence indicates these 2 HPS genes function largely independently at the whole organism level to affect the production and function of all 3 organelles. Further, the increased lysosomal enzyme levels in lung of double mutant mice suggest a cause of a major clinical problem of HPS, lung fibrosis. Finally, doubly mutant HPS mice are a useful laboratory model for analysis of severe HPS phenotypes.  相似文献   

9.
Platelet dense granules are lysosome-related organelles which contain high concentrations of several biologically important low-molecular-weight molecules. These include calcium, serotonin, adenine nucleotides, pyrophosphate, and polyphosphate, which are necessary for normal blood hemostasis. The synthesis of dense granules and other lysosome-related organelles is defective in inherited diseases such as Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS). HPS and CHS mutations in 8 human and at least 16 murine genes have been identified. Previous studies produced contradictory findings for the function of the murine ashen (Rab27a) gene in platelet-dense granules. We have used a positional cloning approach with one line of ashen mutants to establish that a new mutation in a second gene, Slc35d3, on mouse chromosome 10 is the basis of this discrepancy. The platelet-dense granule defect is rescued in BAC transgenic mice containing the normal Slc35d3 gene. Thus, Slc35d3, an orphan member of a nucleotide sugar transporter family, specifically regulates the contents of platelet-dense granules. Unlike HPS or CHS genes, it has no apparent effect on other lysosome-related organelles such as melanosomes or lysosomes. The ash-Roswell mouse mutant is an appropriate model for human congenital-isolated delta-storage pool deficiency.  相似文献   

10.
Summary  The study of protein–protein interactions is a powerful approach to uncovering the molecular function of gene products associated with human disease. Protein–protein interaction data are accumulating at an unprecedented pace owing to interactomics projects, although it has been recognized that a significant fraction of these data likely represents false positives. During our studies of biogenesis of lysosome-related organelles complex-1 (BLOC-1), a protein complex involved in protein trafficking and containing the products of genes mutated in Hermansky–Pudlak syndrome, we faced the problem of having too many candidate binding partners to pursue experimentally. In this work, we have explored ways of efficiently gathering high-quality information about candidate binding partners and presenting the information in a visually friendly manner. We applied the approach to rank 70 candidate binding partners of human BLOC-1 and 102 candidates of its counterpart from Drosophila melanogaster. The top candidate for human BLOC-1 was the small GTPase encoded by the RAB11A gene, which is a paralogue of the Rab38 and Rab32 proteins in mammals and the lightoid gene product in flies. Interestingly, genetic analyses in D. melanogaster uncovered a synthetic sick/lethal interaction between Rab11 and lightoid. The data-mining approach described herein can be customized to study candidate binding partners for other proteins or possibly candidates derived from other types of ‘omics’ data. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Competing interests: None declared References to electronic databases: Hermansky–Pudlak syndrome: OMIM #203300; Dystrobrevin-binding protein 1 (DTNBP1): OMIM #607145. Biogenesis of lysosome-related organelles complex 1 subunit 3 (BLOC1S3): OMIM #609762. Alliance for Cell Signaling: . Drosophila Interactions Database: . Entrez Gene (NCBI): . Saccharomyces Genome Database: . Human Protein Reference Database (HPRD): . BLAST (NCBI): . Network Protein Sequence Analysis Tools server: . Presented at the Annual Symposium of the SSIEM, Lisbon, Portugal, 2–5 September 2008  相似文献   

11.
The pearl mouse is a model for Hermansky Pudlak Syndrome (HPS), whose symptoms include hypopigmentation, lysosomal abnormalities, and prolonged bleeding due to platelet storage pool deficiency (SPD). The gene for pearl has recently been identified as the beta3A subunit of the AP-3 adaptor complex. The objective of these experiments was to determine if the expression and subcellular distribution of the AP-3 complex were altered in pearl platelets and other tissues. The beta3A subunit was undetectable in all pearl cells and tissues. Also, expression of other subunit proteins of the AP-3 complex was decreased. The subcellular distribution of the remaining AP-3 subunits in platelets, macrophages, and a melanocyte-derived cell line of pearl mice was changed from the normal punctate, probably endosomal, pattern to a diffuse cytoplasmic pattern. Ultrastructural abnormalities in mutant lysosomes were likewise apparent in mutant kidney and a cultured mutant cell line. Genetically distinct mouse HPS models had normal expression of AP-3 subunits. These and related experiments strongly suggest that the AP-3 complex regulates the biogenesis/function of organelles of platelets and other cells and that abrogation of expression of the AP-3 complex leads to platelet SPD.  相似文献   

