首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short latency somatosensory evoked potentials (SEPs) were elicited by stimulation at the wrist of median, radial, and ulnar nerves, singly or in combination, using normal subjects. Amplitude of P10 was strikingly lower with radial stimulation than with median stimulation, while ulnar-derived P10 was intermediate in amplitude. This difference probably reflects the antidromic firing of motor fibers contained in median nerves as compared with the superficial branch of radial nerve, which is entirely sensory. Beyond P10, there appear to be no significant differences between median, radial and ulnar-derived SEPs. With simultaneous stimulation of several nerves within one arm, larger potentials were sometimes achieved but with poorer definition of P12 and P14. The clinical utility of radial, ulnar, and median stimulation for localizing peripheral lesions derives from the distinct anatomical pathways of the stimulated fibers through the brachial plexus and from the separable motor and sensory components of P10. SEP is less invasive than EMG; this fact, plus its freedom from sampling error, make it potentially more suitable than conventional EMG for sequentially following a patient's clinical course.  相似文献   

2.
The somatosensory evoked potentials (SEPs) produced by stimulation of the right and left posterior tibial nerves individually and also by their simultaneous stimulation were recorded in 84 adult normal subjects up to 150 msec after the stimulus by electrodes placed on the cranial vertex and by rows of electrodes over the sagittal and coronal lines using references on the ear or in the nasopharynx. The statistical distribution of the latencies of their different peaks was established. The effect of simultaneous stimulation of right and left posterior tibial nerves on the early SEP components was described. Some details of the anatomy of the rolandic sulcus were inferred from the amplitude distribution of these potentials.  相似文献   

3.
OBJECTIVE: Abnormal temporal and spatial sensory integration have been described in mixed groups of dystonic patients. We tested somatosensory integration and the effect of botulinum toxin (BoNT) in patients with writer's cramp (WC). METHODS: Median and ulnar SEPs were recorded in 29 WC patients and in 10 controls. We performed: individual and simultaneous stimulation of median and ulnar nerves (MU) and paired stimulation of median nerve at interstimulus-interval (ISI) of 40 and 100 ms. All the trials were repeated after blinded randomized treatment with placebo or BoNT-A. RESULTS: We found no differences between patients and controls in standard SEPs. Spatial (except for N9) and temporal suppression after ISI 40 were present in both groups for all the waves; after ISI 100, suppression was present only for N70. There were no differences between patients and controls. After BoNT-A treatment, no changes were observed. CONCLUSIONS: In contrast with previous findings in heterogeneous dystonic groups, and although some studies suggest impairment of spatial and temporal sensory discrimination in patients with focal dystonia, in our large cohort of patients with WC we found no evidence of abnormal somatosensory integration investigated by means of SEPs and no changes in somatosensory variables after BoNT-A treatment. SIGNIFICANCE: Our findings may suggest pathophysiological differences between focal and generalized dystonia, and may also point to an inferior sensitivity of SEPs in detecting abnormalities in sensory discrimination as compared to methods based on subjective discrimination.  相似文献   

4.
Sensory transmission is known to be impaired during movement of the stimulated body part. The goal of this study was to determine whether sensory gating persists for a measurable time after completion of a voluntary movement. Tactile stimuli were applied to the right index fingertip at intervals ranging from 63 to 1,000 msec after the completion of rapid thumb movement. Somatosensory evoked potentials (SEPs), recorded over the left cerebral hemisphere, were found to be reduced in size for at least 500 msec after the cessation of movement. The prolonged attenuation of SEPs after movement appears to depend on a central process that persists for a measurable time after the movement has ended.  相似文献   

5.
Somatosensory evoked potentials (SEPs) to electrical stimulation of the right and the left median nerves were studied in a patient with a pontine lesion. At first there was mainly right medial lemniscus involvement. Four months later the left medial lemniscus was found to be also involved. SEPs to stimulation of the right median nerve had normal wave forms and latencies while N20 was lacking and P14 was abnormal after stimulation of the left median nerve in the first SEP record. N20 and P14 were absent with preservation of P9 and P11 after stimulation of both left and right median nerves in the second SEP record. Therefore the P14 component has been found abnormal, then absent, in a patient with a pontine lesion.  相似文献   

