首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate differences in agonist affinity, potency, and efficacy across rat brain regions, five representative cannabinoid compounds were investigated in membranes from three different rat brain regions for their ability to maximally stimulate [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) binding and bind to cannabinoid receptors (measured by inhibition of [(3)H]antagonist binding) under identical assay conditions. In all three brain regions, the rank order of potency for the stimulation of [(35)S]GTPgammaS binding and the inhibition of [(3)H]SR141716A binding for these compounds were identical, with CP55940 approximately levonantradol > WIN55212-2 >/= Delta(9)-tetrahydrocannabinol (Delta(9)-THC) > methanandamide. The rank order of efficacy was not related to potency, and relative maximal agonist effects varied across regions. Receptor binding fit to a three-site model for most agonists, stimulation of [(35)S]GTPgammaS binding fit to a two-site model for all agonists, and high-affinity receptor binding did not appear to produce any stimulation of [(35)S]GTPgammaS binding. WIN55212-2, methanandamide, and Delta(9)-THC also were assayed for the inhibition of adenylyl cyclase in cerebellar membranes. The rank orders of potency and efficacy were similar to those for [(35)S]GTPgammaS binding, but the efficacies and potencies of methanandamide and Delta(9)-THC compared with WIN55212-2 were higher for adenylyl cyclase inhibition, implying receptor/G-protein reserve.  相似文献   

2.
Previous studies have shown that chronic ethanol influences the density of central mu-opioid receptors and serotonin(1A) (5-hydroxytryptamine(1A)) receptors. To determine whether the functional coupling of these two receptors to G proteins in the rat brain, particularly in mesocorticolimbic regions, is affected by ethanol, receptor-mediated [(35)S]guanosine-5'-O-(3-thio)-triphosphate ([(35)S]GTPgammaS) binding stimulated by [D-Ala(2),N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO) or L694,247 was used. By quantitative autoradiography, receptor-mediated [(35)S]GTPgammaS binding activated by the two agonists was mapped throughout brain sections at the level of the nucleus accumbens and hippocampus from groups of alcohol-preferring Fawn-Hooded (FH) rats after different ethanol consumption paradigms. Significant DAMGO (mu-opioid receptor agonist)-stimulated binding of [(35)S]GTPgammaS was obtained in the striatum, nucleus accumbens, and lateral septum, whereas L694,247 (5-hydroxytryptamine(1A/1B/1D) receptor agonist)-stimulated binding of [(35)S]GTPgammaS was observed in the lateral septum, amygdala, and cingulate cortex. Chronic ethanol self-administration significantly reduced DAMGO-stimulated [(35)S]GTPgammaS binding in the nucleus accumbens (-19%), lateral septum (-15%), and striatum (-23%), which recovered toward control levels after ethanol withdrawal. However, chronic ethanol, as well as ethanol withdrawal, failed to produce any significant alteration in L694,247-stimulated [(35)S]GTPgammaS binding in all tested brain regions. The region-specific and receptor-specific alteration of agonist-stimulated [(35)S]GTPgammaS binding suggests that the change of functional coupling of mu-opioid receptors to G proteins induced by chronic ethanol drinking may have a pathophysiological role in the consequences of ethanol consumption.  相似文献   

3.
Stimulation of spinal muscarinic acetylcholine receptors (mAChRs) produces potent analgesia. Both M(2) and M(4) mAChRs are coupled to similar G proteins (G(i/o) family) and play a critical role in the analgesic action of mAChR agonists. To determine the relative contribution of M(2) and M(4) subtypes to activation of G(i/o) proteins in the spinal cord, we examined the receptor-mediated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding in M(2) and M(4) subtype knockout (KO) mice. Basal [(35)S]GTPgammaS binding in the spinal cord was similar in the wild-type controls, M(2) and M(4) single-KO, and M(2)/M(4) double-KO mice. The spinal [(35)S]GTPgammaS binding stimulated by either muscarine or oxotremorine-M was not significantly different among three groups of wild-type mouse strains. In M(2) single-KO and M(2)/M(4) double-KO mice, the agonist-stimulated [(35)S]GTPgammaS binding was completely abolished in the spinal cord. Furthermore, the agonist-stimulated [(35)S]GTPgammaS binding in the spinal cord of M(4) single-KO mice was significantly reduced ( approximately 15%), compared with that in wild-type controls. On the other hand, the spinal [(35)S]GTPgammaS binding stimulated by a mu-opioid agonist was not significantly different between wild-type and M(2) and M(4) KO mice. This study provides complementary new evidence that M(2) is the most predominant mAChR subtype coupled to the G(i/o) proteins in the spinal cord. Furthermore, these data suggest that a small but functionally significant population of M(4) receptors exists in the mouse spinal cord. The functional activity of these M(4) receptors seems to require the presence of M(2) receptors.  相似文献   