12.
Spritz RA 《Platelets》1998,9(1):21-29
Hermansky-Pudlak syndrome(HPS) and Chediak-Higashi syndrome(CHS) are similar but distinct autosomal recessive genetic diseases in which a bleeding diathesis resulting from platelet storage pool deficiency is accompanied by deficient pigmentation of the skin and hair and various systemic abnormalities associated with defective lysosomal function. The diverse multi-systemic manifestations of HPS and CHS are associated with abnormalities of a number of different cytoplasmic organelles--platelet dense granules, melanosomes, lysosomes and various cytoplasmic secretory granules. Though rare, HPS and CHS probably represent just the first of what will eventually be a novel class of genetic disorders resulting from defective biogenesis, structure or function of these organelles. The genes responsible for HPS and CHS have recently been identified and are beginning to yield insights into the molecular genetics and cellular pathophysiology of these intriguing disorders.  相似文献   

13.
BACKGROUND & AIMS: Wilson's disease is a genetic disorder characterized by the accumulation of copper in the body caused by a defect of biliary copper excretion. The Wilson's disease gene has been cloned; however, the precise localization of the gene product (ATP7B) and its role in biliary copper excretion have not been clarified. METHODS: We constructed a chimeric protein between green fluorescent protein (GFP) and ATP7B (GFP-ATP7B) and expressed it in a human hepatoma cell line (Huh7) and isolated rat hepatocytes. The Golgi apparatus, late endosomes, lysosomes, and bile canaliculus were visualized by fluorescence microscopy. Brefeldin A and nocodazole were used to redistribute the Golgi proteins. Bafilomycin A1 was used to analyze the association between GFP-ATP7B and the late endosomes. RESULTS: GFP-ATP7B colocalized with rhodamine-dextran and late endosome markers but not with the Golgi markers, lysosome markers, or a tight junction protein. Brefeldin A and nocodazole redistributed the Golgi proteins, but they did not affect the distribution of ATP7B. CONCLUSIONS: Although it is widely believed that ATP7B is located at the Golgi apparatus, its main localization is in late endosomes. ATP7B seems to translocate copper from the cytosol to the late endosomal lumen, thus participating in biliary copper excretion via lysosomes.  相似文献   

14.
Bleeding problems are associated with defects in platelet alpha-granules, yet little is known about how these granules are formed and released. Mutations affecting VPS33B, a novel Sec1/Munc18 protein, have recently been linked to arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome. We have characterized platelets from patients with ARC syndrome and observed reduced aggregation with arachidonate and adenosine diphosphate (ADP). Structural abnormalities seen in ARC platelets included increased platelet size, a pale appearance in blood films, elevated numbers of delta-granules, and completely absent alpha-granules. Soluble and membrane-bound alpha-granule proteins were significantly decreased or undetectable in ARC platelets, suggesting that both the releasable protein pools and membrane components of alpha-granules were absent. The role of VPS33B in platelet granule biogenesis was evaluated by immunofluorescence microscopy in normal human megakaryocytes. VPS33B colocalized appreciably with markers of alpha-granules, moderately with late endosomes/lysosomes, minimally with delta-granules/lysosomes, and not with cis-Golgi complexes. VPS33B protein expression determined by immunoblotting confirmed the presence of VPS33B in control fibroblasts but not in ARC fibroblasts, and in normal megakaryocytes but not in platelets. We conclude that like other Sec1/Munc18 proteins, VPS33B is involved in intracellular vesicle trafficking, being essential for the development of platelet alpha-granules but not for granule secretion.  相似文献   

