首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In an attempt to assess whether silica induces lung cancer, a nested case-control study of 316 male lung cancer cases and 1352 controls was carried out among pottery workers and tungsten, copper-iron, and tin miners from five provinces in south central China. Exposure to dust and silica for each study subject was evaluated quantitatively by cumulative exposure measures based on historical industrial hygiene records. Measurements on confounders such as inorganic arsenic, polycyclic aromatic hydrocarbons (PAHs), and radon were also collected from the worksites. Information on cigarette smoking was obtained by interviews of the subjects or their next of kin. A significant trend of increasing risk of lung cancer with exposure to silica was found for tin miners, but not for miners working in tungsten or copper-iron mines. Concomitant and highly correlated exposures to arsenic and PAHs among tin miners were also found. Risk of lung cancer among pottery workers was related to exposure to silica, although the dose-response gradient was not significant. Risks of lung cancer were significantly increased among silicotic subjects in iron-copper and tin mines, but not in pottery factories or tungsten mines. The results of this study provide only limited support for an aetiological association between silica and lung cancer.  相似文献   

2.
In an attempt to assess whether silica induces lung cancer, a nested case-control study of 316 male lung cancer cases and 1352 controls was carried out among pottery workers and tungsten, copper-iron, and tin miners from five provinces in south central China. Exposure to dust and silica for each study subject was evaluated quantitatively by cumulative exposure measures based on historical industrial hygiene records. Measurements on confounders such as inorganic arsenic, polycyclic aromatic hydrocarbons (PAHs), and radon were also collected from the worksites. Information on cigarette smoking was obtained by interviews of the subjects or their next of kin. A significant trend of increasing risk of lung cancer with exposure to silica was found for tin miners, but not for miners working in tungsten or copper-iron mines. Concomitant and highly correlated exposures to arsenic and PAHs among tin miners were also found. Risk of lung cancer among pottery workers was related to exposure to silica, although the dose-response gradient was not significant. Risks of lung cancer were significantly increased among silicotic subjects in iron-copper and tin mines, but not in pottery factories or tungsten mines. The results of this study provide only limited support for an aetiological association between silica and lung cancer.  相似文献   

3.
Objective The role of silica in the causation of lung cancer is an ongoing debate. In order to explore whether observed association between silica exposure and lung cancer is confounded by exposure to other occupational carcinogens, we updated a previously nested case-control study among a cohort of male workers in 29 Chinese mines and factories on the basis of an extended follow-up. Methods Five hundred and eleven lung cancer cases and 1,879 matched controls were selected. Exposure to respirable silica as well as relevant occupational confounders were quantitatively assessed based on historical industrial hygiene data. The relationship between exposure to silica and lung cancer was analyzed by conditional logistic regression analysis adjusted for exposure to arsenic, polycyclic aromatic hydrocarbons (PAHs), radon, and smoking. Results In a crude analysis adjusted for smoking only, a significant trend of increasing risk of lung cancer with exposure to silica was found for tin, iron/copper miners, and pottery workers. But after adjustment for relevant occupational confounders, no relationship between silica and lung cancer can be observed. Instead, there is a significant association between lung cancer mortality and cumulative exposure to inorganic arsenic (OR = 1.86, 95% CI: 1.14, 3.04 for each mg/m3-year increase) and carcinogenic PAHs (OR = 1.35, 95% CI: 1.08, 1.69 for each 100 μg/m3-year increase). Conclusion This analysis does not provide any evidence to show that exposure to silica causes lung cancer in the absence of confounding factors.  相似文献   