4.
Agonists and GTP exert reciprocal effects on the stability of the G protein-coupled receptor/G protein complex, implying bidirectional control over the receptor/G protein interface. To investigate this relationship, we compared the ability of a series of hydroxyl-substituted phenethylamine and imidazoline agonists to stimulate [(35)S]guanosine 5'-O-(3-thio)triphosphate ([(35)S]GTPgammaS) binding in membranes from alpha(2A/D)-adrenergic receptor-transfected PC12 cells with the magnitude of the GTP-induced reduction in agonist affinity in [(3)H]rauwolscine-binding studies. Agents previously described as full and partial agonists in functional studies showed similar relative efficacies in promoting GTP binding (r = 0.97) as well as similar relative potencies (r = 0.94). Efficacy among agonists for promotion of [(35)S]GTPgammaS binding was closely correlated with the relative influence of GTPgammaS on agonist binding (r = 0.97), consistent with a bidirectional allosteric influence by agonists and GTP on receptor/G protein complexation. In an additional series of tolazoline derivatives, a range in efficacy from full agonism to strong inverse agonism was observed, depending on the presence or absence of hydroxyl substituents. Together these results suggest that agonist-induced repositioning of transmembrane helices via their hydroxyl interactions is a critical determinant of the stability of the receptor/G protein complex and therefore of agonist efficacy.  相似文献   

5.
In this study, we explored the relationship between regulation of surface mu-opioid receptor number, ligand-induced G protein activation (measured by [(35)]S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) binding) and second messenger signaling (measured by the inhibition of cAMP accumulation). Etorphine and two isomers of cis-beta-hydroxy-3-methylfentanyl (RTI-1a and RTI-1b), which were full agonists for G protein activation and signaling, caused approximately a 50% loss of surface receptors after 1 h of treatment. Fentanyl and morphine were full agonists for inhibiting cAMP accumulation and partial agonists for stimulating [(35)S]GTPgammaS binding and internalization. Although both agonists were approximately 80% as efficacious as etorphine in stimulating [(35)S]GTPgammaS binding, fentanyl induced a 35% loss of surface receptors, whereas morphine only caused a 10% loss. Additionally, both long- and short-term treatment with the opioid antagonist naloxone caused increases in surface receptors. Unexpectedly, the weak partial agonists buprenorphine and one isomer of cis-beta-hydroxy-3-methylfentanyl (RTI-1d) also were found to cause an increase in surface receptors. Treatment with pertussis toxin (PTX) diminished agonist-induced loss of surface receptors. Furthermore, the abilities of morphine and fentanyl to cause internalization were more impaired after PTX treatment than that of etorphine. PTX treatment also significantly enhanced the increase in surface receptor number caused by 18-h treatment with naloxone and buprenorphine. The results of this study suggest that disruption of G protein coupling by PTX treatment affects ligand-regulated mu-receptor trafficking and that partial agonists for signaling can vary greatly in the ability to regulate the number of surface mu-opioid receptors.  相似文献   

6.
Pertussis toxin (PTX)-insensitive mutants of Galpha(i/o) proteins expressed in C6mu cells were used to examine the hypothesis that there are agonist-specific conformational states of the mu-opioid receptor with coupling preferences to different Galpha(i/o) subtypes, as measured by the degree of stimulation of [(35)S]guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) binding. Binding of [(35)S]GTPgammaS to endogenous Galpha(i/o) proteins stimulated by the full mu-opioid agonist [d-Ala(2),MePhe(4),Gly(5)-ol]enkephalin (DAMGO) was completely blocked by overnight treatment with 100 ng/ml PTX. Treatment for 4 h with lower concentrations led to a PTX-dependent reduction in the maximal effect of DAMGO but no alteration in the potency of DAMGO or morphine nor in the relative maximal effect (relative efficacy) of the partial agonists morphine and buprenorphine compared with the full agonist DAMGO. Using PTX-insensitive Galpha mutants in which the PTX-sensitive cysteine was replaced with isoleucine, the potency for a series of mu-opioid agonists was highest in cells expressing Galpha(i3) and Galpha(o) and lowest with Galpha(i1) and Galpha(i2), with no significant change in the order of potency, namely, etorphine > endomorphin-1 = DAMGO = endomorphin-2 = fentanyl = morphine > meperidine. The order of agonist relative efficacy, etorphine = DAMGO = endomorphin-1 = endomorphin-2 = fentanyl > or = morphine > or = meperidine > buprenorphine > or = nalbuphine, was also the same across all of the PTX-insensitive Galpha(i/o) subtypes. Highest relative efficacy to stimulate [(35)S]GTPgammaS binding was seen with Galpha(i3). Consequently, reported observations of agonist-directed trafficking at mu-opioid receptors most likely involve non-PTX-sensitive Galpha protein mechanisms.  相似文献   