6.
Somatosensory evoked potentials (SEPs) were recorded from anesthetized cats to assess regeneration of the superficial radial nerve after crush injury. SEPs were recorded by epidural electrodes chronically implanted over the primary somatosensory cortex (SI) and elicited by electrical stimulation of the dorsal surface of the contralateral forepaw. The stimulation intensity and impedances measured across the skin-stimulating electrodes were maintained constant for each animal throughout the experimental period. SEPs which disappeared after the radial nerve crush were elicited within the first week by stimulation applied to skin nearest the nerve crush site. Radial nerve crush also affected the SEP elicited by stimulating the intact ulnar side of the forepaw. In all animals examined, the SEP amplitude evoked by stimulation of the skin supplied by the ulnar nerve increased immediately after radial nerve crush. As early as 4 days after nerve crush, SEPs were elicited by stimulating the distal region of the digits that had been denervated. This phenomenon might be accounted for by peripheral collateral sprouting of intact neighboring nerves and/or by central unmasking of ulnar median input from the denervated radial skin area. Within 117 days, SEPs were elicited by stimulation applied anywhere in the previously denervated forepaw area. The topographical amplitude distribution of SEPs after reinnervation was not identical to that obtained under baseline conditions. The use of SEPs for chronic recording is an effective means to monitor reinnervation of skin after peripheral nerve injury.  相似文献   

7.
OBJECTIVE: To study the after-effect of transcranial direct current stimulation (tDCS) over the sensorimotor cortex on the size of somatosensory evoked potentials (SEPs) in humans. METHODS: SEPs were elicited by electrical stimulation of right or left median nerve at the wrist before and after anodal or cathodal tDCS in 8 healthy subjects. tDCS was applied for 10 min to the left motor cortex at a current strength of 1 mA. RESULTS: Amplitudes of P25/N33, N33/P40 (parietal components) and P22/N30 (frontal component) following right median nerve stimulation were significantly increased for at least 60 min after the end of anodal tDCS, whereas P14/N20, N20/P25 (parietal components) and N18/P22 (frontal component) were unaffected. There was no effect on SEPs evoked by left median nerve stimulation. Cathodal tDCS had no effect on SEPs evoked from stimulation of either arm. CONCLUSIONS: Anodal tDCS over the sensorimotor cortex can induce a long-lasting increase in the size of ipsilateral cortical components of SEPs. SIGNIFICANCE: tDCS can modulate cortical somatosensory processing in humans and might be a useful tool to induce plasticity in cortical sensory processing.  相似文献   

8.
A study of 10 patients with brachial plexus trauma was performed to determine whether the diagnostic accuracy of sensory evoked potentials (SEPs) may be improved by using stimulation of multiple peripheral nerves (median, radial, musculocutaneous and ulnar). In addition, the relative advantages of SEPs and peripheral electrophysiological studies were considered. SEP patterns following most common brachial plexus lesions were predictable. Injuries to the upper trunk affected the musculocutaneous and radial SEPs predominantly. Lower trunk or medial cord lesions primarily affected ulnar SEPs. Diffuse brachial plexus lesions affected SEPs from all stimulation sites. In the majority of cases, the necessary information was obtainable from conventional EMG: however, for lesions involving the upper segments only, SEP techniques were more useful. It is suggested that selective SEPs from appropriate peripheral nerves when interpreted in combination with conventional EMG may add useful additional information.  相似文献   