4.
The mortality patterns of United Kingdom tin miners were examined in relation to calendar period and duration of underground work with particular attention to lung cancer and exposure to radon. Subjects were all men who had worked for at least one year between 1941 and 1984 at one of two United Kingdom tin mines and for whom a complete work history could be constructed from mine records. Standardised mortality ratios (SMRs) were calculated using national (England and Wales) rates. The pattern of SMRs in relation to potential explanatory variables was analysed using Poisson regression methods. Mortalities from lung cancer and silicosis (including silicotuberculosis) were significantly raised and showed a significant relation with duration of underground work (mortality from stomach cancer was raised in both underground and surface workers, but not significantly). Excess mortality from silica related disease declined steeply from 35% among workers first exposed before 1920 to 1% among those first exposed after 1950. Thirteen surface workers with known exposure to arsenic had high rates of lung and stomach cancer. The SMR for lung cancer showed a consistent pattern in relation to duration of underground exposure, rising from 83 (observed/expected = 8/9.6) for surface workers (without exposure to arsenic) to 447 (15/3.4) for workers with more than 30 years underground exposure. Examination of the SMR for lung cancer by total underground exposure, age, and time since last exposure gave rise to a model for the expression of risk which depends only on total exposure and time since exposure. The fitted model implies that the effect of exposure to radon in a given year has no effect on risk for 10 years, then rapidly rises to a maximum from which the excess risk then declines, halving every 4.3 years. There were no direct measurements of historic radon levels. A conservative estimate based on measurements taken since 1969 by the National Radiological Protection Board and the Mines and Quarries Inspectorate is that the annual dose to an underground worker was about 10 working level months (WLM). Given this assumption, the risk/exposure slope implied by the present data, and the model fitted to it, was somewhat lower than that given in the fourth Committee on the Biological Effects of Ionisation Radiation (BEIR IV) report (about 40% lower for lifetime exposures). The present data also imply different risks depending on the age at exposure, with relatively higher lifetime risks for exposure at older ages, and relatively lower risks for exposures at younger ages. In conclusion, there was a clear relation between exposure to radon and death from lung cancer. The relative risk of lung cancer due to exposure to radon was not constant in cessation of exposure. The lifetime excess risk of lung cancer implied by these data for 40 years exposure at the current statutory limit of four WLM a year starting at age 20, was about 8% (79 excess deaths per 1000 exposed), assuming average smoking habits among the exposed workers. Control of dust concentrations in the mines has substantially reduced--and may have eliminated--direct mortality from silica related disease.  相似文献   

5.
The relation of mining and smelting exposure to arsenic and lung cancer was studied among tin miners in Yunnan Province in the People's Republic of China. Interviews were conducted in 1985 with 107 living tin miners who had lung cancer and an equal number of age matched controls from among tin miners without lung cancer to obtain information on risk factors for lung cancer including detailed history of employment and tobacco use. Occupational history was combined with industrial hygiene data to estimate cumulative arsenic exposure. Similar methods were also used to estimate radon exposure for simultaneous evaluation in this analysis. The results indicate that subjects in the highest quarter of cumulative arsenic exposure have a relative risk of 22.6 compared with subjects without exposure after adjusting for tobacco and radon exposure, and a positive dose response relation was observed. Simultaneous evaluation of arsenic and tobacco exposure indicates a greater risk for arsenic, whereas simultaneous assessment of arsenic and radon exposure suggests radon to be the greater risk. There is no evidence of synergism between arsenic and tobacco exposure. Among arsenic exposed individuals, cases of lung cancer have longer duration but lower average intensity of arsenic exposure than controls, indicating that duration of exposure to arsenic may be more important than intensity in the aetiology of lung cancer. Finally, risk of lung cancer among workers exposed to arsenic only in mining is only slightly less than for miners whose exposure to arsenic was limited to smelting, although risks are highest when workers were exposed to both mining and smelting.  相似文献   

