首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Within the vestibular system, calcitonin gene-related peptide (CGRP) has been localized in the efferent terminals and their brainstem neuronal cell bodies in several animal models. Presently, very few studies have verified these findings in the vestibular system in adult primates or humans. CGRP immunoreactivity (CGRPi) and its colocalization with choline acetyltransferase immunoreactivity (ChATi) in human vestibular end organs and Scarpa's ganglion were studied using polyclonal antibodies against CGRP and ChAT, at the light-microscopic level. The CGRPi axons ramified to produce numerous CGRPi terminals throughout the neurosensory epithelium of the maculae and cristae, primarily in the basal and midbasal areas. Numerous CGRPi efferent terminals made contact with both type II vestibular hair cells and the afferent chalices surrounding type I vestibular hair cells. All CGRP immunoreactive fibers also exhibited ChATi. As in the animal models, no CGRPi was found within Scarpa's ganglion. This study provides evidence for CGRPi in the human vestibular periphery and validates the biomedical relevance of the current animal models.  相似文献   

2.
The neurochemical basis of cholinergic efferent modulation of afferent function in the vestibular periphery remains incompletely understood; however, there is cellular, biochemical and molecular biological evidence for both muscarinic and nicotinic acetylcholine (ACh) receptors (nAChRs) in this system. This study examined the topographic distribution of alpha-bungarotoxin (alpha-BTX) nAChRs in the cristae of a turtle species. Cristae were perfusion-fixed, cut at 20 micrometer on a cryostat and incubated with alpha-BTX or polyclonal antibodies raised against Torpedo nAChR. Light microscopy showed abundant specific labeling of nAChR in the central zone of each hemicrista on the calyx-bearing afferents surrounding type I hair cells and on the base of the type II hair cells. Within the peripheral zone, dense labeling of type II hair cells near the torus and sparse or no label was observed on type II hair cells near the planum. The alpha-BTX binding showed a similar pattern within the cristae. The similarity between the topographic distribution of alpha-BTX binding nAChR and of efferent inhibition of afferents supports the notion that the inhibitory effect of afferents is mediated by nAChR.  相似文献   

3.
The afferent encoding of vestibular stimuli depends on molecular mechanisms that regulate membrane potential, concentration gradients, and ion and neurotransmitter clearance at both afferent and efferent relays. In many cell types, the Na,K-ATPase (NKA) is essential for establishing hyperpolarized membrane potentials and mediating both primary and secondary active transport required for ion and neurotransmitter clearance. In vestibular sensory epithelia, a calyx nerve ending envelopes each type I hair cell, isolating it over most of its surface from support cells and posing special challenges for ion and neurotransmitter clearance. We used immunofluorescence and high-resolution confocal microscopy to examine the cellular and subcellular patterns of NKAα subunit expression within the sensory epithelia of semicircular canals as well as an otolith organ (the utricle). Results were similar for both kinds of vestibular organ. The neuronal NKAα3 subunit was detected in all afferent endings—both the calyx afferent endings on type I hair cells and bouton afferent endings on type II hair cells—but was not detected in efferent terminals. In contrast to previous results in the cochlea, the NKAα1 subunit was detected in hair cells (both type I and type II) but not in supporting cells. The expression of distinct NKAα subunits by vestibular hair cells and their afferent endings may be needed to support and shape the high rates of glutamatergic neurotransmission and spike initiation at the unusual type I-calyx synapse.  相似文献   

4.
The FITC technique using alpha-bungarotoxin visualized the staining pattern of acetylcholine (ACh) receptors in adult human cochlear and vestibular hair cells (HCs) in normal labyrinths and in cochleae with sensorineural hearing loss. Flourescence staining occurred in the cuticular plates of all HCs, indicating that the micromechanics of their suprastructures can act under cholinergic control. Quantitative differences of the fluorescence of ACh receptors occurred between the three rows of outer HCs at the same level in the cochlea and decreasing along a base-to-apex directed gradient. There is strong evidence that the subsurface cisterns are integrated in the efferent nerve system. In the degenerating organ of Corti an uncoupling of the efferent system takes places adjacent to disintegrating HCs, though the staining in the cuticular plates remains until a very late stage in HC disintegration. In vestibular HCs type I, fluorescence is emitted in the supranuclear area of the cytoplasm below the cuticular plate probably indicating an efferent guidance on the afferent nerve transmission directly via the HC itself.  相似文献   