7.
Buprenorphine (BUP) is an oripavine analgesic that is beneficial in the maintenance treatment of opiate-dependent individuals. Although BUP has been studied extensively, relatively little is known about norbuprenorphine (norBUP), a major dealkylated metabolite of BUP. We now describe the binding of norBUP to opioid and nociceptin/orphanin FQ (ORL1) receptors, and its effects on [(35)S]guanosine-5'-O-(gamma-thio)triphosphate ([(35)S]GTP gamma S) binding mediated by opioid or ORL1 receptors and in the mouse acetic acid writhing test. Chinese hamster ovary cells stably transfected with each receptor were used for receptor binding and [(35)S]GTP gamma S binding. NorBUP exhibited high affinities for mu-, delta-, and kappa-opioid receptors with K(i) values in the nanomolar or subnanomolar range, comparable to those of BUP. NorBUP and BUP had low affinities for the ORL1 receptor with K(i) values in the micromolar range. In the [(35)S]GTP gamma S binding assay, norBUP displayed characteristics distinct from BUP. At the delta-receptor, norBUP was a potent full agonist, yet BUP had no agonist activity and antagonized actions of norBUP and DPDPE. At mu- and kappa-receptors, both norBUP and BUP were potent partial agonists, with norBUP having moderate efficacy and BUP having low efficacy. At the ORL1 receptor, norBUP was a full agonist with low potency, while BUP was a potent partial agonist. In the writhing test, BUP and norBUP both suppressed writhing in an efficacious and dose-dependent manner, giving A(50) values of 0.067 and 0.21 mg/kg, s.c., respectively. These results highlight the similarities and differences between BUP and norBUP, each of which may influence the unique pharmacological profile of BUP.  相似文献   

8.
The aim of this study was to investigate the relative density of micro -, kappa-, and delta-opioid receptors (MOR, KOR, and DOR) and guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding stimulated by full agonists in cortical and thalamic membranes of monkeys. The binding parameters [Bmax (femtomoles per milligram)/Kd (nanomolar)] were as follows: [3H][d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) (MOR; 80/0.7), [3H]U69593 [(5alpha,7alpha,8beta)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl) benzeneacetamide] (KOR; 116/1.3), and [3H][d-Pen2,d-Pen5]-enkephalin (DPDPE) (DOR; 87/1.3) in the cortex; [3H]DAMGO (147/0.9), [3H]U69593 (75/2.5), and [3H]DPDPE (22/2.0) in the thalamus. The relative proportions of MOR, KOR, and DOR in the cortex were 28, 41, and 31% and in the thalamus were 60, 31, and 9%. Full selective opioid agonists, DAMGO (EC50 = 532-565 nM) and U69593 (EC50 = 80-109 nM) stimulated [35S]GTPgammaS binding in membranes of cortex and thalamus, whereas SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide] (DOR; EC50 = 68 nM) was only active in cortical membranes. The magnitudes of [35S]GTPgammaS binding stimulated by these agonists were similar in the cortex, ranging from 17 to 25% over basal binding. In the thalamus, DAMGO and U69593 increased [35S]GTPgammaS binding by 44 and 23% over basal, respectively. Opioid agonist-stimulated [35S]GTPgammaS binding was blocked selectively by antagonists for MOR, KOR, and DOR. The amount of G protein activated by agonists was highly proportional to the relative receptor densities in both regions. These results distinguish the ability of opioid agonists to activate G proteins and provide a functional correlate of ligand-binding experiments in the monkey brain. In particular, the relative densities of opioid receptor binding sites in the two brain areas reflect their functional roles in the pharmacological actions of opioids in the central nervous system of primates.  相似文献   