6.
Mortality of a cohort of tin miners 1941-86   总被引:3,自引:0,他引:3  
The mortality patterns of United Kingdom tin miners were examined in relation to calendar period and duration of underground work with particular attention to lung cancer and exposure to radon. Subjects were all men who had worked for at least one year between 1941 and 1984 at one of two United Kingdom tin mines and for whom a complete work history could be constructed from mine records. Standardised mortality ratios (SMRs) were calculated using national (England and Wales) rates. The pattern of SMRs in relation to potential explanatory variables was analysed using Poisson regression methods. Mortalities from lung cancer and silicosis (including silicotuberculosis) were significantly raised and showed a significant relation with duration of underground work (mortality from stomach cancer was raised in both underground and surface workers, but not significantly). Excess mortality from silica related disease declined steeply from 35% among workers first exposed before 1920 to 1% among those first exposed after 1950. Thirteen surface workers with known exposure to arsenic had high rates of lung and stomach cancer. The SMR for lung cancer showed a consistent pattern in relation to duration of underground exposure, rising from 83 (observed/expected = 8/9.6) for surface workers (without exposure to arsenic) to 447 (15/3.4) for workers with more than 30 years underground exposure. Examination of the SMR for lung cancer by total underground exposure, age, and time since last exposure gave rise to a model for the expression of risk which depends only on total exposure and time since exposure. The fitted model implies that the effect of exposure to radon in a given year has no effect on risk for 10 years, then rapidly rises to a maximum from which the excess risk then declines, halving every 4.3 years. There were no direct measurements of historic radon levels. A conservative estimate based on measurements taken since 1969 by the National Radiological Protection Board and the Mines and Quarries Inspectorate is that the annual dose to an underground worker was about 10 working level months (WLM). Given this assumption, the risk/exposure slope implied by the present data, and the model fitted to it, was somewhat lower than that given in the fourth Committee on the Biological Effects of Ionisation Radiation (BEIR IV) report (about 40% lower for lifetime exposures). The present data also imply different risks depending on the age at exposure, with relatively higher lifetime risks for exposure at older ages, and relatively lower risks for exposures at younger ages. In conclusion, there was a clear relation between exposure to radon and death from lung cancer. The relative risk of lung cancer due to exposure to radon was not constant in cessation of exposure. The lifetime excess risk of lung cancer implied by these data for 40 years exposure at the current statutory limit of four WLM a year starting at age 20, was about 8% (79 excess deaths per 1000 exposed), assuming average smoking habits among the exposed workers. Control of dust concentrations in the mines has substantially reduced--and may have eliminated--direct mortality from silica related disease.  相似文献   

7.
A cohort of 54,128 men who worked in Ontario mines was observed for mortality between 1955 and 1986. Most of these men worked in nickel, gold, or uranium mines; a few worked in silver, iron, lead/zinc, or other ore mines. If mortality that occurred after a man had started to mine uranium was excluded, an excess of carcinoma of the lung was found among the 13,603 Ontario gold miners in the study (standardised mortality ratio (SMR) 129, 95% confidence interval (95% CI) 115-145) and in men who began to mine nickel before 1936 (SMR 141, 95% CI 105-184). The excess mortality from lung cancer in the gold miners was confined to men who began gold mining before 1946. No increase in the mortality from carcinoma of the lung was evident in men who began mining gold after the end of 1945, in men who began mining nickel after 1936, or in men who mined ores other than gold, nickel, and uranium. In the gold mines each year of employment before the end of 1945 was associated with a 6.5% increase in mortality from lung cancer 20 or more years after the miner began working the mines (95% CI 1.6-11.4%); each year of employment before the end of 1945 in mines in which the host rock contained 0.1% arsenic was associated with a 3.1% increase in lung cancer 20 years or more after exposure began (95% CI 1.1-5.1%); and each working level month of exposure to radon decay products was associated with a 1.2% increase in mortality from lung cancer five or more years after exposure began (95% CI 0.02-2.4%). A comparison of two models shows that the excess of lung cancer mortality in Ontario gold miners is associated with exposure to high dust concentrations before 1946, with exposure to arsenic before 1946, and with exposure to radon decay products. No association between the increased incidence of carcinoma of the lung in Ontario gold miners and exposure to mineral fibre could be detected. It is concluded that the excess of carcinoma of the lung in Ontario gold miners is probably due to exposure to arsenic and radon decay products.  相似文献   