5.
We present preliminary functional data from human vestibular hair cells and primary afferent calyx terminals during fetal development. Whole-cell recordings were obtained from hair cells or calyx terminals in semi-intact cristae prepared from human fetuses aged between 11 and 18 weeks gestation (WG). During early fetal development (11–14 WG), hair cells expressed whole-cell conductances that were qualitatively similar but quantitatively smaller than those observed previously in mature rodent type II hair cells. As development progressed (15–18 WG), peak outward conductances increased in putative type II hair cells but did not reach amplitudes observed in adult human hair cells. Type I hair cells express a specific low-voltage activating conductance, G K,L. A similar current was first observed at 15 WG but remained relatively small, even at 18 WG. The presence of a “collapsing” tail current indicates a maturing type I hair cell phenotype and suggests the presence of a surrounding calyx afferent terminal. We were also able to record from calyx afferent terminals in 15–18 WG cristae. In voltage clamp, these terminals exhibited fast inactivating inward as well as slower outward conductances, and in current clamp, discharged a single action potential during depolarizing steps. Together, these data suggest the major functional characteristics of type I and type II hair cells and calyx terminals are present by 18 WG. Our study also describes a new preparation for the functional investigation of key events that occur during maturation of human vestibular organs.  相似文献   

6.
Acctylcholine (ACh) is usually considered to be the neurotransmitter of the efferent vestibular system. The nature and the localization of cholinergic receptors have been investigated on frog isolated vestibular hair cells (VHCs), by measuring variations of intracellular calcium concentration ([Ca2+]i), using calcium sensitive dye fura-2.

Focal iontophoretic ACh (1 M, 300 nA.40 ms) application induced a rapid increase in [Ca2+]i, reaching a peak in 20 s and representing about 5-fold the resting level (from 61 ± 6 to 320 ± 26 nM). Applications of muscarinic agonists as methacholine and carbachol induced weaker calcium responses (from 78 ± 25 to 238 ± 53 nM) than the one obtained with ACh applications. These muscarinic agonists were efficient only in precise zones. Desensitization of muscarinic receptors to successive stimulations was significant. Perfusion of nicotine or 1,1-dimethyl-4-phenyl-piperazinium (DMPP), a nicotinic agonist, induced an increase in [Ca2+]i only in some cells (4/28 with DMPP). These results indicated the presence of cholinergic receptors on frog VHCs: muscarinic receptors were more responsive than nicotinic receptors.

Presence of muscarinic and nicotinic receptors in the membrane of VHCs could indicate different modulations of VHCs activity mediated by [Ca2+]i and involving an efferent control which represents a central regulation of the vestibular afferent message.  相似文献   


7.
The synaptic physiology of cochlear hair cells   总被引:5,自引:0,他引:5  
Mechanosensory hair cells of the vertebrate inner ear are so-called 'short' receptors that communicate to the central nervous system by way of chemical synapses with afferent neurons. In turn, hair cells are the targets of olivocochlear fibers that carry efferent inhibitory feedback from the brain. These synaptic activities contribute to, or modulate the hair cell's receptor potentials through the gating of associated ion channels. Thus for example, voltage-gated calcium channels open to trigger vesicle fusion and release of transmitter by entry of extracellular calcium. The inward calcium current also depolarizes the membrane and could lead to generation of 'all-or-none' action potentials. However, regenerative depolarization is prevented in most hair cells by prominent voltage-gated potassium conductances that rapidly repolarize the membrane. The magnitude and speed of these delayed potassium conductances determine the size and shape of the resulting receptor potential, and subsequent transmitter release, produced by sound. Efferent feedback is provided by the release of acetylcholine (ACh) from olivocochlear nerve fibers onto outer hair cells in the mammalian cochlea. The hair cell's ACh receptors are ligand-gated cation channels related to the nicotinic receptors of nerve and muscle. Calcium influx through the ACh receptors activates nearby calcium-gated potassium channels, resulting in hyperpolarization and inhibition of the hair cell. Calcium influx during efferent inhibition is regulated by a 'synaptic cistern' that also may act as a calcium store that is triggered by ACh under some conditions.  相似文献   