9.
Previous studies have demonstrated that peptidic and nonpeptidic delta-opioid receptor agonists have different effects depending on the measure. For example, nonpeptidic delta-opioid agonists, but not peptidic agonists, produce convulsions in rats, and in vitro studies suggested that peptidic and nonpeptidic delta-opioid agonists might have differential mechanisms of receptor downregulation. The present study evaluated potential differences between peptidic and nonpeptidic delta-opioid agonists in their ability to activate G proteins using guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) autoradiography experiments in rat brain slices. The peptidic agonist [d-Pen(2),d-Pen(5)]-enkephalin and the nonpeptidic agonist (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide] demonstrated concentration-dependent increases in [(35)S]GTPgammaS binding that were attenuated by the delta-opioid antagonist naltrindole. (+)BW373U86 was more potent and efficacious than the peptidic agonist, and this difference remained consistent across brain regions where significant stimulation was observed. In addition, multiple delta-opioid compounds were evaluated for their agonist activity in this assay. These data suggested that differences between peptidic and nonpeptidic delta-opioid agonists in behavioral studies were most likely caused by differences in agonist efficacy. Finally, these data also revealed that [(35)S]GTPgammaS autoradiography could be used to compare efficacy differences among agonists across various brain regions in rat brain slices.  相似文献   

10.
Agonist efficacy may influence the magnitude of neuroadaptation in response to chronic drug exposure. Chronic administration of either Delta(9)-tetrahydrocannabinol (THC), a partial agonist, or R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2), a full agonist, for G protein activation produces tolerance to cannabinoid-mediated behaviors. The present study examined whether chronic administration of maximally tolerated doses of Delta(9)-THC and WIN55,212-2 produces similar cannabinoid receptor desensitization and down-regulation. Mice were treated with escalating doses of agonist for 15 days, with final doses of 160 mg/kg Delta(9)-THC and 48 mg/kg WIN55,212-2. Tolerance to cannabinoid-mediated hypoactivity, hypothermia, and antinociception was found after treatment with Delta(9)-THC or WIN55,212-2. In autoradiographic studies, cannabinoid-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding was significantly decreased in all regions of Delta(9)-THC- and WIN55,212-2-treated brains. In addition, Delta(9)-THC-treated brains showed greater desensitization in some regions than WIN55,212-2-treated brains. Concentration-effect curves for cannabinoid-stimulated [(35)S]GTPgammaS binding confirmed that decreases in the hippocampus resulted from loss of maximal effect in both WIN55,212-2- and Delta(9)-THC-treated mice. In the substantia nigra, the E(max) decreased and the EC(50) value increased for agonist stimulation of [(35)S]GTPgammaS binding in Delta(9)-THC-treated mice. [(3)H]N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) binding was decreased in all brain regions in Delta(9)-THC- and WIN55,212-2-treated mice, with no difference between treatment groups. These results demonstrate that chronic treatment with either the partial agonist Delta(9)-THC or the full agonist WIN55,212-2 produces tolerance to cannabinoid-mediated behaviors, as well as cannabinoid receptor desensitization and down-regulation. Furthermore, Delta(9)-THC produced greater desensitization than WIN55,212-2 in some regions, indicating that agonist efficacy is one determinant of cannabinoid receptor desensitization in brain.  相似文献   

11.
The diarylpiperazine delta-opioid agonist SNC80 [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenzamide] produces convulsions, antidepressant-like effects, and locomotor stimulation in rats. The present study compared the behavioral effects in Sprague-Dawley rats of SNC80 with its two derivatives, SNC86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide] and SNC162 [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-phenyl)methyl]-N,N-diethylbenzamide], which differ by one functional group located in the 3-position of the benzylic ring. In behavioral measures, these three compounds demonstrated a rank order of potency and efficacy; SNC86 was the most potent and efficacious followed by SNC80 and then SNC162. In vitro, these compounds stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding in the caudate putamen of coronal brain slices from drug-naive rats as measured by in vitro autoradiography. In [(35)S]GTPgammaS binding studies, SNC86 seemed to be a full agonist at the delta-opioid receptor; however, SNC162 demonstrated reduced stimulation compared with SNC86, consistent with partial agonist activity. Although SNC80 was not fully efficacious in [(35)S]GTPgammaS autoradiography studies, it produced behavioral effects similar to those observed with SNC86, suggesting that the behavioral effects of SNC80 may be produced by its 3-hydroxy metabolite.  相似文献   