8.
A cohort of 54,128 men who worked in Ontario mines was observed for mortality between 1955 and 1986. Most of these men worked in nickel, gold, or uranium mines; a few worked in silver, iron, lead/zinc, or other ore mines. If mortality that occurred after a man had started to mine uranium was excluded, an excess of carcinoma of the lung was found among the 13,603 Ontario gold miners in the study (standardised mortality ratio (SMR) 129, 95% confidence interval (95% CI) 115-145) and in men who began to mine nickel before 1936 (SMR 141, 95% CI 105-184). The excess mortality from lung cancer in the gold miners was confined to men who began gold mining before 1946. No increase in the mortality from carcinoma of the lung was evident in men who began mining gold after the end of 1945, in men who began mining nickel after 1936, or in men who mined ores other than gold, nickel, and uranium. In the gold mines each year of employment before the end of 1945 was associated with a 6.5% increase in mortality from lung cancer 20 or more years after the miner began working the mines (95% CI 1.6-11.4%); each year of employment before the end of 1945 in mines in which the host rock contained 0.1% arsenic was associated with a 3.1% increase in lung cancer 20 years or more after exposure began (95% CI 1.1-5.1%); and each working level month of exposure to radon decay products was associated with a 1.2% increase in mortality from lung cancer five or more years after exposure began (95% CI 0.02-2.4%). A comparison of two models shows that the excess of lung cancer mortality in Ontario gold miners is associated with exposure to high dust concentrations before 1946, with exposure to arsenic before 1946, and with exposure to radon decay products. No association between the increased incidence of carcinoma of the lung in Ontario gold miners and exposure to mineral fibre could be detected. It is concluded that the excess of carcinoma of the lung in Ontario gold miners is probably due to exposure to arsenic and radon decay products.  相似文献   

9.
Mortality from lung cancer in Ontario uranium miners.   总被引:8,自引:3,他引:5       下载免费PDF全文
Mortality from lung cancer was greater in Ontario uranium miners than in the general male population of Ontario (observed = 152, expected = 67.6, standardised mortality ratio 225, 95% confidence interval 191-264). Part of the excess of lung cancer may be because the proportion of men who are smokers or have smoked is greater in uranium miners than in Ontario men. Smoking does not explain the whole excess. Mortality from lung cancer in Ontario uranium miners is clearly related to exposure to short lived radon progeny. The excess relative risk of lung cancer from the same degree of exposure to short lived radon progeny is greatest five to 14 years after exposure and less subsequently. It is greater in men under the age of 55 years and less in older men. Part of the excess of lung cancer mortality in Ontario uranium miners is probably also due to exposure to arsenic that occurred earlier in gold mines. In Ontario uranium miners, the lung cancer mortality from exposure to arsenic increases as the intensity of exposure to short lived radon progeny increases. This finding is consistent with the hypothesis that the risk of lung cancer from exposure to arsenic is enhanced by exposure to other carcinogens. In Ontario uranium miners, the proportion of lung cancers that are small cell carcinomas is greater than in the general population. The proportion of small cell carcinomas is especially great five to 14 years after exposure to short lived radon progeny and in men who die from lung cancer at younger ages.  相似文献   