8.
In frog vestibular organs, efferent neurons exclusively innervate type II hair cells. Acetylcholine, the predominant efferent transmitter, acting on acetylcholine receptors of these hair cells ultimately inhibits and/or facilitates vestibular afferent firing. A coupling between alpha9-nicotinic acetylcholine receptors (alpha9nAChR) and apamin-sensitive, small-conductance, calcium-dependent potassium channels (SK) is thought to drive the inhibition by hyperpolarizing hair cells thereby decreasing their release of transmitter onto afferents. The presence of alpha9nAChR in these cells was demonstrated using pharmacological, immunocytochemical, and molecular biological techniques. However, fewer than 10% of saccular hair cells dissociated using protease VIII, protease XXIV, or papain responded to acetylcholine during perforated-patch clamp recordings. When present, these responses were invariably transient, small in amplitude, and difficult to characterize. In contrast, the majority of saccular hair cells ( approximately 90%) dissociated using trypsin consistently responded to acetylcholine with an increase in outward current and concomitant hyperpolarization. In agreement with alpha9nAChR pharmacology obtained in other hair cells, the acetylcholine response in saccular hair cells was reversibly antagonized by strychnine, curare, tetraethylammonium, and apamin. Brief perfusions with either protease or papain permanently abolished the alpha9-nicotinic response in isolated saccular hair cells. These enzymes when inactivated became completely ineffective at abolishing the alpha9-nicotinic response, suggesting an enzymatic interaction with the alpha9nAChR and/or downstream effector. The mechanism by which these enzymes render saccular hair cells unresponsive to acetylcholine remains unknown, but it most likely involves proteolysis of alpha9nAChR, SK, or both.  相似文献   

9.
OBJECTIVE: To investigate gamma-aminobutyric acid-ergic (GABAergic) innervation in the end-organs of human vestibule. METHODS: A modified pre-embedding immunostaining technique of immunoelectron microscopy were applied to accomplish this study with a polyclonal antibody to gamma-aminobutyric acid. RESULTS: GABA-immunoreactive products were confined to the nerve terminals, which were rich in synaptic vesicles and the non-myelinated fibers. The GABA-immunoreactive nerve fibers synapse with afferent calices surrounding the type I hair cells. CONCLUSION: This study shows that GABAergic fibers of human vestibular end-organs belong to the vestibular efferent system.  相似文献   

10.
Outer hair cells (OHCs) amplify the sound-evoked motion of the basilar membrane to enhance acoustic sensitivity and frequency selectivity. Medial olivocochlear (MOC) efferents inhibit OHCs to reduce the sound-evoked response of cochlear afferent neurons. OHC inhibition occurs through the activation of postsynaptic α9α10 nicotinic receptors tightly coupled to calcium-dependent SK2 channels that hyperpolarize the hair cell. MOC neurons are cholinergic but a number of other neurotransmitters and neuromodulators have been proposed to participate in efferent transmission, with emerging evidence for both pre- and postsynaptic effects. Cochlear inhibition in vivo is maximized by repetitive activation of the efferents, reflecting facilitation and summation of transmitter release onto outer hair cells. This review summarizes recent studies on cellular and molecular mechanisms of cholinergic inhibition and the regulation of those molecular components, in particular the involvement of intracellular calcium. Facilitation at the efferent synapse is compared in a variety of animals, as well as other possible mechanisms of modulation of ACh release. These results suggest that short-term plasticity contributes to effective cholinergic inhibition of hair cells.  相似文献   

11.
目的 探讨胆碱能神经在人体前庭终器的神经支配。方法 以乙酰胆碱的合成酶胆碱乙酰基转移酶(ChAT)为标记物,应用包埋前染色免疫细胞化学方法,透射电镜观察5例尸头双侧前庭感觉上皮中ChAT的分布。结果 人体前庭终器感觉上皮层内富含突触小泡的神经末梢和神经纤维呈现ChAT染色反应阳性,它们与包绕I型前庭毛细胞的传入神经盏形成轴-树突触,并直接与Ⅱ型前庭毛细胞胞体形成轴-体突触。结论 ChAT定位于前庭  相似文献   