12.
Human dopamine D(2) (hD(2)) and D(3) (hD(3)) receptors were expressed at similar, high expression levels in Chinese hamster ovary (CHO) cells, and their coupling to G proteins and further signal transduction pathways were compared. In competition radioligand-binding experiments, guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) treatment of hD(2S)- or hD(3)-CHO cell membranes induced a rightward shift and steeping of the dopamine inhibition curve. This effect was pronounced for hD(2) receptors and small for hD(3) receptors. Activation of G proteins was investigated in [(35)S]GTPgammaS-binding assays. Dopamine stimulated [(35)S]GTPgammaS binding 330 and 70% over basal levels on hD(2)-CHO and hD(3)-CHO cell membranes, respectively. (+)-7-(Dipropylamino)-5, 6,7,8-tetrahydro-2-naphthalenol and PD128907 were partial agonists for both receptors. Haloperidol, risperidone, raclopride, and nemonapride inhibited dopamine-stimulated [(35)S]GTPgammaS binding with potencies comparable to their binding affinities for hD(2) and hD(3) receptors in CHO cell membranes; inverse agonism could not be detected with this assay. Receptor stimulation by dopamine inhibited forskolin-induced cyclic AMP formation in hD(2)-CHO and hD(3)-CHO cells by 70%. Furthermore, the extracellular acidification rate increased when hD(2)-CHO and hD(3)-CHO cells were stimulated by dopamine; this effect was abolished by pertussis toxin pretreatment. In this study, we could demonstrate clear functional effects at different levels of the signaling cascade of hD(2) and hD(3) receptors in CHO cells when expressed at high levels. High-affinity agonist binding to hD(2) and hD(3) receptors was still present, but effects of receptor-G protein uncoupling at hD(3) receptors were small, indicating that hD(3) receptors maintain relatively high-affinity agonist binding in the absence of G proteins.  相似文献   

13.
The guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding assay for the determination of relative opioid efficacy has been adapted to measure G protein activation in digitonin-permeabilized C6 rat glioma cells expressing a cloned mu-opioid receptor. The mu-agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) caused a 3-fold increase in [35S]GTPgammaS binding over basal in a naloxone-sensitive manner. Relative mu-agonist efficacy was DAMGO > fentanyl > or = morphine > buprenorphine. Nalbuphine showed no efficacy. G protein activation by receptors has been predicted to occur by random encounter. In this model a reduction in the number of receptors will decrease the rate of G protein activation but not the maximum number of G proteins activated. To test this model C6 mu cells were treated with the irreversible mu-antagonist beta-funaltrexamine (10 nM) prior to permeabilization. This reduced the number of mu-opioid receptors determined with [3H]diprenorphine to 23 +/- 3% of control with no change in affinity. A commensurate reduction (to 29 +/- 10% of control) in the level of [35S]GTPgammaS binding stimulated by DAMGO was observed, but the t(1/2) for [35S]GTPgammaS binding remained unchanged. Thus, random encounters of receptor and G protein failed to occur in this permeabilized cell preparation. A model that assumes an organized association of G proteins with receptors better describes the activation of G proteins by opioid mu-receptors.  相似文献   

14.
In hippocampal membranes, the selective 5-hydroxytryptamine (5-HT(1A)) receptor agonists 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) and N,N-dipropyl-5-carboxamidotryptamine (N,N-DP-5-CT) stimulated guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPgammaS) binding by 130 to 140%; binding stimulated by nonselective agonists (5-HT and 5-CT) was approximately 30% greater. However, the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cyclohex anecarboxamide (WAY100,635) completely abolished the increases produced by 8-OH-DPAT and N,N-DP-5-CT but only eliminated 70% of that elicited by 5-CT. The rank potency order of the tested agonists was identical with their rank order of affinity for 5-HT(1A) receptors [5-CT congruent with N,N-DP-5-CT > R-(+)-8-OH-DPAT > 5-HT > ipsapirone]. Racemic 8-OH-DPAT and the partial agonist ipsapirone exhibited lower intrinsic activity than R-(+)-8-OH-DPAT. R-(+)-8-OH-DPAT also stimulated [(35)S]GTPgammaS binding in cortex, but not in striatum, which lacks 5-HT(1A) receptors. Partial irreversible inactivation of 5-HT(1A) receptors, in vitro with phenoxybenzamine (0.3 or 1 microM) or in vivo with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (1 mg/kg), reduced the maximal response produced by R-(+)-8-OH-DPAT but did not alter its EC(50). In autoradiographic sections, R-(+)-8-OH-DPAT stimulated [(35)S]GTPgammaS binding in 5-HT(1A) receptor-rich regions (dorsal hippocampus, 123%; lateral septum, 111%; midhippocampus, 110%; dorsal raphe nucleus, 83%; medial prefrontal cortex, approximately 60%). The EC(50) of R-(+)-8-OH-DPAT did not vary significantly among brain regions (46-96 nM). Partial irreversible blockade of 5-HT(1A) receptors in brain sections (phenoxybenzamine, 10 microM) reduced the maximal response without altering the EC(50) in both the hippocampus and dorsal raphe. Despite prior evidence that dorsal raphe somatodendritic 5-HT(1A) autoreceptors exhibit high receptor/effector coupling efficiency (receptor reserve) compared with postsynaptic receptors in hippocampus, there was no evidence of a difference at the level of receptor/G protein coupling.  相似文献   