10.
OBJECTIVES—To evaluate the association between silica, silicosis and lung cancer, the mortality of 724 patients with silicosis, first diagnosed by standard chest x ray film between 1964 and 1970, has been analysed by a cohort study extended to 31 December 1997.METHODS—Smoking and detailed occupational histories were available for each member of the cohort as well as the estimated lifetime exposure to respirable silica dust and radon daughters. Two independent readers blindly classified standard radiographs according to the 12 point International Labour Organisation (ILO) scale. Lung function tests meeting the American Thoracic Society''s criteria were available for 665 patients. Standardised mortality ratios (SMRs) for selected causes of death were based on the age specific Sardinian regional death rates.RESULTS—The mortality for all causes was significantly higher than expected (SMR 1.35, 95% confidence interval (95% CI) 1.24 to 1.46) mainly due to tuberculosis (SMR 22.0) and to non-malignant chronic respiratory diseases (NMCRD) (SMR 6.03). All cancer deaths were within the expected numbers (SMR 0.93; 95% CI 0.76 to 1.14). The SMR for lung cancer was 1.37 (95% CI 0.98 to 1.91, 34 observed), increasing to 1.65 (95% CI 0.98 to 2.77) allowing for 20 years of latency since the first diagnosis of silicosis. Although mortality from NMCRD was strongly associated to the severity of radiological silicosis and to the extent of the cumulative exposure to silica, SMR for lung cancer was weakly related to the ILO categories and to the cumulative exposure to silica dust only after 20 years of lag interval. A significant excess of deaths from lung cancer (SMR 2.35) was found among silicotic patients previously employed in underground metal mines characterised by a relatively high airborne concentration of radon daughters and among ever smokers who showed an airflow obstruction at the time of the first diagnosis of silicosis (SMR 3.29). Mortality for lung cancer related to exposure was evaluated with both the Cox''s proportional hazards modelling within the entire cohort and a nested case-control study (34 cases of lung cancer and 136 matched controls). Both multivariate analyses did not show any significant association with cumulative exposure to silica or severity of silicosis, but confirmed the association between mortality for lung cancer and relatively high exposure to radon, smoking, and airflow obstruction as significant covariates.CONCLUSIONS—The findings indicate that the slightly increased mortality for lung cancer in this cohort of silicotic patients was significantly associated with other risk factors—such as cigarette smoking, airflow obstruction, and estimated exposure to radon daughters in underground mines—rather than to the severity of radiological silicosis or to the cumulative exposure to crystalline silica dust itself.  相似文献   

11.
We studied the relation of radon exposure and tobacco use to lung cancer among tin miners in Yunnan Province in the People's Republic of China. Interviews were conducted in 1985 with 107 living tin miners with lung cancer and an equal number of age-matched controls from among tin miners without lung cancer to obtain information on lung cancer risk factors including a detailed history of employment and tobacco use. Occupational history was combined with extensive industrial hygiene data to estimate cumulative working level months (WLM) of radon daughter exposure. Similar data were also used to estimate arsenic exposure for control in the analysis. Results indicate an increased risk of lung cancer for water pipe smoking, a traditional form of tobacco use practiced in 91% of cases and 85% of controls. Ever use of water pipes was associated with a twofold elevation in risk when compared with tobacco abstainers, and a dose-response relation was observed with increasing categories of pipe-year (dose times duration) usage. Estimated WLM of radon exposure varied from 0 to 1,761 among subjects but averaged 515 in cases versus only 244 in controls. Analyses indicated that the persons in the highest quarter of the radon exposure distribution had an odds ratio (OR) = 9.5 (95% confidence interval = 2.7-33.1) compared to persons without radon exposure after controlling for arsenic exposure and other potential confounders. Examination of duration and rate of radon exposure indicated higher risk associated with long duration as opposed to high rate of exposure. Cross-categorizations of radon exposure and tobacco use suggest greater risk associated with radon exposure than tobacco in these workers.  相似文献   

12.
[目的]分析云南锡矿工人职业性肺癌的流行特征,为预防与控制其高发提供科学依据。[方法]对1954-2002年矿工肺癌的发病、死亡及其相关工种和作业环境检测资料进行流行病学分析比较,评价暴露于职业环境中氡子体、砷的锡矿工职业性肺癌特征。[结果]云南锡矿的矿工暨冶炼工复合职业史男性肺癌标化死亡率高达1231.13/10^5,是当地普通男性居民肺癌标化死亡率(26.61/10^5)的46.27倍,其高发职业特征显著。作业环境中主要致肺癌危险因素砷、氡子体的暴露与肺癌发病之间存在剂量一效应关景。[结论]流行病学综合分析提示,预防和控制云南锡矿工人肺癌高发的关键是降低工作环境中的氡、砷浓度;其次是在矿工中加强戒烟教育并做好个人劳动保护。  相似文献   