9.
V M Synek 《Clinical EEG》1986,17(3):112-116
Somatosensory evoked potentials (SEPs) after stimulation of median and ulnar nerves were analyzed retrospectively in a group of 14 patients presenting with rudimentary cervical ribs or ill-healed clavicular fractures, where clinically the possibility of thoracic outlet syndrome was raised. In 5 patients who presented with pain in the arm and hypoesthesia along the ulnar border of the forearm without weakness and wasting in the muscles supplied by the lower trunk of the brachial plexus, the SEPs after both median and ulnar nerve stimulation were normal. In the second group of 9 patients there was weakness and wasting of the lower trunk-supplied muscles. All these patients were treated surgically by excision of abnormal tissues; all of them improved subjectively, and most of them improved strength in the previously affected muscles. SEPs in this group recorded preoperatively showed normal findings after median nerve stimulation, while the potentials after stimulation of ulnar nerve were always abnormal from the affected arm, being delayed, attenuated or even absent at Erb's point, cervical spinal cord and contralateral scalp. The results of this study, which were based on 314 investigations performed in patients with different lesions of the brachial plexus, suggest that abnormal ulnar nerve SEPs in the presence of normal median nerve SEPs are supportive means in the diagnosis of thoracic outlet syndrome, where nervous structures have been endangered. This is in accordance with the most recent reports in the literature.  相似文献   

10.
Dorsal root function cannot presently be measured directly. The H-reflex is an indirect measure of dorsal root function but only for the S1 root. Spinal somatosensory evoked potentials (SEPs) following dermatomal stimulation of the legs have the potential of providing direct data reflecting dorsal root function but have not been reliably recorded in normal subjects. We have developed a reliable technique for recording SEPs at the lumbar root entry zone following segmental sensory stimulation of the legs. The saphenous, superficial peroneal, and sural nerves were stimulated representing the L3/L4, L5 and S1 roots respectively. Reproducible responses (N-wave) were recorded over the lumbar spine in all 60 normal limbs examined. The N-wave peak latency was significantly correlated with lower limb length. The conduction velocities from the stimulation sites to the lumbar spine were similar to published values for peripheral conduction velocities in these nerves. The mean inter-limb latency differences for the N-wave peak were: L3/L4 0.61 msec; L5 0.35 msec; and S1 0.57 msec. The mean N-wave amplitudes were: L3/L4 0.11 microV; L5 0.28 microV; and S1 0.23 microV. This technique is a direct measure of dorsal root integrity. Unlike scalp recorded SEPs, the lumbar N-wave is not state-dependent and is unaffected by lesions within the brain and rostral cord.  相似文献   

11.
Radial, median, and ulnar nerve somatosensory evoked potentials (SEPs) were recorded, with non-cephalic reference montage, in 38 patients with clinical signs of cervical myelopathy and MRI evidence of spondylotic compression of the cervical cord. Upper limb SEPs are useful in spondylotic myelopathy because SEPs were abnormal in all patients for at least one of the stimulated nerves and SEP abnormalities were bilateral in all patients but one. Reduction of the amplitude of the N13 potential indicating a segmental dysfunction of the cervical cord was the most frequent abnormality; it occurred in 93.4%, 84.2%, and 64.5% of radial, median, and ulnar nerve SEPs respectively. A second finding was that the P14 far-field potential was more sensitive than the cortical N20 potential to slowing of conduction in the dorsal column fibres. The high percentage of N13 abnormalities in the radial and median rather than in the ulnar nerve SEPs correlated well with the radiological compression level, mainly involving the C5-C6 vertebral segments. Therefore the recording of the N13 response is a reliable diagnostic tool in patients with cervical spondylotic myelopathy and P14 abnormalities, though less frequent, can be useful in assessing subclinical dorsal column dysfunction.  相似文献   

12.
Sensory conduction was studied in six patients with chronic sensory ataxic neuropathy of an idiopathic type and associated with Sjögren's syndrome. Motor nerve conduction velocities were normal in most cases, but sensory nerve potentials could not be evoked in a routine peripheral nerve conduction study. Cortical and cervical somatosensory evoked potentials (SEPs) and evoked potentials from Erb's point were barely recorded by median nerve stimulation at the wrist. When the median nerve was stimulated at more proximal points, clear potentials were recorded from Erb's point, but cortical SEPs were still hardly elicited. Thus the sensory nerves are centrally and peripherally involved in this condition, and the involvement is more prominent in the distal portion in the peripheral nerve. These findings suggest that central-peripheral distal axonopathy is a process involved in this illness and that the dorsal root ganglia may be primarily involved, in accord with previous pathological studies.  相似文献   