15.
Introduction and objectivesLRBA deficiency is caused by loss of LRBA protein expression, due to either homozygous or compounds heterozygous mutations in LRBA. LRBA deficiency has been shown to affect vesicular trafficking and autophagy. To date, LRBA has been observed in the cytosol, Golgi apparatus and some lysosomes in LPS-stimulated murine macrophages. The objectives of the present study were to study the LRBA localization in organelles involved in vesicular traffic, phagocytosis, and autophagy in mononuclear phagocytes (MP).Materials and methodsWe analyzed LRBA colocalization with different endosomes markets using confocal microscopy in MP. We used the autophagy inhibitors to determine the role of LRBA in formation, maturation or degradation of the autophagosome.ResultsLRBA intracellular trafficking depends on the activity of the GTPase ADP ribosylation factor-1 (ARF) in MP. LRBA was identified in early, late endosomes but did not colocalize strongly with lysosomal markers. Although LRBA appears not to be recruited during the phagocytic cargo uptake, it greatly colocalized with the microtubule-associated protein 1A/1B-light chain 3 (LC3) under a steady state and this decreased after the induction of autophagy flux. Although the use of inhibitors of lysosome fusion did not restore the LRBA/LC3 colocalization, inhibitors of either early to late endosomes trafficking or PI3K pathway did.ConclusionsTaken together, our results show that LRBA is located in endomembrane system vesicles, mainly in the early and late endosomes. Although LRBA appears not to be involved in the phagocytic uptake, it is recruited in the early steps of the autophagy flux.  相似文献   

16.
The Hermansky-Pudlak syndrome (HPS) is a rare genetically heterogeneous autosomal recessive disorder, characterized by tyrosinase-positive oculocutaneous albinism, platelet dysfunction and lysosomal ceroid lipofuscin storage. This is caused by defects in lysosome-related organelles. In humans eight different types of the syndrome are known, of which a short overview is given. The clinical features and a novel mutation of a patient with HPS type 5 are described here.  相似文献   

17.
We have used the pH-dependent fluorochrome fluorescein-dextran (FD) to study the acidification of prelysosomal vacuoles (endosomes) and lysosomes isolated from cultured macrophages and fibroblasts. FD was internalized by pinocytosis under conditions that allowed its selective localization in endosomes (1- to 5-min pulse) or in lysosomes (5-min pulse, 30-min chase). Fibroblasts were also exposed to FD at 20 degrees C, at which temperature endosome-lysosome fusion is inhibited. Cells were homogenized and labeled organelles were separated by centrifugation in Percoll density gradients. The addition of ATP rapidly decreased the internal pH of both endosomes and lysosomes, as indicated by a decrease in fluorescence intensity. The pH gradient was dissipated by H+ ionophores and ammonium chloride. Acidification was not affected by inhibitors of the mitochondrial F1, F0-ATPase or the Na+, K, K+-ATPase and did not require permeant anions, Na+, or K+. Of the inhibitors tested, only N-ethylmaleimide prevented the ATP-dependent acidification of both compartments. These findings provide direct support for the existence of an acidic prelysosomal compartment that may be acidified via the same type of H+ pump believed to operate in lysosomes and secretory granules.  相似文献   

18.
Niemann-Pick type C1 (NPC1) disease results from a defect in the NPC1 protein and is characterized by a pathological accumulation of cholesterol and glycolipids in endocytic organelles. We followed the biosynthesis and trafficking of NPC1 with the use of a functional green fluorescent protein-fused NPC1. Newly synthesized NPC1 is exported from the endoplasmic reticulum and requires transit through the Golgi before it is targeted to late endosomes. NPC1-containing late endosomes then move by a dynamic process involving tubulation and fission, followed by rapid retrograde and anterograde migration along microtubules. Cell fusion studies with normal and mutant NPC1 cells show that exchange of contents between late endosomes and lysosomes depends upon ongoing tubulovesicular late endocytic trafficking. In turn, rapid endosomal tubular movement requires an intact NPC1 sterol-sensing domain and is retarded by an elevated endosomal cholesterol content. We conclude that the neuropathology and cellular lysosomal lipid accumulation in NPC1 disease results, at least in part, from striking defects in late endosomal tubulovesicular trafficking.  相似文献   

19.
20.
In the mouse, more than 16 loci are associated with mutant phenotypes that include defective pigmentation, aberrant targeting of lysosomal enzymes, prolonged bleeding, and immunodeficiency, the result of defective biogenesis of cytoplasmic organelles: melanosomes, lysosomes, and various storage granules. Many of these mouse mutants are homologous to the human Hermansky-Pudlak syndrome (HPS), Chediak-Higashi syndrome, and Griscelli syndrome. We have mapped and positionally cloned one of these mouse loci, buff (bf), which has a mutant phenotype similar to that of human HPS. Mouse bf results from a mutation in Vps33a and thus is homologous to the yeast vacuolar protein-sorting mutant vps33 and Drosophila carnation (car). This is the first found defect of the class C vacuole/prevacuole-associated target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) complex in mammals and the first mammalian mutant found that is directly homologous to a vps mutation of yeast. VPS33A thus is a good candidate gene for a previously uncharacterized form of human HPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号