13.
The mortality of 4740 male workers of two lead and zinc mines was followed up from 1960 to 1988. Exposure to respirable dust was comparable in the two mines, but the median concentration of silica in respirable dust was 10-fold higher in mine B (12.8%) than in mine A (1.2%), but the mean annual exposure to radon daughters in underground workplaces differed in the opposite direction (mine A: 0.13 working levels (WL), mine B: 0.011 WL). Total observed deaths (1205) were similar to expected figures (1156.3) over a total of 119 390.5 person-years at risk. Underground workers of mine B had significant increases in risk of pulmonary tuberculosis (SMR 706, 95% confidence interval (95% CI) 473-1014) and non-malignant respiratory diseases (SMR 518; 95% CI 440-1606), whereas the only significant excess at mine A was for non-malignant respiratory diseases (SMR 246; 95% CI 191-312). Total cancer and lung cancer mortality did not exceed the expectation in the two mines combined. A 15% excess mortality for lung cancer, increased up to an SMR 204 (95% CI 89-470) for subjects employed > or = 26 years, was, however, found among underground workers in mine A who on the average experienced an exposure to radon daughters 10-fold higher than those of mine B. By contrast, despite their higher exposure to silica, mine B underground workers experienced a lower than expected lung cancer mortality. A ninefold increase in risk of peritoneal and retroperitoneal cancer combined was also found among underground workers of mine A (SMR 917; 95% CI 250-2347; based on four deaths). A causal association with workplace exposures is unlikely, however, as the SMR showed an inverse trend by duration of employment. These findings are consistent with low level exposure to radon daughters as a risk factor for lung cancer among metal miners. Exposure to silica at the levels estimated for the mine B underground environment did not increase the risk of lung cancer.  相似文献   

14.
Nested case-control study of lung cancer in four Chinese tin mines   总被引:2,自引:0,他引:2  
Objectives: To evaluate the relation between occupational dust exposure and lung cancer in tin mines. This is an update of a previous study of miners with high exposure to dust at four tin mines in southern China.

Methods: A nested case-control study of 130 male lung cancer cases and 627 controls was initiated from a cohort study of 7855 subjects employed at least 1 year between 1972 and 1974 in four tin mines in China. Three of the tin mines were in Dachang and one was in Limu. Cumulative total exposure to dust and cumulative exposure to arsenic were calculated for each person based on industrial hygiene records. Measurements of arsenic, polycyclic aromatic hydrocarbons (PAHs), and radon in the work sites were also evaluated. Odds ratios (ORs), standard statistic analysis and logistic regression were used for analyses.

Results: Increased risk of lung cancer was related to cumulative exposure to dust, duration of exposure, cumulative exposure to arsenic, and tobacco smoking. The risk ratios for low, medium, and high cumulative exposure to dust were 2.1 (95% confidence interval (95% CI) 1.1 to 3.8), 1.7 (95% CI 0.9 to 3.1), and 2.8 (95% CI 1.6 to 5.0) respectively after adjustment for smoking. The risk for lung cancer among workers with short, medium, and long exposure to dust were 1.9 (95% CI 1.0 to 3.5), 2.3 (95% CI 1.3 to 4.1), and 2.3 (95% CI 1.2 to 4.2) respectively after adjusting for smoking. Several sets of risk factors for lung cancer were compared, and the best predictive model included tobacco smoking (OR=1.6, 95% CI 1.1 to 2.4) and cumulative exposure to arsenic (ORs for different groups from low to high exposure were 2.1 (95% CI 1.1 to 3.9); 2.1 (95% CI 1.1 to 3.9); 1.8 (95% CI 1.0 to 3.6); and 3.6 (95% CI 1.8 5 to 7.3)). No excess of lung cancer was found among silicotic subjects in the Limu tin mine although there was a high prevelance of silicosis. Exposures to radon were low in the four tin mines and no carcinogenic PAHs were detected.