15.
Salvinorin A, TRK-820 (17-cyclopropylmethyl-3,14beta-dihydroxy-4,5alpha-epoxy-6beta-[N-methyl-trans-3-(3-furyl) acrylamido]morphinan hydrochloride), and 3FLB (diethyl 2,4-di-[3-fluorophenyl]-3,7-dimethyl-3,7-diazabicyclo[3.3.1]nonane-9-one-1,5-dicarboxylate) are structurally distinctly different from U50,488H [(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methanesulfonate], the prototypic selective kappa agonist. Here, we investigated their in vitro pharmacological activities on receptors expressed in Chinese hamster ovary cells and in vivo antiscratch and antinociceptive activities in mice. All three compounds showed high selectivity for the kappa opioid receptor (KOR) over the mu opioid receptor (MOR) and delta opioid receptor (DOR) and nociceptin or orphanin FQ receptors. In the guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assay, all three were full agonists on the KOR. The rank order of affinity and potency for the KOR was TRK-820 > U50,488H approximately salvinorin A > 3FLB. TRK-820 acted as a partial agonist on MOR and DOR, whereas salvinorin A and 3FLB showed no activities on these receptors. Salvinorin A, TRK-820, and 3FLB caused internalization of the human KOR in a dose-dependent manner. Interestingly, although salvinorin A and U50,488H had similar potencies in stimulating [(35)S]GTPgammaS binding, salvinorin A was about 40-fold less potent than U50,488H in promoting internalization. Following 4-h incubation, all three compounds induced down-regulation of the human KOR, with salvinorin A causing a lower extent of down-regulation. Although TRK-820 was potent and efficacious against compound 48/80-induced scratching, salvinorin A showed low and inconsistent effects, and 3FLB was inactive. In addition, salvinorin A and 3FLB were not active in the acetic acid abdominal constriction test. The discrepancy between in vitro and in vivo results may be due to in vivo metabolism of salvinorin A and 3FLB and possibly to their effects on other pharmacological targets.  相似文献   

16.
Recent evidence indicates that the well established delta-opioid antagonist TIPP (H-Tyr-Tic-Phe-Phe-OH) also displays agonist activity in several cellular models. Therefore, it is possible that TIPP, and structurally related compounds, might represent a novel class of opioid agonists exhibiting unique characteristics. The purpose of this study was to examine the properties of TIPP at selected points of the signal transduction pathway (i.e., receptor binding, G-protein activation, and effector regulation) in GH(3)DORT cells (GH(3) cells expressing delta-opioid receptors) and compare them with that of an established delta-opioid agonist, [D-Pen(2),D-Pen(5)]-enkephalin (DPDPE). DPDPE exhibited properties of an agonist in all assays. In contrast, TIPP demonstrated characteristics of an agonist, antagonist, or inverse agonist, depending on the step in the signal transduction cascade examined and the assay conditions employed. In receptor binding assays, the addition of guanine nucleotides and sodium ions increased the affinity of TIPP for delta-opioid receptors in both membrane preparations and digitonin-permeabilized cells, which is characteristic of an inverse agonist. In assays measuring G-protein activation, TIPP failed to stimulate guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding in membrane preparations, which is consistent with an antagonist profile. However, when using cells semi-permeabilized with digitonin, TIPP exhibited properties of an agonist, producing concentration-dependent, antagonist-reversible stimulation of [(35)S]GTPgammaS binding. Finally, in assays examining regulation of the intracellular effector adenylyl cyclase, TIPP exhibited characteristics of an agonist, producing inhibition of enzyme activity in both membrane preparations and whole cells. Therefore, although DPDPE and TIPP act similarly as agonists to regulate the intracellular effector adenylyl cyclase, they demonstrate significant differences in the signal transduction cascade preceding this final point of convergence.  相似文献   

