首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic T lymphocytes (CTL) specific for epitope(s) withinthe circumsporozoite (CS) protein of malaria sporozoites havebeen shown to play an important role in protective immunityagainst malaria, at least in murine models. Their role in sporozoiteimmunity in the human host has, however, not yet been elucidated.Immunological non-responsiveness and antigenlc diversity withinT cell epitopes of the CS protein have been identified as potentialproblems in producing a sporozoite vaccine. These factors maycontribute to the widespread lack of sporozoite immunity inendemic populations. In this study, 137 individuals with a historyof natural endemic exposure to falciparum sporozoites (119 residentin north west Thailand and 18 resident in coastal Papua NewGuinea) were tested for a CTL response to the Plasmodium falciparumCS protein Fifty-four overlapping peptides, spanning the entiresequence of the CS protein of P. falciparum including most knownvariants, were studied. While most individuals had antibodiesto the immunodominant B cell repeat, (NANP)n, and while CTLspecific for an influenza virus matrix synthetic peptide couldbe generated from five of 23 Karen Thai individuals tested,no CS protein-specific CTL could be detected in these populations.Our data have important implications for vaccine programs.  相似文献   

2.
Most antibodies directed against the Plasmodium falciparum circumsporozoite (CS) protein react with its central domain, which contains about 40 repeats of the tetrapeptide Asn-Ala-Asn-Pro (NANP). To search for new epitopes in the non-repetitive part of the CS protein, we expressed the non-repetitive regions of the protein in E. coli as fusion proteins with mouse dihydrofolate reductase linked to six adjacent histidine residues. These fusion proteins were obtained at greater than 70% purity by a single Ni-chelate affinity chromatography step. Of the new epitopes defined in the C-terminal portion of the CS protein, three are located in a stretch of 65 amino acids immediately C-terminal of the protein's central repetitive domain. Pooled sera from inhabitants of a malaria-endemic area reacted with epitopes in this region of the molecule, and four mouse monoclonal antibodies to this region also reacted with the native CS protein on sporozoites. Two of the monoclonal antibodies reacted with a peptide PNDPNRNVD derived from a conserved region of the CS protein. The other two antibodies showed different reactivities to sporozoites of the NF54 and Ro59 parasite isolates. One, which reacted with a peptide ENANANNAV, recognized Ro59 but not NF54 sporozoites, while the other reacted with a small percentage of NF54 but not Ro59 sporozoites. Antibodies which react with non-repetitive regions of the CS protein could contribute to maintaining its genetic variability.  相似文献   

3.
Variation in the immunodominant T cell epitopes Th2R and Th3R of the Plasmodium falciparum circumsporozoite protein has been analysed from Gambian clinical isolates using the polymerase chain reaction. The degree of polymorphism in these epitopes is more extensive than that found in several geographically diverse laboratory isolates. These findings strongly suggest that it will not be feasible to include all variants in a polyvalent subunit sporozoite vaccine.  相似文献   

4.
The present findings establish the lack of genetic restriction of the humoral immune response to sporozoites of Plasmodium berghei, corraborating earlier observations that mice of different strains can be protected by immunization with irradiated sporozoites. Most, if not all, anti-sporozoite antibodies are directed against the repetitive B cell epitope of the circumsporozoite (CS) protein. However, neither a peptide containing a dimer of this repeat (17.1), nor a peptide polymer containing multiple repeats induced an antibody response in mice of different H-2 and different genetic backgrounds. A yeast-derived recombinant, containing the repeat domain and part of the surrounding amino and carboxy-terminal regions of the P. berghei CS protein, induces very different levels of antibody in mice of diverse H-2 haplotypes. H-2j mice are high responders and the immunized mice are extensively protected against sporozoite challenge. The lymph node cells of the H-2j mice (but not from other strains) proliferated in the presence of peptide N, contained in the amino terminal region of the CS recombinant. Additional H-2-restricted T cell epitopes have been identified in amino and carboxy-terminal regions of the CS protein, and mice of most of the strains recognized multiple T cell epitopes. Two peptides representing T cell epitopes were synthesized in tandem with a peptide representing the B cell epitope, and were assayed for T helper activity in vivo. The antibody response of mice, primed by a single injection of sporozoites, was boosted very effectively by the administration of peptide N + 17.1 or peptide B-4 + 17.1. The B-4 T cell epitope is located in the carboxy-terminal region of the CS protein and is recognized by mice of at least four different H-2 haplotypes. These observations demonstrate that the immune response to the CS protein of P. berghei is not genetically restricted and that it contains several T cell epitopes, some of which can function as helper epitopes. In addition, they show that a synthetic sporozoite vaccine can boost the immune response to sporozoites.  相似文献   