12.
It is likely that several mechanisms contribute to the efferent control of cochlear and vestibular function. Different effects are probably mediated by different neuronal transmitters. In spite of a number of transmitter candidates, it is still widely assumed that the entire efferent system can be globally characterized as cholinergic. We attempted to label retrogradely identified efferent neurons in the brainstem with a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine (ACh) synthesizing enzyme. Only a portion of the vestibular efferents could thus be shown to be cholinergic in the rat. Medial cochlear efferents, terminating under outer hair cells, may also be cholinergic since they stain intensely for acetylcholine esterase (AChE) after pre-treatment with the AChE inhibitor diisopropylfluorophosphate (DFP). The lateral cochlear efferents terminating under inner hair cells, as well as more than half of the vestibular efferent neuron population, reacted negatively with either method designed to identify cholinergic neurons. Half of the lateral olivo-cochlear neuron population filled retrogradely with tritiated gamma-amino butyric acid [( 3H]-GABA). These cells were similar in size and distribution to neurons staining for the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). Retrograde transport of [3H]-aspartate from the inner ear to the brainstem was seen in half of the lateral olivocochlear population, as well as in part of the efferent vestibular population in group E and in the caudal pontine reticular nucleus (CPR). Since various peptides have also been located in efferent neurons, this system is chemically diversified. Several distinct mechanisms of efferent control with presumably differing functions must, therefore, exist.  相似文献   

13.
Acetylcholine (ACh) is the dominant transmitter released from inner ear efferent neurons. In frog vestibular organs, these efferent neurons synapse exclusively with type II hair cells. Hair cells isolated from the frog saccule hyperpolarize following the application of 50 microM ACh, thereby demonstrating the presence of an ACh receptor. A role for Cl(-) in the response of hair cell-bearing organs to efferent nerve activation or ACh application was suggested some years ago. Perfusion with solutions in which most of the Cl(-) was replaced by large impermeant anions decreased the cholinergic inhibition of afferent firing in the cat and turtle cochleas, and frog semicircular canal. Our previous work in the intact organ demonstrated that substitution of large impermeant anions for Cl(-) or use of Cl(-) channel blockers reduced the effect of ACh on saccular afferent firing. Using the perforated-patch clamping technique, replacement of Cl(-) by methanesulfonate, iodide, nitrate, or thiocyanate attenuated the hyperpolarizing response to ACh in hair cells isolated from the frog saccule. The chloride channel blockers picrotoxin and 4,4'-dinitrostilbene-2,2'-disulfonic acid were also tested and found to inhibit the ACh response. Thus, the present work demonstrates that the effects of Cl(-) substitutions or Cl(-) channel blockers on the ACh response in the intact saccule can be explained completely by effects on the hair cell. Evidence is also presented for the presence of the messenger RNA for a calcium-dependent chloride channel in all hair cells but especially saccular hair cells. This channel may be involved in the response to ACh. The precise role for chloride in this response, whether as a distinct ion current, as a transported ion, or as a permissive ion for other components, is discussed.  相似文献   

14.
Nicotinic acetylcholine (nACh) receptors are known to be targets for modulation by a number of substances, including the opiates. It is known that acetylcholine (ACh) coexists with opioid peptides in cochlear efferent neurons, and such a colocalization has been proposed for the vestibular system. In the present study we test the hypothesis that morphine, an opioid receptor agonist with a broad spectrum of selectivity, modulates alpha9nACh receptor-mediated responses in frog vestibular hair cells. Morphine dose-dependently and reversibly inhibited ACh-induced currents as recorded by the perforated patch-clamp method. In the presence of morphine the ACh dose-response curve was shifted to the right in a parallel fashion, suggesting a competitive interaction. However, naloxone did not antagonize the inhibition produced by morphine. To test the hypothesis that morphine could interact with the alpha9nACh receptor without the involvement of opioid receptors, experiments were performed using Xenopus laevis oocytes injected with the alpha9nACh receptor cRNA. The currents activated by ACh in Xenopus oocytes, a system that lacks opioid receptors, were also dose-dependently inhibited by morphine. We conclude that morphine inhibits the alpha9nACh receptor-mediated response in hair cells and Xenopus oocytes through a mechanism which does not involve opioid receptors but may be a direct block of the alpha9nACh receptor.  相似文献   