17.
Immunoprecipitation of a fusion protein between the alpha(1b)-adrenoceptor and Galpha(11) following a [(35)S]GTPgammaS [guanosine-5'-O-(3-thio)triphosphate] binding assay resulted in incorporation of low levels of nucleotide. The agonist phenylephrine increased incorporation some 30-fold. Agonist-induced binding represented 1.0 mol of [(35)S]GTPgammaS/mol of fusion protein. This was to the G protein linked to the receptor rather than endogenous Galpha(q)/Galpha(11) as a fusion protein containing the alpha(1b)-adrenoceptor and a form of Galpha(11) (G(208)A) unable to exchange guanine nucleotides effectively, bound [(35)S]GTPgammaS very poorly. Fusion proteins between A(293)E, D(142)A, and 3CAM mutants of the alpha(1b)-adrenoceptor and Galpha(11) bound substantially greater levels of [(35)S]GTPgammaS in the absence of agonist than the fusion incorporating the wild-type receptor. Constitutive binding of the nucleotide induced by these mutants was only 20% of the level achieved by phenylephrine. These mutant receptors thus do not provide an accurate mimic of the agonist-occupied state. Phentolamine reduced the binding of [(35)S]GTPgammaS and acted as a partial inverse agonist for each of the constitutively active mutants. [(35)S]GTPgammaS binding to Galpha(11) was elevated by phenylephrine in both wild-type and constitutively active mutant forms of the fusion proteins, but agonist potency and binding affinity were 50 times higher for the fusions containing the mutated receptors. These studies provide the first direct demonstration of the capacity of constitutively active mutants of a receptor to stimulate guanine nucleotide exchange on the alpha subunit of a G(q) family G protein and defines a strategy potentially suitable for any receptor that couples to these G proteins.  相似文献   

18.
In cellular models, chronic exposure to mu-opioid agonists converts antagonists into inverse agonists at mu-receptors. Such adaptations could contribute to the development of tolerance and/or dependence. To determine whether delta-receptors respond similarly, or whether this adaptation is unique for mu-receptors, this study examined the effects of prolonged agonist exposure on the intrinsic activity of several delta-opioid ligands in GH(3) cells expressing delta-receptors. In opioid naive cells, delta-receptors were constitutively active, and a series of delta-ligands displayed a range of intrinsic activities for G protein activation. Chronic treatment with the full delta-agonist [D-Pen(2,5)]-enkephalin reduced the acute ability of [D-Pen(2,5)]-enkephalin to stimulate and the full inverse agonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI-174864) to inhibit G protein activation. In contrast, although naloxone and naltriben exhibited weak partial agonism in opioid naive cells, both ligands acted as full inverse agonists to produce concentration-dependent inhibition of guanosine 5'-O-(3-[(35)S]thio)triphosphate binding after prolonged exposure to [D-Pen(2,5)]-enkephalin or to the partial agonist morphine. This effect was reversed by a neutral delta-antagonist (N,N-bisallyl)-Tyr-Gly-Gly-psi-(CH(2)S)-Phe-Leu-OH (ICI-154129). Finally, as is also characteristic of inverse agonists, naloxone and naltriben demonstrated higher affinities for uncoupled delta-receptors in cells chronically treated with [D-Pen(2,5)]-enkephalin, relative to opioid naive cells. Therefore, this relatively novel adaptation is shared by both mu- and delta-opioid receptors and therefore may serve as an important common mechanism involved the development of tolerance and/or dependence.  相似文献   