5.
Synthetic peptides and human serum or plasma samples from regions of Brazil, Papua New Guinea, and Kenya in which malaria is endemic were used to identify B-cell epitopes localized outside the repeat region of the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum. In agreement with recent observations, our results confirm the presence of two non-repeat-region-based B-cell epitopes of the CS protein. Of these two epitopes, only the region I epitope (KPKHKKLKQPGDGNP) was previously shown to be recognized by human sera. In this study, we show that human immune sera from malarious regions recognize another B-cell epitope, ENANANNAV, that resides carboxyl to the repeat region. The present study reveals that (i) the repeat-sequence (NANP)-based B-cell epitope of the CS protein is an immunogenic but not immunodominant epitope; (ii) the natural expression of antibody responses to the two non-repeat-region-based B-cell epitopes of the CS protein varies in different populations in which malaria is endemic; (iii) although the host immune responses to the non-repeat-region-based B-cell epitopes increase as a function of host age, this increase is not statistically significant for the region I epitope but is significant for the other epitope; and (iv) the Th1R T-cell site but not the Th2R or Th3R T-cell site induces an antibody response in the human host. This study confirms the immunogenic potential of non-repeat-region-based B-cell epitopes and suggests that antibody pressures may also contribute to the maintenance of the antigenic diversity of the CS protein.  相似文献   

6.
Here, we report the identification of a novel CD8+ cytotoxic T-lymphocyte epitope on the Plasmodium falciparum circumsporozoite protein (3D7; amino acids 310 to 319 [EPSDKHIKEY]) that is restricted by HLA-A*01 and is recognized by human volunteers immunized with irradiated P. falciparum sporozoites. HLA-A*01 is the second most common HLA allele among Caucasians.  相似文献   

7.
Immunization of BALB/c mice with radiation-attenuated Plasmodium yoelii sporozoites induces cytotoxic T lymphocytes (CTL) specific for an epitope located within the amino acid sequence 277-288 of the P. yoelii circumsporozoite (CS) protein. Several CD8+ CTL clones were derived from the spleen cells of sporozoite-immunized mice, all displaying an apparently identical epitope specificity. All the clones induced high levels of cytolysis in vitro upon exposure to peptide-incubated MHC-compatible target cells. The adoptive transfer of two of these clones conferred complete protection against sporozoite challenge to naive mice. This protection is species and stage specific. Using P. yoelii specific ribosomal RNA probes to monitor the in vivo effects of the CTL clones, we found that their target was the intrahepatocytic stage of the parasite. The protective clones completely inhibited the development of the liver stages of P. yoelii. Some CTL clones were only partially inhibitory in vivo, while others failed completely to alter liver stage development and to confer any detectable degree of protection. The elucidation of the effector mechanism of this CTL mediated protection against rodent malaria should facilitate the design of an effective malaria vaccine. From a broader perspective this model may provide further insight into the mechanism(s) of CTL mediated killing of intracellular non-viral pathogens in general.  相似文献   

8.
Sequence polymorphism has been reported for virtually all malaria antigens and, in the case of the circumsporozoite (CS) protein, this variation is in the form of point mutations concentrated primarily in several regions recognized by T cells. The factors responsible for the variation are unknown. We studied the T cell responses to all known variants in malaria-exposed Thais. Memory CD4+ T cells responded to variants of a polymorphic immunodominant region (denoted Th2R), and CD4+ T cell clones specific for one Thai Th2R variant were generated. There was minimal cross-reactivity to any of the naturally occurring variants, including the other Thai variant, and competition studies performed with the clones using analog peptides demonstrated that all the substitutions of the polymorphic residues modulate either the binding of the peptide to major histocompatibility complex (MHC) molecules or the recognition by the T cell receptor of the peptide-MHC complex. Our data suggest that CD4+ T cells may be able to select parasites expressing variant sequences and have implications for development of a CS-based vaccine.  相似文献   

9.
The Plasmodium knowlesi circumsporozoite (CS) protein contains a repetitive immunodominant epitope. Here we show that the serum of rabbits repeatedly immunized with P. knowlesi sporozoites contains antibodies which bind to immobilized synthetic peptides ('C2', 'N2', and 'charged') representing two different polar regions of the CS polypeptide. These reactions are specific since the binding is inhibited only by the homologous peptides. Antisporozoite antibodies were isolated from the rabbit serum by affinity chromatography on Sepharose beads coupled to two synthetic peptides, 'C2' and 'charged'. Both purified antibodies recognized the CS protein and the intracellular precursors as shown by Western blotting analysis using sporozoite extracts. These results demonstrate that the corresponding areas of the native CS molecule are immunogenic, accessible to interaction with antibody, and therefore constitute potential targets for vaccine development. In addition, the present findings confirm the published amino acid sequence of a large portion of the CS protein which has been deduced from the nucleotide sequence of the corresponding gene.  相似文献   