13.
We recorded somatosensory evoked magnetic fields (SEFs) over the hand area of the primary sensorimotor cortex (SMI) in 6 healthy adults in 2 sets of experiments to study interaction of afferent impulses. In experiment 1, SEFs were elicited by contralateral median nerve (MC) stimuli presented alone and 40 msec after a conditioning stimulus to the contralateral ulnar (UC), ipsilateral median (MI) or contralateral tibial (TC) nerve. N20m, P30m and P60m deflections to MC stimulation were markedly attenuated by preceding UC stimulation whereas N40m was enhanced, and a novel P80m emerged. In contrast, MI or TC stimulation did not affect the responses to MC. In experiment 2, the time course of recovery of N20m to median nerve stimuli was studied after stimulation of the adjacent ulnar and of the same median nerve. The recovery curves were similar for both conditioning stimuli with nearly full recovery of N20m at 120 msec. The results indicate marked interaction of impulses from ipsilateral median and ulnar nerves in human SMI, but no evidence was found of interaction from the two hands or from ipsilateral hand and foot.  相似文献   

14.
Activation of peripheral mixed and cutaneous nerves activates a distributed cortical network including the second somatosensory cortex (SII) in the parietal operculum. SII activation has not been previously reported in the stimulation of the dorsal penile nerve (DPN). We recorded somatosensory evoked fields (SEFs) to DPN stimulation from 7 healthy adults with a 122-channel whole-scalp neuromagnetometer. Electrical pulses were applied once every 0.5 or 1.5 sec to the left and right DPN. For comparison, left and right median and tibial nerves were stimulated alternatingly at 1.5-sec intervals. DPN stimuli elicited weak, early responses in the vicinity of responses to tibial nerve stimulation in the primary somatosensory cortex. Strong later responses, peaking at 107-126 msec were evoked in the SII cortices of both hemispheres, with left-hemisphere dominance. In addition to tactile processing, SII could also contribute to mediating emotional effects of DPN stimuli.  相似文献   

15.
Attenuation of somatosensory evoked potentials (SEPS) recorded from the scalp during voluntary movement occurs for specific combinations of the finger moved and the peripheral nerve stimulated. The cerebral potential component occurring at a latency of 27 msec (P27) evoked either by stimulation of median nerve at the wrist or by stimulation of 1st and 2nd digit nerves in the fingers were selectively attenuated during movement of 1st digit but were not altered during movement of 5th digit. By contrast, the cerebral P27 component evoked by stimulation of ulnar nerve at the wrist or by stimulation of 5th digital nerve were attenuated during movement of that digit but were not altered during movement of 1st digit. Gating of somatosensory activity is a selective phenomenon occurring when movement involves the areas being stimulated.  相似文献   

16.
Somatosensory evoked potentials (SEPs) in response to painful laser stimuli were measured in a patient with a unilateral sensory deficit due to radiculopathy at cervical levels C7 and C8. Laser evoked potentials (LEPs) were compared with SEPs using standard electrical stimulation of median and ulnar nerves at the wrist and mechanical stimulation of the fingertips by means of a mechanical stimulator. Early and late ulnar and median nerve SEPs were normal. Mechanical stimulation resulted in w shaped early SEPs from all five fingertips with some degree of abnormality at the fourth and fifth digits of the affected hand. Late LEPs were completely absent for stimulations at affected dermatomes and normal in the unaffected control dermatomes. The border between skin areas with normal or absent LEPs was very sharp and fitted the dermatomes of intact C6 and damaged C7 and C8 nerve roots. It is suggested that pain dermatomes are narrower than tactile dermatomes because thin fibres of the nociceptive system, activated by laser stimuli, probably do not overlap between adjacent spinal segments to the same extent as thick fibres of the mechanoreceptive system, activated by standard electrical or mechanical stimulation.  相似文献   