19.
The constrained opioid peptide (2S,3R)beta-methyl-2',6'-dimethyltyrosine-L-tetrahydroisoquinoline-3-carboxylic acid [(2S,3R)TMT-L-Tic-OH] exhibits high affinity and selectivity for the delta-opioid receptors (). In the present study, we examined the pharmacological properties of (2S,3R)TMT-L-Tic-OH in mouse brain. A 5'-O-(3-[(35)S]thiotriphosphate) ([(35)S]GTP gamma S) binding assay was used to determine the effect of (2S,3R)TMT-L-Tic-OH on G protein activity in vitro, in mouse brain membranes. delta- (SNC80; (+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N,N-diethyl-benzamide) or mu- (DAMGO; [D-Ala(2), Me-Phe(4),Gly(ol)(5)]enkephalin) selective opioid full agonists stimulated [(35)S]GTP gamma S binding in mouse brain membranes 150 +/- 4.5% and 152 +/- 5.7% over the basal level, respectively. (2S,3R)TMT-L-Tic-OH did not influence basal [(35)S]GTP gamma S binding in mouse brain membranes but dose dependently shifted the dose-response curve of SNC80 to the right, with a K(e) value of 3.6 +/- 0.7 nM. In contrast, (2S,3R)TMT-L-Tic-OH had no effect on the dose-response curve of the mu-selective opioid agonist, DAMGO. Warm water (55 degrees C) tail-flick and radiant heat paw-withdrawal tests were used to determine the in vivo nociceptive properties of (2S,3R)TMT-L-Tic-OH in the mouse. Intracerebroventricular injection of (2S,3R)TMT-L-Tic-OH had no significant effect on withdrawal latencies in either nociceptive tests. (2S,3R)TMT-L-Tic-OH (30 nmol/mouse) attenuated deltorphin II- but not DAMGO-mediated antinociception (40 +/- 13 and 100% of maximal possible effect, respectively) when administered intracerebroventricularly 10 min before the agonist. Taken together these results suggest that (2S,3R)TMT-L-Tic-OH is a potent highly selective neutral delta-opioid antagonist in mouse brain.  相似文献   

20.
S32504 [(+)-trans-3,4,4a,5,6,10b-hexahydro-9-carbamoyl-4-propyl-2H-naphth[1,2-b]-1,4-oxazine] displayed marked affinity for cloned, human (h)D(3) receptors (pK(i), 8.1) at which, in total G-protein ([(35)S]GTPgammaS binding, guanosine-5'-O-(3-[(35)S]thio)-triphosphate), Galpha(i3) (antibody capture/scintillation proximity), and mitogen-activated protein kinase (immunoblot) activation procedures, it behaved as an agonist: pEC(50) values, 8.7, 8.6, and 8.5, respectively. These actions were blocked by haloperidol and the selective D(3) receptor antagonist S33084 [(3aR,9bS)-N-[4-(8-cyano-1,3a,4,9b-tetrahydro-3H-benzopyrano[3,4-c]pyrrole-2-yl)-butyl]-(4-phenyl) benzamide)]. S32504 showed lower potency at hD(2S) and hD(2L) receptors in [(35)S]GTPgammaS binding (pEC(50) values, 6.4 and 6.7) and antibody capture/scintillation proximity (hD(2L), pEC(50), 6.6) procedures. However, reflecting signal amplification, it potently stimulated hD(2L) receptor-coupled mitogen-activated protein kinase (pEC(50), 8.6). These actions were blocked by haloperidol and the selective D(2) receptor antagonist L741,626 [4-(4-chlorophenyl)-1-(1H-indol-3-ylmethyl)piperidin-4-ol]. The affinity of S32504 for hD(4) receptors was low (5.3) and negligible for hD(1) and hD(5) receptors (pK(i), <5.0). S32504 showed weak agonist properties at serotonin(1A) ([(35)S]GTPgammaS binding, pEC(50), 5.0) and serotonin(2A) (G(q), pEC(50), 5.2) receptors and low affinity for other (>50) sites. In anesthetized rats, S32504 (0.0025-0.01 mg/kg, i.v.) suppressed electrical activity of ventrotegmental dopaminergic neurons. Correspondingly, S32504 (0.0025-0.63 mg/kg, s.c.) potently reduced dialysis levels (and synthesis) of dopamine in striatum, nucleus accumbens, and frontal cortex of freely moving rats, actions blocked by haloperidol and L741,626 but not by S33084. In contrast, S32504 only weakly inhibited serotonergic transmission and failed to affect noradrenergic transmission. Actions of S32504 were expressed stereospecifically versus its less active enantiomer S32601 [(-)-trans-3,4,4a,5,6,10b-hexahydro-9-carbomoyl-4-propyl-2H-naphth[1,2-b]-1,4-oxazine]. Although the D(3)/D(2) agonist and antiparkinsonian agent ropinirole mimicked the profile of S32504, it was less potent. In conclusion, S32504 is a potent and selective agonist at dopamine D(3) and D(2) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号