10.
The previously described Plasmodium falciparum blood stage antigen, 5.1 (also referred to as exp-1) was expressed at a high level in Escherichia coli. Saimiri monkeys immunised with purified recombinant antigen 5.1 were partially protected from P. falciparum blood stage parasite challenge. The gene coding for 5.1 was combined with DNA coding for an (Asn-Ala-Asn-Pro)19 sequence (abbreviated (NANP)19 in the one-letter amino acid code). To facilitate purification of the recombinant protein, DNA coding for a hexahistidine (His6) sequence was introduced at the 5' end of the gene (proteins containing His6 have high affinity for Ni(2+)-chelate columns even in the presence of 6 M guanidine HCl). The recombinant protein, His6-5.1-(NANP)19 with an apparent molecular size of 40 kDa could be highly purified by a combination of 4 steps: (1) release and solubilization of the recombinant fusion protein from E. coli in the presence of 6 M guanidine-HCl; (2) precipitation of over 60% of the bacterial proteins by the addition of ammonium sulphate to 50% saturation; (3) affinity chromatography on a Ni(2+)-chelate column in the presence of 6 M guanidine-HCl; (4) adsorption onto a cation exchange resin in the presence of 6 M urea, and elution with an increasing NaCl gradient. Compared with the previously tested tetanus toxoid-(NANP)3 malaria vaccine, this protein elicits an anti-(NANP)n response which more closely resembles that evoked by native sporozoites. The recombinant vaccine also induces the production of antibodies against the blood stages of the malaria parasite.  相似文献   

11.
The complete nucleotide sequence of the cloned circumsporozoite protein gene of the Plasmodium falciparum Wellcome (West African) isolate has been determined. The sequence shows two striking differences from that of the published Brazilian strain; the total number of tandem 12 base pair repeats is 46 compared to 41, and the 5' coding region contains an additional 30 nucleotides. From Southern blot experiments, two out of four cloned Thai lines also have a similar, higher number of repeats. Heterogeneity in the CSP gene repeat region and in the length of the 5' coding region allows the strains to be classed into three groups, with the Wellcome strain being indistinguishable from the Thai line T9-94.  相似文献   

12.
13.
14.
Genetic analysis of field isolates of Plasmodium falciparum has shown selective accumulation of point mutations within the immunologically sensitive sites of the circumsporozoite (CS) protein, a vaccine candidate against malaria. This raised concern whether a vaccine containing the sequence of a selected strain of P. falciparum would be able to confer protection against other variant parasites. The answer to this question remained speculative, and in this study, we have formally tested the immunological impact of such natural variations within a known cytotoxic-T-cell (CTL) epitope, which is recognized by both human and murine CTLs. With a murine model, CTLs were generated against the 7G8 strain of P. falciparum. The ability of these CTLs to lyse histocompatible targets that were pulsed with synthetic peptides corresponding to polymorphic sequences of Brazilian, Papua New Guinean, and The Gambian isolates was determined. While these CTLs were able to recognize three of the four variant CS sequences found in Brazil and Papua New Guinea, they failed to recognize four of the five variant CS sequences found in The Gambia. Among the peptides that lost their reactivity to 7G8-specific CTL, all except one had amino acid variation in more than one residue. On the other hand, only one of the four peptides that showed a positive reaction had amino acid substitutions in more than a single residue. Thus, our findings demonstrate that natural amino acid variations in the CS protein abrogate CTL recognition. Therefore, it is important to consider the implications of these results in designing CS protein-based vaccines.  相似文献   

15.
The circumsporozoite protein is a predominant surface antigen present on Plasmodium sporozoites. In Plasmodium falciparum circumsporozoite protein (PfCSP), two cysteine residues (396 and 401) are present adjacent to two overlapping cytotoxic T-lymphocyte epitopes of the protein and are involved in the formation of disulfide bridges. We investigated the role of these cysteines on the cellular and antibody responses towards the CS protein because disruption of disulfide linkages and the presence of cysteine residues in the flanking region of an epitope has been shown to significantly alter the immune responses to various proteins. Mice were immunized with variant forms of PfCSP DNA vaccine plasmids where these cysteine residues were individually mutated to alanine. The plasmid vaccines induced antigen specific antibody and cytotoxic T lymphocyte responses. While no alterations of cysteine influenced the CTL responses to P. falciparum CS protein, vaccine pVRCS4, containing an altered cysteine at position 401, dramatically improved the antibody response to the carboxyl-terminal region of the protein. This work indicates that sequence alterations of genes in an anti-malarial vaccine could enhance the response towards the native protein. Given the fact that long term natural immunity to the pathogen has not been documented, it may be important to challenge the immune system with non-native proteins.  相似文献   