17.
Thirty healthy and 35 volunteers affected by Parkinson's disease (PD) were examined. Long latency responses (LLRs) and short latency somatosensory evoked potentials (SEPs) after median nerve stimulation were respectively recorded from forearm flexor muscles, and from 19 scalp electrodes, during relaxation (condition 1), light and maximal muscle contraction (conditions 2 and 3). Linear interpolation of SEPs was performed to produce isopotential colour maps. Latencies and amplitudes of the V1-V2 component in LLR, as well as of parietal, central and frontal scalp SEPs were analysed in the 3 experimental conditions. Highly significant inverse correlation matched the frontal SEP to the LLR V2 component amplitudes, both in healthy and in PD subjects. However, the V2 component--which in the former group was reliably identifiable only in condition 3--was presented in conditions 1 and 2 in a high percentage of PD subjects who also showed an abnormally reduced frontal SEP during complete relaxation. Excitability changes of brain motor areas induced by a sensory input were tested as follows: the motor cortex was transcranially stimulated (TCS) by magnetic pulses with an intensity 10% below (A) or above (B) the threshold for twitch elicitation during complete relaxation of forearm muscles; TCS was randomly preceded (range 14-32 msec) by a shock to the median or ulnar nerve at the elbow with identical characteristics as for LLR elicitation. An initial epoch of 'inhibition' followed by a peak of 'facilitation' of the amplitude of motor responses to TCS was observed when conditioning stimuli to the median nerve preceded TCS by 14-20 and by 24-32 msec, respectively. Contrary to normals, conditioning stimulation of the median nerve did not significantly influence the excitability threshold to TCS in those parkinsonians with depressed frontal N30.  相似文献   

18.
OBJECTIVE: To study the after-effect of theta burst stimulation (TBS) over the left sensorimotor cortex on the size of somatosensory as well as motor evoked potentials evoked from both hemispheres in healthy human subjects. METHODS: We used a continuous TBS paradigm for 40 s (600 pulses) in which a burst of 3 transcranial magnetic stimuli at 50 Hz is repeated at 5 Hz [Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45:201-6]. Somatosensory evoked potentials (SEPs) following electrical stimulation of right or left median nerve and motor evoked potentials (MEPs) in the right or left first dorsal interosseous (FDI) muscles were recorded before and after TBS over the left motor cortex (M1) or a point 2 cm posterior to left M1. RESULTS: Amplitudes of P25/N33 (parietal components) following right median nerve stimulation were significantly increased for at least 53 min after TBS over the left M1, whereas this component was suppressed for 13 min after TBS over a point 2 cm posterior. MEPs in right as well as left FDI muscles were suppressed with a similar time course after TBS over the left M1. CONCLUSIONS: A single-session of TBS over the sensorimotor cortex can induce a short-lasting change in the size of ipsilateral cortical components of SEPs as well as MEPs evoked from both hemispheres. SIGNIFICANCE: TBS is an interventional tool that can induce rapid reorganization within cortical somatosensory as well as motor networks in humans.  相似文献   

19.
Cortical and spinal somatosensory evoked potentials (SEPs) have been recorded after median and tibial nerve stimulation in healthy newborns. Spinal SEPs were readily obtained and recorded in all but one neonates after stimulation of both nerves. Cortical SEPs were more frequently recorded after median nerve (87%) than after tibial nerve stimulation (73%) but the shape of cortical SEPs obtained after tibial nerve stimulation was less variable. The mean feature of cortical SEPs was a negative wave (N27) for median nerve and a positive wave (P32) for tibial nerve. The present results demonstrate the feasibility of obtaining in the same baby, spinal and cortical SEPs after stimulation of median and tibial nerve, giving information on the functional integrity of central and peripheral somatosensory pathways which supply upper and lower limbs.  相似文献   

20.
We studied the usefulness of cortical somatosensory evoked potentials (SEPs) elicited by segmental sensory stimulation in traumatic quadriplegia. By stimulating sensory branches of musculocutaneous (C5, C6), median (C7, C8), and ulnar nerves (C8), we studied 10 chronic traumatic quadriplegics and compared them with age-matched controls. In all traumatic quadriplegics tested, the SEP abnormalities provided a direct linear relationship with clinical localization of posterior column sensory levels. Our findings suggest that segmental SEPs can enhance the clinical assessment of posterior column sensory levels in chronic traumatic quadriplegia. Further studies may find this technique useful in acute quadriplegia, particularly during surgical monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号