Conclusions: These findings provide little support for the hypothesis that respirable crystalline silica induces lung cancer. Ore dust in work sites acts as a carrier, the exposure to arsenic and tobacco smoking play a more important part in carcinogenesis of lung cancer in tin miners. Silicosis seems not to be related to the increased risk of lung cancer.

  相似文献   

15.
Objective  The mechanisms of action of arsenic in the development of lung cancer are still not yet elucidated. Considering the relationship between arsenic and squamous cell carcinomas of the skin, we hypothesized that arsenic exposure may be more closely associated with squamous cell carcinoma of the lung. Methods  A comprehensive histopathological database and a detailed job-exposure matrix developed for former German uranium miners with exposure to arsenic, radon, and quartz were analyzed to quantitatively assess the effect of arsenic regarding cell type of lung cancer. The distributions of major lung cancer cell types in 1,786 German uranium miners were associated with levels of arsenic exposure under control for the other lung carcinogens. To evaluate the arsenic effects in association with a frequent occupational lung disease in miners stratification by silicosis was performed. Results  There was an arsenic-related increase of the proportion of squamous cell carcinoma of the lung but restricted to miners without silicosis. The increase was found at all levels of co-exposure to radon and quartz dust. In miners with silicosis, the proportion of adenocarcinoma increased with rising arsenic exposure. Arsenic exposure was associated with non-small cell lung cancer. Silicosis turned out as major determinant of the cell type related with arsenic. Conclusion  These results indicate a cell type characteristic effect of arsenic in the development of lung cancer.  相似文献   

16.
The mortality experience of 1392 lead-zinc-silver miners (Gorno, Northern Italy) employed in the period 1/1/1950-31/12/1980 and followed-up to 31/12/1986 was examined. Two separate estimates of the radon exposure level are available: 0.60 and 0.36 working levels respectively. The silica exposure level was not assessed. Vital status was ascertained for 95.6% of the cohort members and their mortality was compared with expected deaths based on national rates. Significant excess mortality from esophageal cancer, stomach cancer, lung cancer, respiratory tuberculosis, respiratory diseases and deaths from external causes was found among underground miners. Surface workers show significantly increased mortality from liver and bile ducts cancer, hepatic cirrhosis, respiratory tuberculosis and respiratory diseases. Based on the 16.4 excess lung cancer cases among underground miners and their cumulative radon exposure, an attributable risk estimate ranging from 9.78 and 16.31 cases per million person-years and WLM (Working Level Month) was calculated.  相似文献   

17.
BACKGROUND: Mineral dusts that contain crystalline silica have been associated directly or indirectly with the development of pneumoconiosis or silicosis, non-malignant respiratory diseases, lung cancer, and other diseases. The health impacts on workers with silica mixed dust exposure in tin mines and dose-response relationships between cumulative dust exposure and the mortality from lung cancer are investigated. METHODS: A cohort of 7,837 workers registered in the employment records in 4 Chinese tin mines between 1972 and 1974 was identified for this study and the mortality follow-up was traced through 1994. Of the cohort, the cause of death was ascertained for 1,061 (97%) of the 1,094 deceased workers. Standardized mortality ratios (SMRs) were calculated for all workers, non-exposed workers, and dust-exposed workers with different exposure levels, silicotics, and non-silicotics based on Chinese national rates. RESULTS: The mortality from all causes in four tin mines was nearly the same as the national mortality. Malignant neoplasm, cerebrovascular disease, and cardiovascular disease accounted for 68.6% of all deaths. Mortality excess from lung cancer, liver cancer, all malignant diseases, and non-malignant respiratory diseases was observed among dust-exposed workers; a 50-fold excess of pneumoconiosis was observed. There was an upward trend for SMRs of lung cancer was noted from no exposure to low, medium, and high exposure levels (SMRs=1.29, 2.65, 2.66, 3.33). The shape of the exposure-response curve for risk of lung cancer at high exposure levels was inconsistent in these four mines. CONCLUSIONS: The findings indicated a positive dose-response relation between exposure to cumulative dust and the mortality of lung cancer. High arsenic content in dust particles, together with crystalline silica, may play an important role in causing increased mortality from lung cancer.  相似文献   