16.
Malaria sporozoites are transmitted from the mosquito salivary gland to host hepatocytes within minutes of an infectious bite. The circumsporozoite protein (CS), which covers the surface of Plasmodium sporozoites, functions during these minutes in the targeting of host liver cells. The protein's potentially important role in an antimalaria vaccine has spawned interest in both the host immune responses to the parasite's presence and the actual functional role of the protein in the targeting of host liver cells. Here we show that the region of CS known to elicit a cytotoxic T-lymphocyte (CTL) response to irradiated sporozoites also, somewhat ironically, mediates the receptor-ligand interaction essential to parasite invasion of the host. Hence, the structure of CS represents a balance of potentially counterdirectional forces. Polymorphism in the CTL epitope appears to be a product of this balanced state as opposed to an "arms race" as it is so often portrayed. The conceptual difference between the theories regarding the maintainance of polymorphism in CTL epitopes may have significant implication for vaccine design.  相似文献   

17.
T-cell responses directed against the circumsporozoite protein (CS) of Plasmodium falciparum can mediate protection against malaria. We determined the frequency of T cells reactive to different regions of the CS in the blood of donors naturally exposed to P. falciparum by examining T1 (gamma interferon [IFN-gamma] ELISPOT assay), T2 (interleukin 4 [IL-4] ELISPOT assay), and proliferative T-cell responses. The proliferative responses were weak, which confirmed previous observations. The responses to the CS in the IL-4 and IFN-gamma ELISPOT assays were also weak (<40 responding cells per 10(6) cells), much weaker than the response to the purified protein derivative of Mycobacterium tuberculosis in the same donors. Moreover, a response in one assay could not be used to predict a response in either of the other assays, suggesting that although these assays may measure different responding cells, all of the responses are weakly induced by natural exposure. Interestingly, the two different study populations used had significantly different T1 and T2 biases in their responses in the C terminus of the protein, suggesting that the extent of P. falciparum exposure can affect regulation of the immune system.  相似文献   

18.
Using the cloned circumsporozoite (CS) protein gene of a Brazilian strain of Plasmodium falciparum as probe, we have analyzed the structure of the CS protein gene from 17 other Asian, African, Central and South American parasite strains by nucleic acid hybridization. Each strain appears to have one CS protein gene which hybridizes readily to the Brazilian strain probe. The 5' and 3' thirds of the genes are invariant in size in all 18 strains whereas the central third containing the 12 base pair tandem repeats varies in size over a range of about 100 base pairs. Several differences were found in the locations of Sau3A sites in the genes. The Sau3A sites are significant because each of the minority Asn-Val-Asp-Pro repeats in the cloned gene has a Sau3A site. DNA melting of hybrids revealed a high degree of homology between the sequences of the cloned gene and genes from an Asian strain and an African strain. A 14 base oligodeoxynucleotide with a sequence from the central repeat region hybridized to all strains tested. We conclude that the CS protein gene is highly conserved among strains of P. falciparum and that malaria vaccine development with the CS protein is unlikely to be complicated by strain variation.  相似文献   

19.
Antibodies are known to play an important role in the control of malaria infection. However, they can modulate parasite development enhancing infection. The effect of anti-Plasmodium antibodies on the expression of circumsporozoite protein gene (csp) was investigated. Plasmodium falciparum 3D7 in vitro cultures were submitted to: i) anti- circumsporozoite protein monoclonal antibody (anti-CSP-mAb) [1microg/ml, 0.1microg/ml, 0.01microg/ml and 0.001microg/ml] and ii) purified IgG Fab fragment from a pool of malaria patients [1mg/ml and 1microg/ml]; and compared to control cultures. After 24h the number of ring infected erythrocytes was determined in order to calculate invasion efficacy. At 48h culture supernatant was collected, and the amount of circumsporozoite protein determined by ELISA, parasitaemia was calculated and cells were processed for RNA preparation. Expression of csp gene was quantified using Real time RT-PCR. There was an increase in parasite growth when treated with lower anti-CSP-mAb concentration, which was associated with lower csp expression, while 1mug/ml anti-CSP-mAb treatment presented a growth inhibitory effect accompanied by high csp expression.  相似文献   

20.
We have undertaken a systematic search for T cell epitopes within the sequence of the major merozoite surface antigen (GP190) of Plasmodium falciparum. Recombinant polypeptides expressed in E. coli were used to evaluate the reactivity of peripheral blood mononuclear cells (PBMC) from both inhabitants of a rural community of West Africa exposed to P. falciparum transmission and from German patients with diagnosis of acute malaria. Although the proliferative response of the PBMC was in most cases very low, several T cell clones could be established. Deletion analysis of each gp190-derived polypeptide allowed the identification of six different T cell epitopes. Epitopes could be mapped within the dimorphic region of gp190, which also contains the sequences most frequently recognized by sera from adult individuals living in endemic areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号