15.
Cellular target of streptomycin in the internal ear   总被引:1,自引:0,他引:1  
The cellular target of streptomycin (STP) was investigated by analyzing the activity of glutamate decarboxylase (GAD) or choline acetyltransferase (ChAT) enzymes of synthesis of GABA and acetylcholine (Ach), respectively, [supposedly located in hair cells (GAD) or efferent terminals (ChAT)] in control and in 50 day-STP-treated colored guinea pig vestibular homogenates. Vestibular and auditory function were assessed by measuring postrotatory nystagmus response (PNR) and auditory brainstem evoked potentials (ABP). Morphological changes were followed by light and electron microscopy. STP-treated animals exhibited a GAD decrease of 83.6% with respect to controls whereas ChAT did not suffer any change. Assessment of PNR and ABP showed that STP affected only the former since animals lost it between the 20th and the 30th day of treatment, whereas ABP was not modified. Morphological experiments detected vestibular hair cell deterioration as the only cell type affected by STP. These results confirm the predilection of STP to affect vestibular function by damage to hair cells and show that this effect can be followed by measurement of GAD and ChAT in the vestibule as markers for hair cells and efferent terminals, respectively.  相似文献   

16.
The synaptic contacts of the type II hair cell in the vestibular system of the guinea pig was described in thin-sectioned and freeze-fractured specimens. Synaptic bodies were present at the apposition with both large and small afferent terminals. About 20% of the synaptic bodies observed consisted of complexes of two or more adjacent synaptic discs. In freeze-fracture replicas, the cytoplasmic leaflet of the hair cell plamalemma beneath the synaptic body had a bar-shaped aggregate of large particles. The size and shape of the particle aggregate was the same as that of the synaptic body. Small plasmalemmal deformations, interpreted as sites of synaptic vesicle exocytosis, were found immediately adjacent to the particle aggregate. On the postsynaptic membrane, an aggregate of intramembrane particles was present at the synaptic junction. The type II hair cell had no gap junctions or close membrane appositions between it an the apposed afferent fiber. Efferent boutons ending on the type II hair cell had no intramembrane particle specialization on the postsynaptic membrane; however those efferent boutons ending on large and small afferent fibers had an aggregate of medium-sized particles on the external leaflet of the postsynaptic bouton beneath the presynaptic active zone.  相似文献   

17.
Guo CK  Wang Y  Zhou T  Yu H  Zhang WJ  Kong WJ 《Hearing research》2012,285(1-2):13-19
There are two types of hair cells in the sensory epithelium of vestibular end organ. Type II vestibular hair cell (VHC II) is innervated by the efferent nerve endings, which employ a cholinergic inhibition mediated by SK channels through the activation of α9-containing nAChR. Our previous studies demonstrated that a BK-type cholinergic inhibition was present in guinea pig VHCs II, which may be mediated by an unknown mAChR. In this study, BK channel activities triggered by ACh were studied to determine the mAChR subtype and function. We found the BK channel was insensitive to α9-containing nAChR antagonists and m1, m3, m4 muscarinic antagonists, but potently inhibited by the m2 muscarinic antagonist. Muscarinic agonists could mimic the effect of ACh and be blocked by m2 antagonist. cAMP analog activated the BK current and adenyl cyclase (AC) inhibitor inhibited the ACh response. Inhibitor of Giα subunit failed to affect the BK current, but inhibitor of Giα and Giβγ subunits showed a potent inhibition to these currents. Our findings provide the physiological evidence that mAChRs may locate in guinea pig VHCs II, and m2 mAChRs may play a dominant role in BK-type cholinergic inhibition. The activation of m2 mAChRs may stimulate Giβγ-mediated excitation of AC/cAMP activities and lead to the phosphorylation of Ca(2+) channels, resulting in the influx of Ca(2+) and opening of the BK channel.  相似文献   