18.
本文按干预性流行病学原则,用队列方法研究了“砷、氡”引起矿工肺癌的假说。矿方为了预防尘肺,于50年代中期开始采用了湿式作业,井下砷的平均浓度由70年代的平均浓度0.29mg/m~3,下降到80年代的0.010mg/m~3;肺癌发病粗率也由50年代的160/10万,下降到80年代的20/10万。同期氡子体一直保持?较高水平。工人受氡子体辐射的累积剂量,平均为409WLM,超出发生肺癌的剂量3倍。所获得的干预法剂量-反应关系提示,砷与肺癌呈明显的因果关系,而氡子体的作用在100WML水平未显出联系。  相似文献   

19.
A literature search was done and all epidemiological cancer studies mentioning talc as a risk factor were selected. The talc exposed populations were divided into three groups: (1) populations in which no other occupational carcinogen was mentioned (only talc millers satisfied this criterion); (2) populations of talc miners exposed to talc, quartz, and/or radon; and (3) other industrial populations in which talc is associated with quartz, nitrosamines, and asbestos depending on the study. No excess lung cancer mortality was found for the populations of talc millers exposed to high levels of talc but without any other potential carcinogen (SMR = 0.92, 42 cases) while the summary of mortality of talc miners exposed to quartz and/or radon was in excess (fixed effect SMR = 1.20, random effect RR = 1.85, 40 cases). Six studies in other industrial settings were identified. All reported increased lung cancer mortality among talc exposed workers but the talc exposure was confounded with other carcinogens and only one study was able to adjust on them. In conclusion, no increased lung cancer mortality was observed among talc millers despite their high exposure experience. In populations in which talc was associated with other potential carcinogens, some lung cancer excesses were observed.  相似文献   

20.
PURPOSE: In southeast Okayama Prefecture, Japan, there have been reports of a high prevalence of silicosis among refractory brick production workers. Recently, a high mortality rate of lung cancer among the local residents has been observed. Therefore, a population based case-control study was conducted concerning the relationship between silica, silicosis, and lung cancer using multiple cancer controls. METHODS: Cases and controls were restricted to male subjects and information was obtained from death certificates from 1986 to 1993 in the area. Three categories of deceased control groups were selected: a series of deaths from liver cancer, colon cancer, and cancers of other organs, which was assumed not to be related to silica exposure. Age and smoking habits were adjusted by stratified analysis using the Mantel-Haenszel odds ratio estimates. Unconditional logistic regression analysis was also conducted to control potential confounding factors; such as age and smoking habits. RESULTS: The age-, smoking-adjusted odds ratios were 1.94 (0.94-4.43) for the colon cancer control group, 2.13 (1.19-3.85) for the other cancer control group related to silica exposure, and 2.94 (1.30-8.90) and 2.69 (1.43-5.37) related to silicosis, respectively. The direct weighted average using the estimates for colon and the other cancer controls was 2.06 (1.29-3.29) for silica exposure, and 2.77 (1.60-4.77) for silicosis. Histological or cytological types of lung cancer cases were obtained from 64.1% of the subjects (118/184). As for the histologic type of lung cancer, small cell carcinoma was higher among those who had been silica-exposed workers than the unexposed lung cancer cases and the data from the general Japanese population. On chest x-ray findings, elevated lung cancer mortality compared with cancers other than lung cancer was demonstrated among patients without large opacities. CONCLUSIONS: Silica exposure increased the lung cancer mortality in the area. A high lung cancer mortality rate in the area could be explained by silica exposure and silicosis prevalence in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号