18.
Reciprocal synapses are characterized by the presence of both afferent and efferent types of synaptic specializations between two cells. They have been described at the neural poles of outer hair cells (OHCs) in humans with advanced age and two monkey species. Our objective was to study the innervation of the OHCs and determine if reciprocal synapses were present in a young (8-month-old infant) human subject. We studied the synaptic and cytoplasmic morphology of 162 nerve terminals innervating 29 OHCs using serial section transmission electron microscopy. Seventy-six percent of all OHCs were innervated by terminals with reciprocal synapses. This prevalence increased from the first toward the third row (p < 0.001), and 100% of OHCs in the third row demonstrated at least one reciprocal synapse. The prevalence of terminals with reciprocal synapses was higher in the human infant than in older human subjects and was very similar to what has been reported for the chimpanzee. Reciprocal synapses occur in sufficient numbers to be physiologically significant in primates. The nerve terminals were found to segregate into two groups on the basis of their cytoplasmic morphological characteristics: (1) vesicle-rich/neurofilament-poor (VR/NP) and (2) vesicle-poor/neurofilament-rich (VP/NR). All afferent and reciprocal terminals were of the VP/NR variety. The majority of the efferent terminals originated from VR/NP nerve fibers (classical olivocochlear morphology), but 23.5% of the efferent terminals were VP/NR. The hypothesis that peripheral processes of type II spiral ganglion cells form classical afferent, reciprocal, and a number of purely presynaptic terminals on OHCs is discussed. The presence of different types of synaptic specializations on OHCs formed by nerve fibers of the same type (VP/NR) suggests the existence of reciprocal neuronal circuits between OHCs sharing the dendritic arborization of a type II spiral ganglion cell.  相似文献   

19.
The efferent modulation of mammalian inner hair cell afferents.   总被引:5,自引:0,他引:5  
The results of immunocytochemical, enzymatic and electrophysiological studies have indicated that acetylcholine and GABA may act as neurotransmitters in lateral olivocochlear efferent endings on inner hair cell afferent dendrites. Since spike activity can be recorded in the dendritic region of inner hair cells, microiontophoretic techniques were used testing the possible neurotransmitter candidates, acetylcholine and GABA, on spontaneous and induced firing of the afferent dendrites. The experiments were carried out in anaesthetised guinea-pigs, the third and fourth turns of the cochlea being exposed for electrode penetration. Ejection of acetylcholine resulted in a pronounced dose-dependent increase in subsynaptic spiking activity. Furthermore, acetylcholine enhanced glutamate-induced activity. In contrast, even at high doses, GABA had very little effect on the spontaneous cochlear firing rate. When the firing rate had first been enhanced by glutamate or N-methyl-D-aspartate, however, this activation could be reduced by the ejection of GABA. A similar reduction was observed when the firing rate had been enhanced with acetylcholine. The results of our studies support the hypothesis that these substances are involved in efferent neurotransmission on inner hair cell afferent fibres. It should be pointed out, however, that besides acetylcholine and GABA, several opioids such as enkephalins and dynorphins seem to be involved in efferent cochlear innervation.  相似文献   

20.
Frequenin is a calcium-binding protein previously implicated in the regulation of neurotransmission. We report its immunocytochemical detection in the mouse inner ear, in the adult, and during embryonic (E) and postnatal (P) development. The distribution of frequenin was compared with those of other calcium-binding proteins (calbindin, calretinin, parvalbumin) and synaptophysin. In the adult mouse inner ear, frequenin immunostaining was observed in the afferent neuronal systems (vestibular and cochlear neurons, their processes and endings) and in the vestibular and cochlear efferent nerve terminals. Frequenin colocalized with synaptophysin in well characterized presynaptic compartments, such as the vestibular and cochlear efferent endings, and in putative presynaptic compartments, such as the apical part of the vestibular calyces. Frequenin was not found in vestibular hair cells and in cochlear inner and outer hair cells. During development, frequenin immunoreactivity was first detected on E11 in the neurons of the statoacoustic ganglion. On E14, frequenin was detected in the afferent neurites innervating the vestibular sensory epithelium, along with synaptophysin. On E16, frequenin was detected in the afferent neurites below the inner hair cells in the organ of Corti. The timing of frequenin detection in vestibular and cochlear afferent neurites was consistent with their sequences of maturation, and was earlier than synaptogenesis. Thus in the inner ear, frequenin is a very early marker of differentiated and growing neurons and is present in presynaptic and postsynaptic compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号